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Data Clustering

I Most classical clustering algorithms are ad-hoc methods,
based on iterative aggregations, splits, or simple search steps
(e.g., K-means, DBSCAN, BIRCH etc...).

I Many algorithms can be interpreted as local searches for some
mathematical optimization problems, but their optimization
performance (quality of the local minima for the model at
hand) is rarely discussed.

I Performance of clustering algorithms usually measured
relatively to some cluster validity indices (e.g., CRand or NMI)
based on a ground truth that we wish to recover

⇒ Difficult to separate the two main sources of errors:
1) inadequate choice of clustering model for the task at hand,
2) inadequate solution algorithm for the model at hand.
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Data Clustering

I Little incentive to go beyond the classical algorithms for
machine learning for practitioners. Here are some reasons:

1. Data size and computational time restrictions
2. Code simplicity and availability
3. The belief that better optimization solutions have only minor

impact on classification performance

I Breaking through this standstill:

1. New efficient, scalable and open-source optimization
algorithms

2. Highlighting the correlation between optimization and
classification performance
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Our first focus – Minimum sum-of-squares clustering

I MSSC: minimization of the squared Euclidean distances of
objects to their cluster means (minimization of within-group
sum-of-squares).

I Given a set P = {p1, . . . , pn} of n samples in Rd .

I Return a set of centers {y1, y2, ..., yk} in Rd .

min
n∑

i=1

m∑
k=1

xik ‖pi − yk‖2 (1)

s.t.
m∑

k=1

xik = 1 i ∈ {1, . . . , n} (2)

xik ∈ {0, 1} i ∈ {1, . . . , n}, k ∈ {1, . . . ,m} (3)

yk ∈ Rd k ∈ {1, . . . ,m} (4)
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Two important properties of the problem

Property (1)

In any optimal MSSC solution, for each k ∈ {1, . . . ,m}, the
position of the center yk coincides with the centroid of the points
assigned to it.

Property (2)

In any optimal MSSC solution, each sample pi is assigned to its
closest center.
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Proposed Methodology

I Combination of genetic algorithm (GA) with local search, and
a few problem-specific tricks:

I population-diversity management
I elimination of clones
I specialized crossover based on a bipartite-matching procedure
I adaptive mutation to avoid excessive attraction towards

outliers

I Local search is simply operated by running the K-means
algorithm, taking the candidate solution generated by the
crossover as a starting point.
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Proposed Methodology

Algorithm 1 HG-means – general structure

1: Initialize population with Πmax individuals/solutions
2: while (number of iterations without improvement < N1) ∧ (number

of iterations < N2) do
3: Select parents P1 and P2 by binary tournament
4: Apply crossover to P1 and P2 to generate an offspring C
5: Mutate C to obtain C ′

6: Apply local search (K-means) to C ′ to obtain an individual C ′′

7: Add C ′′ to the population
8: if the size of the population exceeds Πmax then
9: Eliminate clones and select Πmin survivors

10: end if
11: end while
12: Return best solution
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Proposed Methodology

Crossover
Crossover procedure applied to two parent solutions P1 and P2 in
order to produce a (child) solution:

1. Centroids matching. Solve bipartite matching problem
based on the centroids of P1 and P2.

2. Selection. For each pair of centroids, inherit one randomly
into the offspring.

3. Assignment. Re-assign data points to the closest offspring
centroid.
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Proposed Methodology

Crossover

(a) (b) (c) (d)

Figure 1: Crossover based on centroids matching: (a) Parent P1;
(b)Parent P2; (c) The assignment between centroids of P1 and P2, and
random selection (d) The resulting offspring
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Proposed Methodology

Mutation

1. Randomly select a centroid c∗ and remove it from the
solution.

2. Re-assign the samples to their closest center.

3. Randomly select a data point xu and re-insert c∗ in the
position of xu. The probability to select xj as the new
centroid is

P(xj) =

(
(1− αC ′)× 1

n

)
+

(
αC ′ × d(xj ,C (xj))∑n

i=1 d(xi ,C (xi ))

)
,

where αC ′ is the mutation parameter to control the impact of
outliers. This parameter evolves along with the genetic
material of the solutions through dedicated mutation and
crossover operations.
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Proposed Methodology

(a) Removal of a random center
(b) Re-assignment of the samples to their
nearest center

(c) Randomized reinsertion of center, bi-
ased by sample-to-center distances (d) Final solution (after local search)

Figure 3: Mutation based on centroid relocation.

