Ian Herzterg, Marcus Poggi, Thibault Vidal Departamento de Informática, PUC-Rio, Brazil {iherzterg,poggi, vidalt} @inf.puc-rio.br

June 16, 2015

2 Residue Theory and 2D Phase Unwrapping

3 A New Model

- Problem formulation
- Approaches to the MSFBC
- 4 Model Evaluation
- **5** Results and Conclusions

2DPhase Unwrapping Problem (2DPU) via Minimum Spanning Forest with Balance Constraints Motivation: The Real Problem

2D-Phase Unwrapping

- In order to illustrate the importance of phase in signal processing, Oppenheim and Lim proposed an experiment:
 - Through the 2D discrete Fourrier transform (DFT), decompose an image into its sine and cosine component
 - This separates the complex spectrum into a magnitude and a phase value for each pixel.
 - The output of the transformation represents the image in the frequency domain, while the input image is the spatial domain equivalent.
 - In the Fourrier domain image, each pixel represents a particular frequency contained in the spatial domain.
 - This technique is used in a wide range of applications: image analysis, image filtering and image reconstruction

2DPhase Unwrapping Problem (2DPU) via Minimum Spanning Forest with Balance Constraints Motivation: The Real Problem

2D-Phase Unwrapping

- This process induces an inherent difficulty:
 - Since the phase ranges within 0 and $2.\pi$ a discontinuity arises every time it passes through this point, wrapping the image.
 - ITOH, K., Analysis of the phase unwrapping algorithm, Applied Optics, v.21, n.14, p. 2470-2470, 1982

Showed that for an efficient phase unwrapping, any two adjacent samples in the continuous phase absolute phase difference signal cannot exceed the value of π

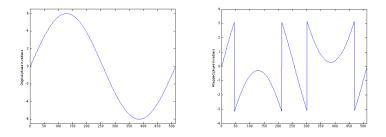
Itoh condition: $|\Delta_{\phi_n}| \leq \pi$

• The linear difference between adjacent samples can be defined as:

$$\Delta_{\phi_n} = \phi_n - \phi_{n-1},\tag{1}$$

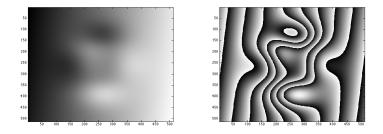
Thus

$$\sum_{n=1}^{m} \Delta \phi_n = \phi_m - \phi_0, \tag{2}$$


◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Leading to:

$$\Delta W(\phi_n) = (\phi_n + 2\pi k_n) - (\phi_{n-1} + 2\pi k_{n-1})$$
(3)


$$\Delta W(\phi_n) = \phi_n - \phi_{n-1} - 2\pi (k_n - k_{n-1}).$$
(4)

2DPhase Unwrapping Problem (2DPU) via Minimum Spanning Forest with Balance Constraints Motivation: The Real Problem

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

Figure: Wrapping effect on a 1D continuous phase signal. (a) Continuous signal (b) Wrapped signal. 2DPhase Unwrapping Problem (2DPU) via Minimum Spanning Forest with Balance Constraints Motivation: The Real Problem

イロト イポト イヨト イヨト

э

Figure: Wrapping effect on a 2D phase image. (a) Absolute phase image (b) Wrapped phase image. Itoh's Unwrapping Method for Discretized Phase:

```
InputWrapped phase values, \psi(n)
OutputUnwrapped phase values \phi(n)
```

2DPhase Unwrapping Problem (2DPU) via Minimum Spanning Forest with Balance Constraints Motivation: The Real Problem

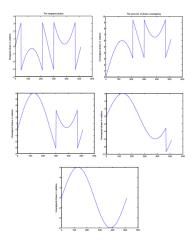


Figure: Unwrapping process by the Itoh's method for 1D Phase Unwrapping, returning the wrapped phase signal to its original continuous form.

2DPhase Unwrapping Problem (2DPU) via Minimum Spanning Forest with Balance Constraints Motivation: The Real Problem

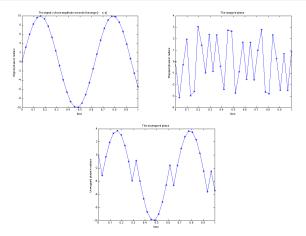


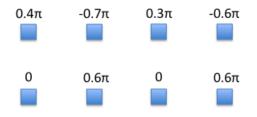
Figure: Unwrapping process over under-sampled data(a) The continuous phase signal under-sampled.(b) The wrapped under-sampled phase signal.(c) The unwrapping obtained by the Itoh algorithm.

• Itoh's can be applied to any continuous integration path

Every integration path P can constitute a discrete unwrapping path over any multidimensional space.

In more than 1D integration paths can be selected

Paths are select to avoid damaged regions (noise, under-sampling)


• Itoh's can be applied to any continuous integration path

Every integration path P can constitute a discrete unwrapping path over any multidimensional space.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

In more than 1D integration paths can be selected

Paths are select to avoid damaged regions (noise, under-sampling)

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Figure: 2D Wrapped phase data examples. (a) Example A with no singularities present. (b) Example B under-sampled.

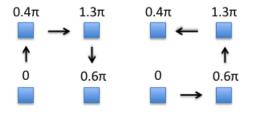


Figure: Unwrapped values from Example A showing no path dependency. (a) Unwrapped values obtained by the clockwise integration path. (b) Unwrapped values obtained by the counterclockwise integration path.

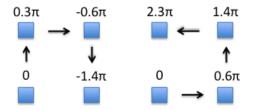


Figure: Unwrapped values from Example B, showing the occurrence of path dependency.

(a) Unwrapped values obtained by the clockwise integration path.

(b) Unwrapped values obtained by the counterclockwise integration path.

- The location of all residues can be identified by checking all 2x2 elementary loops (Ghiglia & Pritt, 1998)
- Residues charges (polarity) are either positive (+1) or negative (-1)
- When residues are present unwrapping is possible if, and only if, every integration path encircles none or a balanced number of residue charges.

GOLDSTEIN, R. M.; ZEBKER, H. A. ; WERNER, C. L. Satellite radar interferometry: Two-dimensional phase unwrapping, Radio science, v.23, n.4, p. 713-720, 1988.

Path-following algorithms

- Directly applies the line integration schemes
- Assumes Itoh condition must hold along every integration path
- Whenever this condition is not met, different integration paths may lead to different unwrapped solutions: path dependency

- Minimum norm methods
 - Based on the idea that the difference between absolute phase values among neighbour samples are equal to the wrapped differences of their correspondent wrapped phase values.

• Finds a phase solution for which the *L^p* norm of the gap between these differences is minimized.

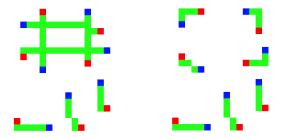


Figure: Example of residues and possible branch-cuts configurations.(a) First branch-cut configuration, creating an isolated region.(b) Minimum length branch-cuts configuration.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

э

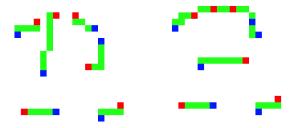


Figure: Another example of residues and possible branch-cuts configurations.

(a) Minimum length pair connections between positive and negative residues.

(b) Minimum length pair connection between balanced components.

- Goldstein et al.: Classic path-following algorithm
 - Effective at generating short length branch-cuts in an extremely fast way
 - Main idea: connect nearby residues with branch cuts until every component of connected residues becomes balanced
 - The cuts are generated by approximatively minimising the sum of the cut lengths

- Minimum-cost matching algorithms
- BUCKLAND, J.; HUNTLEY, J.; TURNER, S., Unwrapping noisy phase maps by use of a minimum-cost-matching algorithm, Applied Optics, v.34, n.23, p. 5100-5108, 1995
 - Minimum-cost matching algorithm: solves the path-dependency problem by creating branch-cuts between close pairs of positive and negative residues
 - Treats the minimization of the branchcuts lengths as a global optimization problem

• Models the problem as a minimum cost matching between vertices in a bipartite graph.