3.4. Local Search

Each coordinate chromosome generated through selection, crossover, and mutation serves as a starting

point for a local search based on K-means. This algorithm iteratively 1) reassigns each sample to its

closest center and 2) moves each center position to the centroid of the samples to which it is assigned.

These two steps are iterated until convergence to a local optimum.

We use the fast K-means of [12]. This algorithm has a worst-case complexity of O(nmd) per loop

when m ≤ n, and exploits lower bounds on distances to eliminate many distance computations while

retaining the same results as the classical K-means.

13
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Proposed Methodology

Survivors selection

I Selects the best individuals to propagate when the maximum
population size Πmax is reached, determining the Πmin

individuals that will go on to the next generation, by
discarding λ individuals (λ = Πmax − Πmin)

I Individuals selected for removal:

I Clones (identical to any other solution)
I Bad solution quality
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Computational Experiments and Analysis

Experiments focused around three main goals:

I Performance on the MSSC Optimization Problem

I Computational time and Scalability

I Correlation between Optimization Performance and
Classification Performance
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Computational Experiments and Analysis

In the result tables,

I n is the number of samples;

I m is the number of clusters;

I d is the number of features (data dimensionality);

I Gap is the error from the best known solution, calculated as:

GAP = f−fbest
fbest
× 100

where f is the value of the MSSC objective found by any
previous algorithm and fbest is the best known value;
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Computational Experiments and Analysis

Instances

Group Dataset n d n × d Clusters

A1

German Towns 59 2 118
m ∈ {2, 3, 4...Bavaria Postal 1 89 3 267
5, 6, 7, 8, 9, 10}Bavaria Postal 2 89 4 356

Fisher’s Iris Plant 150 4 600

A2

Liver Disorders 345 6 2k

m ∈ {2, 5, 10, 15...
Heart Disease 297 13 4k

20, 25, 30, 40, 50}
Breast Cancer 683 9 6k
Pima Indians Diabetes 768 8 6k
Congressional Voting 435 16 7k
Ionosphere 351 34 12k

B

TSPLib1060 1,060 2 2k

m ∈ {2, 10, 20, 30...
TSPLib3038 3,038 2 6k

40, 50, 60, 80, 100}
Image Segmentation 2,310 19 44k
Page Blocks 5,473 10 55k
Pendigit 10,992 16 176k
Letters 20,000 16 320k

Table 1: Small to Medium datasets used for performance comparisons on
the MSSC optimization problem
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Computational Experiments and Analysis

Instances

Group Dataset n d n × d Clusters

C

D15112 15,112 2 30k

m ∈ {2, 3, 5, 10...

Pla85900 85,900 2 172k

15, 20, 25}

EEG Eye State 14,980 14 210k
Shuttle Control 58,000 9 522k
Skin Segmentation 245,057 3 735k
KEGG Metabolic Relation 53,413 20 1M
3D Road Network 434,874 3 1M
Gas Sensor 13,910 128 2M
Online News Popularity 39,644 58 2M
Sensorless Drive Diagnosis 58,509 48 3M
Isolet 7,797 617 5M
MiniBooNE 130,064 50 7M
Gisette 13,500 5,000 68M

Table 2: Large datasets used for performance comparisons on the MSSC
optimization problem
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Computational Experiments and Analysis

Parameters

I Πmin: Population size

I Πmax : Maximum size of population

I Imax : Maximum number of iterations

Configuration Πmin Πmax Imax Time(s) Gap

Standard 10 20 5000 1060.48 -0.35
Fast 5 10 500 127.48 0.16

Table 3: Fast and Standard configurations of HG-means
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Computational Experiments and Analysis