- Minimum Spanning Forest with Balance Constraints (MSFBC)
 - Part of the family of path-following methods
 - Goal: Find an optimal branch-cut configuration which eliminates the path dependency problem
 - Seeks for a minimum cost spanning forest which balances positive and negative residues in each tree
 - A tree is balanced when connects an equal number of positive and negative residues or it contains a border point in its vertex set

A New Model

Problem formulation

- Let G = (V, E) be the graph where the vertex set $V = (R \cup B)$ represents the union between the sets of residues R and border points B, where $p_r \in \{-1,1\}$ denoting the polarity for every residue $r \in R$, $B = \{b_r$, for every $r \in R\}$, $E = (E_R \cup E_B)$ where $E_R = \{(i,j),$
- *i*,*j* ∈ *R*, *i* ≠ *j*} and *E*_B = {(*r*,*b*_r), *r* ∈ *R*, *b*_r ∈ *B*}, *d*_e is the cost (distance) of edge *e* ∈ *E* and *x*_e is the decision variable indicating whether edge *e* should be part of the solution.

A New Model

Problem formulation

• The undirected formulation for the MSFBC:

$$\min\sum_{e \in E} d_e x_e \quad s.t. \tag{5}$$

$$\sum_{e \in \delta(S)} x_e \ge 1, \quad \forall S \subset V, \quad s.t. \quad \sum_{v \in S} p_v \neq 0$$
(6)

$$x_e \in \{0, 1\}, \forall e \in E,\tag{7}$$

A New Model

Problem formulation

• The directed formulation for the MSFBC:

$$\min\sum_{e\in E} d_e x_e \quad s.t. \tag{8}$$

$$\sum_{a \in \delta^+(S)} x_a \ge 1, \quad \forall S \subset R, \quad s.t. \quad \sum_{v \in S} p_v > 0 \tag{9}$$

$$\sum_{a \in \delta^{-}(S)} x_a \ge 1, \quad \forall S \subset R, \quad s.t. \quad \sum_{v \in S} p_v < 0 \tag{10}$$

$$x_a + x_{a'} \le 1, \quad \forall a = (i, j), a' = (j, i) \in E_R$$
 (11)

$$x_a \in \{0, 1\}, \forall a \in E \tag{12}$$

A New Model

Approaches to the MSFBC

Solving the Minimum Spanning Forest with Balance Constraints (MSFBC)

- Primal Heuristics Iterated Local Search (ILS) Tree Operations
 - Relocate (residue), Relocate-C (pairs of residues)
 - Swap (residue), Swap-C (pairs of residues)
 - Merge, Break (connects of disconnect 1 edge)
 - Break-1-Insert-1: Computes MST over all vertices of two trees then breaks removing the largest edge

- Dual Heuristics
 - Dual Ascent: Selects connected components until they become balanced
 - Selection: Greedy and Random
 - Reverse delete step to generate primal solution

A New Model

Approaches to the MSFBC

- Solving the Minimum Spanning Forest with Balance Constraints (MSFBC)
 - Exact Algorithm
 - Branch-and-cut over the directed formulation
 - Uses primal bounds and dual bound to fix by reduced cost
 - Linear Relaxation
 - Accelerates cut separation by testing whether connect components considering all edges with positive value are balanced

• Solves Max-Cut for all pairs

- Does a solution with a smaller value for the MSFBC implies a better unwrapping ?
 - This means that it is possible to connect the residues in order to connect them with

Model Evaluation

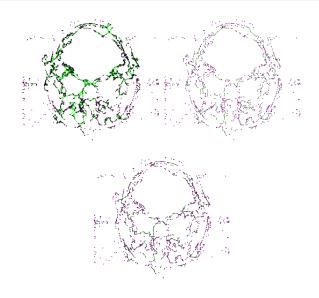


 Figure: Head. (a) Goldstein
 (b) Matching
 (c) MSFBC

 (a) Goldstein
 (b) Matching
 (c) MSFBC

Model Evaluation

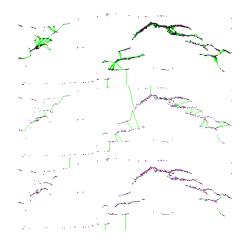
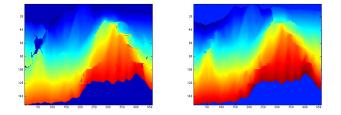



Figure: Long (a) Goldstein (b) Matching (c) MSFBC

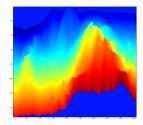


Figure: Long (a) Goldstein

(b) Matching

ng (c) MSFBC

Instances

- MSFBC How good are we ?
 - Preliminary Tests on Random Instances
 - Equal number of positive and negative residues
 - Report on instance from 20 pairs to 128 pairs (40 to 256 vertices)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Primal Heuristics Results

Instance	V	E	Best Known	Best Sol.	GAP (%)	Avg Sol.	GAP (%)	T(s)
PUC_p_20_20_1	40	1640	347.490987	347.490984	0	354.319823	1.92730848	22.881383
PUC_p_20_20_2	40	1640	381.249147	381.249146	0	381.327912	0.02065545	32.124351
PUC_p_20_20_3	40	1640	391.298766	391.298766	0	398.147053	1.72003961	23.350068
PUC_p_20_20_4	40	1640	399.452595	405.228056	1.4252372	411.155273	2.8462916	24.614464
PUC_p_20_20_5	40	1640	366.812088	366.812088	0	374.605646	2.08046998	28.361182
PUC_p_22_22_1	44	1980	459.009082	462.137305	0.67690337	469.388708	2.21130714	33.775487
PUC_p_22_22_2	44	1980	413.546758	413.546758	0	420.068548	1.55255375	34.408586
PUC_p_22_22_3	44	1980	433.645458	442.351592	1.968148	451.767502	4.01136512	34.438296
PUC_p_22_22_4	44	1980	461.944699	467.667941	1.22378327	473.884787	2.51961834	36.658451
PUC_p_22_22_5	44	1980	448.584133	452.433285	0.85076676	462.129164	2.93100545	27.99622
PUC_p_24_24_1	48	2352	460.297172	473.141817	2.71475582	477.858422	3.67499016	54.373147
PUC_p_24_24_2	48	2352	477.413172	478.535943	0.23462626	489.123224	2.39409037	37.952988
PUC_p_24_24_3	48	2352	418.466013	420.569845	0.50023368	428.616298	2.3681519	51.868471
PUC_p_24_24_4	48	2352	459.073238	459.073238	0	467.90797	1.88813454	44.235078
PUC_p_24_24_5	48	2352	480.622508	480.622509	0	482.617076	0.41328169	46.238577
PUC_p_26_26_1	52	2756	573.995609	582.537393	1.46630656	595.551952	3.61955711	50.434437
PUC_p_26_26_2	52	2756	515.261508	516.54997	0.24943608	544.385048	5.34980527	46.0252
PUC_p_26_26_3	52	2756	594.352813	594.352808	0	605.37717	1.82107247	50.50561
PUC_p_26_26_4	52	2756	472.589049	472.589049	0	481.825064	1.91688139	48.772453
PUC_p_26_26_5	52	2756	585.795691	585.795691	0	599.851119	2.34315275	47.090796