Performance on the MSSC Optimization Problem
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Figure 2: Average gap from the best known solution for UCI Small to
Medium datasets
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Computational Experiments and Analysis

Performance on the MSSC Optimization Problem
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Figure 3: Average gap from the best known solution for UCI Large
datasets
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Computational time on largest datasets
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Figure 4: CPU time of state-of-the-art algorithms on UCI large-scale
datasets
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Computational Experiments and Analysis

Solution Quality and Classification Performance

I Experimental setting to measure the ability of HG-means,
K-means and K-means++ to classify 50,000 samples
issued from a mixture of spherical Gaussian distributions:

X ∼ 1/m

m∑
i=1

N (µi ,Σi ) with Σi = σ2
i I

.

I For each i ∈ {1, . . . ,m}, µi and σ2
i are uniformly selected in

[0, 5] and [1, 10], respectively.

I Generated to be hardly separable.

I Fundamental setting: no hidden structure, a lot of
independent information.
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Computational Experiments and Analysis

BKS Gap (%) Time (s)
Objective K-means K-means++ HG-means K-means K-means++ HG-means

m d Value 1 Run 500 Runs 1 Run 500 Runs 1 Run 500 Runs 1 Run 500 Runs

20 20 5432601.91 0.73 0.0 1.15 0.0 0.0 2.40 668.93 3.00 764.76 1085.40
20 50 12815114.52 6.19 0.0 3.75 1.15 0.0 2.86 860.95 3.17 1171.09 1308.96
20 100 24266784.28 14.84 0.0 5.01 4.83 0.0 5.38 1243.53 4.75 1958.25 553.25
20 200 59340268.17 17.70 2.57 11.79 7.00 0.0 14.90 2677.57 12.43 3938.29 1505.16
20 500 125359202.26 16.53 8.06 25.35 8.00 0.0 30.13 6118.59 25.17 8389.50 2563.73
50 20 5305274.24 0.47 0.0 0.43 0.0 0.0 5.03 2599.11 4.84 2755.17 3189.56
50 50 13864882.54 2.10 0.0 3.22 0.72 0.0 7.28 2695.69 8.23 3258.11 4307.12
50 100 25645070.92 8.86 3.70 12.04 5.76 0.0 10.78 4226.64 14.33 5871.70 2934.41
50 200 52561077.57 14.62 7.76 19.90 9.92 0.0 22.98 7837.70 37.60 11063.60 9629.09
50 500 143469250.17 16.92 9.79 20.0 11.11 0.0 38.89 14778.04 58.13 19077.48 18360.24

100 20 5027688.54 0.34 0.12 0.54 0.04 0.0 19.79 7281.83 18.89 8435.48 13529.09
100 50 12897680.57 3.07 1.17 4.81 2.25 0.0 12.07 6612.89 15.27 7962.07 10344.57
100 100 27284752.32 6.30 4.67 10.58 6.89 0.0 24.43 11864.87 30.54 14991.49 6728.71
100 200 51552765.51 14.03 7.97 15.78 11.13 0.0 34.63 14537.27 52.73 20128.89 20499.22
100 500 130903680.95 18.90 15.61 22.71 15.69 0.0 61.45 25313.95 86.04 34062.29 38217.57
200 20 4774890.45 0.72 0.45 1.24 0.53 0.0 42.85 18861.45 38.91 19896.36 38126.21
200 50 13490838.00 1.97 1.16 2.88 1.86 0.0 34.49 18792.14 39.88 21036.63 28513.22
200 100 27337380.17 8.08 5.29 9.68 7.56 0.0 70.30 30880.39 82.03 36219.66 39980.98
200 200 52946223.09 15.77 11.70 19.67 14.45 0.0 74.33 37459.76 139.62 46365.94 67745.79
200 500 135201463.76 20.97 17.32 23.83 19.28 0.0 142.85 63202.41 210.16 92765.62 93444.51