Primal Heuristics Results

Instance	V	E	Best Known	Best Sol.	GAP (%)	Avg Sol.	GAP (%)	T(s)
PUC_p_28_28_1	56	3192	640.926754	640.926754	0	660.130438	2.90907416	51.035219
PUC_p_28_28_2	56	3192	631.736623	653.340619	3.30669721	658.222369	4.02382952	60.610623
PUC_p_28_28_3	56	3192	594.231017	594.356366	0.02108987	602.644501	1.39609405	61.931711
PUC_p_28_28_4	56	3192	570.737114	580.508368	1.68322363	597.133754	4.42055734	53.687048
PUC_p_28_28_5	56	3192	544.909304	556.618073	2.1035553	580.436666	6.12079906	58.605564
PUC_p_30_30_1	60	3660	639.400587	651.588592	1.8705062	670.847858	4.68769045	72.66549
PUC_p_30_30_2	60	3660	722.46814	722.46814	0	747.89598	3.39991666	66.700597
PUC_p_30_30_3	60	3660	732.901971	753.166973	2.69063869	777.636143	5.75258396	61.960019
PUC_p_30_30_4	60	3660	668.176955	678.266327	1.48752365	699.75634	4.51291159	73.390249
PUC_p_30_30_5	60	3660	706.649792	725.858259	2.64631101	745.847322	5.25543618	71.014367
PUC_p_32_32_1	64	4160	788.831899	819.672017	3.76249492	836.865747	5.73973163	82.137952
PUC_p_32_32_2	64	4160	748.655533	748.655533	0	775.444663	3.45467978	86.014673
PUC_p_32_32_3	64	4160	754.848532	772.585634	2.29581049	794.156691	4.94967296	83.272617
PUC_p_32_32_4	64	4160	835.28175	810.715764*	-3.0301601	814.770556	-2.5174196	77.301989
PUC_p_32_32_5	64	4160	789.848633	819.682852	3.63972711	849.671973	7.04075713	68.608809

Primal Heuristics Results

Instance	V	E	Best Known	Best Sol.	GAP (%)	Avg Sol.	GAP (%)	T(s)
PUC_p_40_40_1	80	6480	1140.72296	1175.02735	2.91945452	1240.54077	8.04631458	139.668138
PUC_p_40_40_2	80	6480	1211.5083	1149.242523	-5.4179841	1156.5979	-4.7475795	140.176245
PUC_p_40_40_3	80	6480	1243.62585	1179.580984	-5.429459	1186.28108	-4.8339952	144.283866
PUC_p_40_40_4	80	6480	1158.59005	1202.97873	3.6898975	1228.6347	5.70101529	133.927819
PUC_p_40_40_5	80	6480	1122.35471	1244.5755	9.82027912	1216.26022	7.72083982	134.764142
PUC_p_48_48_1	96	9312	1373.49672	1436.65399	4.39613649	1476.01502	6.94561369	209.85237
PUC_p_48_48_2	96	9312	1614.87205	1680.82656	3.92393305	1724.53571	6.35902523	196.932821
PUC_p_48_48_3	96	9312	1727.82459	1555.63628*	-11.068674	1600.96529	-7.9239251	202.936085
PUC_p_48_48_4	96	9312	1701.77234	1564.419607	-8.7797885	1602.35908	-6.2041814	197.232113
PUC_p_48_48_5	96	9312	1422.95151	1498.13847	5.01869216	1551.57455	8.28983938	221.069486
PUC_p_64_64_1	128	16512	2724.85596	2602.285193	-4.7101203	2649.66695	-2.8376777	433.657401
PUC_p_64_64_2	128	16512	2195.65564	1567.213802	-40.099305	2365.56494	7.18260976	450.804949
PUC_p_64_64_3	128	16512	2536.14063	2576.42139	1.56343843	2642.63719	4.029935	407.713675
PUC_p_64_64_4	128	16512	2546.45801	2461.563244	-3.4488151	2519.28245	-1.0787024	435.588076
PUC_p_64_64_5	128	16512	2269.25667	1618.221735	-40.231503	2561.52568	11.4099584	455.255608
PUC_p_128_128_1	256	65792	7643.74951	7780.95474	1.76334689	8031.96276	4.83335467	288.872159
PUC_p_128_128_2	256	65792	8008.76172	8499.00471	5.76823997	8631.699	7.21685588	285.379508
PUC_p_128_128_3	256	65792	7964.3916	7824.092644	-1.7931659	8053.78229	1.10992187	260.455434
PUC_p_128_128_4	256	65792	7530.24023	8046.52575	6.41625383	8261.84318	8.8552025	264.257492
PUC_p_128_128_5	256	65792	7232.15527	8038.88871	10.0353851	8225.87386	12.0804014	300.269715