Table 4: Mixture of spherical Gaussian distributions – Solution quality



23/25

Computational Experiments and Analysis

CRand NMI CI

K-means K-means++ HG-means K-means K-means++ HG-means K-means K-means++ HG-means

m d 1 Run 500 Runs 1 Run 500 Runs 1 Run 500 Runs 1 Run 500 Runs 1 Run 500 Runs 1 Run 500 Runs

20 20 0.69 0.72 0.67 0.72 0.72 0.73 0.75 0.73 0.75 0.75 1 0 1 0 0

20 50 0.76 0.98 0.86 0.92 0.98 0.91 0.98 0.94 0.96 0.98 3 0 2 1 0

20 100 0.63 1.00 0.89 0.89 1.00 0.89 1.00 0.97 0.97 1.00 5 0 2 2 0

20 200 0.47 0.94 0.61 0.83 1.00 0.84 0.98 0.89 0.95 1.00 7 1 5 3 0

20 500 0.55 0.81 0.32 0.81 1.00 0.88 0.95 0.79 0.95 1.00 6 2 9 3 0

50 20 0.58 0.59 0.57 0.59 0.59 0.67 0.68 0.67 0.68 0.68 1 0 2 0 0

50 50 0.87 0.94 0.82 0.92 0.94 0.93 0.95 0.92 0.94 0.95 3 0 5 1 0

50 100 0.76 0.90 0.59 0.85 1.00 0.95 0.98 0.92 0.96 1.00 9 4 12 6 0

50 200 0.52 0.80 0.34 0.72 1.00 0.90 0.96 0.85 0.94 1.00 14 8 19 10 0

50 500 0.41 0.69 0.24 0.39 1.00 0.88 0.94 0.83 0.91 1.00 16 9 16 10 0

100 20 0.48 0.48 0.47 0.49 0.49 0.62 0.63 0.62 0.63 0.63 4 2 5 1 0

100 50 0.80 0.86 0.78 0.84 0.91 0.91 0.93 0.90 0.92 0.94 9 4 13 6 0

100 100 0.80 0.86 0.68 0.74 0.99 0.96 0.97 0.93 0.94 1.00 15 11 23 16 1

100 200 0.63 0.79 0.53 0.74 0.99 0.93 0.96 0.92 0.95 1.00 27 16 30 20 1

100 500 0.40 0.60 0.23 0.35 0.98 0.89 0.93 0.84 0.90 1.00 33 27 37 29 2

200 20 0.39 0.40 0.38 0.39 0.41 0.59 0.59 0.58 0.59 0.60 22 14 25 20 6

200 50 0.81 0.82 0.78 0.80 0.87 0.91 0.90 0.90 0.89 0.92 12 10 18 13 0

200 100 0.71 0.81 0.66 0.73 0.96 0.94 0.95 0.94 0.94 0.99 38 27 49 38 5

200 200 0.51 0.64 0.31 0.56 0.99 0.92 0.94 0.87 0.93 1.00 61 45 71 53 3

200 500 0.41 0.50 0.26 0.33 0.98 0.90 0.92 0.85 0.89 1.00 65 57 74 60 5

Table 5: Mixture of spherical Gaussian distributions – Clustering
performance
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Conclusions and Future work

I Possible to design efficient and scalable algorithms for MSSC
which outperform by far the existing ones.

I Optimization performance matters, and directly influences
classification performance, especially for high-dimensional
datasets.

I Need to pursue a disciplined study of machine learning
algorithms, to be able to track error causes: model
inadequacy for the data at hand or low-quality local
minima for the model at hand.
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Thank you

THANK YOU FOR YOUR ATTENTION !

Further reading:
”Gribel, D., & Vidal, T. (2019). HG-means: A scalable hybrid
metaheuristic for minimum sum-of-squares clustering. Pattern
Recognition, Articles in Advance.
https://arxiv.org/pdf/1804.09813.pdf

Source code in C++ (and soon Python) available at:
https://github.com/danielgribel/hg-means

https://w1.cirrelt.ca/~vidalt/

https://arxiv.org/pdf/1804.09813.pdf
https://github.com/danielgribel/hg-means
https://w1.cirrelt.ca/~vidalt/