Branch and Cut Results

Instance	V	E	Reduced(%)	Value	Nodes	Depth	T(s)
PUC_p_20_20_1	40	1640	0	347.490987*	1	0	0.056755
PUC_p_20_20_2	40	1640	12.31707	381.249147*	183	28	1.298876
PUC_p_20_20_3	40	1640	4.451218	391.298766*	149	17	1.265832
PUC_p_20_20_4	40	1640	31.585365	399.452595*	19719	206	241.501502
PUC_p_20_20_5	40	1640	52.256096	366.812088'	2651	276	45.415632
PUC_p_22_22_1	44	1980	20.050507	459.009082*	43247	199	1007.6632
PUC_p_22_22_2	44	1980	12.222221	413.546758'	101	22	0.938931
PUC_p_22_22_3	44	1980	28.585861	433.645458'	49785	408	662.044358
PUC_p_22_22_4	44	1980	12.828285	461.944699*	1033	44	10.566099
PUC_p_22_22_5	44	1980	3.484848	448.584133*	23	11	0.177069
PUC_p_24_24_1	48	2352	31.590134	460.297172*	287	55	4.557817
PUC_p_24_24_2	48	2352	6.802719	477.413172'	87	43	0.787301
PUC_p_24_24_3	48	2352	13.095238	418.466013*	1205	119	10.378795
PUC_p_24_24_4	48	2352	0	459.073238'	1	0	0.039044
PUC_p_24_24_5	48	2352	4.081635	480.622508'	137	30	0.58351
PUC_p_26_26_1	52	2756	8.164009	573.995609*	56879	112	414.938741
PUC_p_26_26_2	52	2756	0	515.261508'	1	0	0.042523
PUC_p_26_26_3	52	2756	17.162552	594.352813*	579	70	6.805739
PUC_p_26_26_4	52	2756	31.494919	472.589049*	36317	412	779.762809
PUC_p_26_26_5	52	2756	11.393326	585.795691'	2475	146	39.569431

Branch and Cut Results

Instance	V	E	Reduced(%)	Value	Nodes	Depth	T(s)
PUC_p_28_28_1	56	3192	19.956139	640.926754*	199173	304	3602.43746
PUC_p_28_28_2	56	3192	67.543861	631.736623*	59347	1263	3158.64448
PUC_p_28_28_3	56	3192	13.972427	594.231017 [*]	6937	160	111.45033
PUC_p_28_28_4	56	3192	22.744362	570.737114*	5959	185	97.521915
PUC_p_28_28_5	56	3192	0	544.909304*	1	0	0.044575
PUC_p_30_30_1	60	3660	8.142075	639.400587*	4451	159	78.544597
PUC_p_30_30_2	60	3660	25	722.46814*	32121	303	1278.15948
PUC_p_30_30_3	60	3660	16.065575	732.901971*	1655	116	37.608023
PUC_p_30_30_4	60	3660	54.726776	668.176955*	12699	622	435.241974
PUC_p_30_30_5	60	3660	33.142075	706.649792*	98733	605	2353.94642
PUC_p_32_32_1	64	4160	41.89904	788.831899*	185595	988	11290.9763
PUC_p_32_32_2	64	4160	8.004807	748.655533*	1201	81	26.319408
PUC_p_32_32_3	64	4160	9.783653	754.848532*	41	16	1.233927
PUC_p_32_32_4	64	4160	43.4375	835.28175	160472	709	12000
PUC_p_32_32_5	64	4160	23.79808	789.848633*	213339	402	5897.59998

Branch and Cut Results

Instance	V	E	Reduced(%)	Value	Nodes	Depth	T(s)
PUC_p_40_40_1	80	6480	39.521606	1140.72296	184791	1095	12000
PUC_p_40_40_2	80	6480	58.410492	1211.5083	99994	1233	12000
PUC_p_40_40_3	80	6480	78.533951	1243.62585	118148	1539	12000
PUC_p_40_40_4	80	6480	68.456787	1158.59005	150530	1527	12000
PUC_p_40_40_5	80	6480	15	1122.354712	1399	167	93.95155
PUC_p_48_48_1	96	9312	9.80455	1373.49672	336208	308	12000
PUC_p_48_48_2	96	9312	90.850517	1614.87205	16407	1207	12000
PUC_p_48_48_3	96	9312	75.042953	1727.82459	21347	1613	12000
PUC_p_48_48_4	96	9312	75.633591	1701.77234	15192	1789	12000
PUC_p_48_48_5	96	9312	8.601807	1422.951512	6803	240	602.135652
PUC_p_64_64_1	128	16512	82.412788	2724.85596	6012	2549	12000
PUC_p_64_64_2	128	16512	9.895836	2195.65564	34138	891	12000
PUC_p_64_64_3	128	16512	40.915699	2536.14063	17577	949	12000
PUC_p_64_64_4	128	16512	82.909401	2546.45801	6244	2570	12000
PUC_p_64_64_5	128	16512	7.249275	2269.256668	3193	321	687
PUC_p_128_128_1	256	65792	99.516655	7643.74951	282	281	12000
PUC_p_128_128_2	256	65792	99.293228	8008.76172	298	297	12000
PUC_p_128_128_3	256	65792	100	7964.3916	364	363	12000
PUC_p_128_128_4	256	65792	93.753036	7530.24023	482	481	12000
PUC_p_128_128_5	256	65792	66.51416	7232.15527	843	841	12000

Conclusions

• 2D-unwrapping, a challenging problem, was addressed

- a New Model was proposed
 - Experiments showed that the new model MSFBC better captures the essence of unwrapping, at least in 2D.
 - For quite a few examples, less valued solutions implied in better unwrappings
- A Generalization of the Classical Steiner Problem in Graphs was described.
- The MSFBC appears as an interesting problem to study, already with a critical application in many areas, including oil and gas.

Conclusions

- 2D-unwrapping, a challenging problem, was addressed
- a New Model was proposed
 - Experiments showed that the new model MSFBC better captures the essence of unwrapping, at least in 2D.
 - For quite a few examples, less valued solutions implied in better unwrappings
- A Generalization of the Classical Steiner Problem in Graphs was described.
- The MSFBC appears as an interesting problem to study, already with a critical application in many areas, including oil and gas.

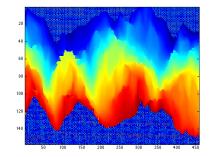
Conclusions

- 2D-unwrapping, a challenging problem, was addressed
- a New Model was proposed
 - Experiments showed that the new model MSFBC better captures the essence of unwrapping, at least in 2D.
 - For quite a few examples, less valued solutions implied in better unwrappings
- A Generalization of the Classical Steiner Problem in Graphs was described.
- The MSFBC appears as an interesting problem to study, already with a critical application in many areas, including oil and gas.

Future Work

Resolution Methodology

- More carefully tailored instances
- More tests of the proposed models and algorithms
- Test a Column Generation formulation: contrary to the SPG the MSFBC has a natural decomposition


• Applications

• The MSFBC naturally models 3D-unwrapping: testing and exploring its capabilities may lead to improvements in the state-of-the-art, specially for Oil and Gas

Future Work

Resolution Methodology

- More carefully tailored instances
- More tests of the proposed models and algorithms
- Test a Column Generation formulation: contrary to the SPG the MSFBC has a natural decomposition
- Applications
 - The MSFBC naturally models 3D-unwrapping: testing and exploring its capabilities may lead to improvements in the state-of-the-art, specially for Oil and Gas

Merci!