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Multi-attribute vehicle routing problems (MAVRPs)

• Capacitated vehicle routing
problems (VRP)
I INPUT : n customers, with

locations and demand quantity.
All-pair distances. Homogeneous
fleet of m vehicles with capacity Q
located at a central depot.

I OUTPUT : Least-cost delivery
routes (at most one route per
vehicle) to service all customers.

I NP-Hard problem
I recent breakthrough in exact methods enable to solve problems of

moderate size with up to 300-400 customers (Uchoa et al., 2013).
I A Scopus search “Vehicle Routing” for 2007-2011 returns 1258

publications, including 566 journal papers.
I Massive research on heuristics
I Diverse and larger instances available (Uchoa et al., 2017)
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Multi-attribute vehicle routing problems (MAVRPs)

• Capacitated vehicle routing
problems (VRP)

I Combinatorial explosion: For a
problem with n=100 customers
and a single vehicle, the number
of feasible solutions is:

n! = 93326215443944152681699
2388562667004907159682643816
2146859296389521759999322991
5608941463976156518286253697
9208272237582511852109168640
00000000000000000000000 ≈ 10158
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Multi-attribute vehicle routing problems (MAVRPs)

• Even with a grid of computers
which:

I Contains as many CPUs as the
estimated number of atoms in the
universe : nCPU = 1080

I Does one operation per Planck
time: tP = 5.39× 10−44 seconds

I We would need T = 10158 × 5.39× 10−44/1080 = 5.39× 1034 seconds
to enumerate all solutions.

I Compare this to the estimated age of Universe : 4.33× 1017 seconds
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Multi-attribute vehicle routing problems (MAVRPs)

• VRP “attributes”: Supplementary decisions, constraints and
objectives combined with the classic VRP (Vidal et al., 2013b)
I Realistic objectives: Profitability, equity, service Levels,

persistence, compactness, robustness, externalities
I Integrated planning: Multiple periods, depots, echelons, fleet

mix, LRP, IRP, synchronization...
I Fine-grained modeling: Time windows (soft or multiple), loading

constraints (2D,3D), driver skills, time-dependent travel times,
charging stations, engine modes, drones etc...
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Multi-attribute vehicle routing problems (MAVRPs)

• VRP “attributes”: Supplementary decisions, constraints and
objectives combined with the classic VRP (Vidal et al., 2013b)

[SHOW EXAMPLE 1. SUBPROBLEM SOLVER]
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Multi-attribute vehicle routing problems (MAVRPs)

• VRP “attributes”: Supplementary decisions, constraints and
objectives which complement the classic VRP formulation (Vidal
et al., 2013b)Goel and Vidal: Hours of Service Regulations in Road Freight Transport

Transportation Science 48(3), pp. 391–412, © 2014 INFORMS 399
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Figure 3 Truck Driver Scheduling Procedure for a Route with Four Locations

rules from Directive 2002/EC/15 are also addressed
to compare with Prescott-Gagnon et al. (2010). Fur-
thermore, the current scheduling approaches for
Canadian and Australian regulations presented by
Goel and Rousseau (2012) and Goel, Archetti, and
Savelsbergh (2012), were based on the assumption
that all time values are a multiple of 15 minutes. We
extended these approaches to use arbitrary time val-
ues. This is achieved by increasing the completion
time of any partial schedule to a multiple of 15 min-
utes whenever a driver is released from duty. By this,
all off-duty periods start and end at a multiple of
15 minutes, and the modified approaches can be used
without further changes.

With the previously mentioned extensions, the for-
ward labeling algorithms could already be used
within the hybrid genetic algorithm. However, as
demonstrated in §5.2, the method performance can be
significantly improved by allowing intermediate solu-
tions with penalized late deliveries during the search.
We thus further revised the scheduling methods to
allow violations of the upper bound on arrival times.
A lateness value is determined for each schedule and
used within modified dominance criteria. For two
schedules with different lateness values, the one with
the larger value is regarded as dominated, whereas
for two schedules with the same lateness value, the
original dominance criteria are applied. Nondomi-
nated schedules are thus either feasible or have min-
imal time window violation.

4.6. Addressing the Challenge of
Computational Efficiency

Hybrid genetic algorithms must evaluate many
solutions during crossover, education, and repair.
An efficient fitness evaluation and feasibility check
procedure is thus critical for performance. For the
vehicle-routing variants studied in Vidal et al. (2012,

2013b), route evaluations can be efficiently performed
in amortized constant time. In the problem considered
in this paper, however, route evaluations, and thus
solution evaluations, are particularly time consuming
because schedules complying with HOS regulations
must be found. This paper demonstrates that hybrid
genetic algorithms can still be successfully applied
to the VRTDSP and other similar problems in which
fitness evaluation is a complex task. We show that
with adequate memory structures and neighborhood
and schedule pruning techniques, an efficient overall
hybrid genetic method can be developed.

Memories. Since early research on VRP variants,
it has been observed that the same partial routes
appear in many solutions generated throughout the
solution process. Adequate data structures on partial
routes can thus lead to notable computational sav-
ings (Savelsbergh 1985, 1992). To illustrate this, con-
sider the evaluation of a 2-opt∗ neighborhood, which
involves replacing two arcs 4ri1 rj5 and 4r ′

i′1 r
′
j ′5 from

two different routes r and r ′, by arcs 4ri1 r
′
j ′5 and

4ri′1 r
′
j 5. As illustrated in Figure 4, the partial route

4r11 0 0 0 1 ri5 appears several times in the neighboring
solutions. Hence, a large number of redundant com-
putations are avoided by storing truck driver sched-
ules associated to each partial route.

Furthermore, memories for move and route eval-
uations are used to avoid redundant computations.
During the local search, moves are sorted relative
to the nodes and the routes they impact. The eval-
uation f 4x1 r1 r ′5 of any move x between routes r
and r ′ is stored, along with a chronological informa-
tion indicating when, for example, at which iteration
of the local search, this value has been calculated.
Similarly, chronological information indicates for each
route when this route has been last modified. A move
is not evaluated if none of the routes it impacts has
been modified since its last evaluation.
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Multi-attribute vehicle routing problems (MAVRPs)

• Three main resolution tasks and
related problem attributes

• ASSIGNMENT (assignment of
customers and routes to
time-periods or depots)
I multi-period, multi-depot, heter.

fleet, location routing...

• SEQUENCING (choice of the
sequence of visits)
I P&D, Backhauls, 2-echelon...

• ROUTE EVALUATION (route
feasibility/cost & other decisions)
I Time windows, time-dep travel

time, loading constraints, HOS
regulations, lunch breaks,
load-dependent costs...
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Multi-attribute vehicle routing problems (MAVRPs)

• Challenges: VARIETY and COMBINATION of attributes

• Over 200 attributes have been proposed to this date...

...which often appear together ⇒ 2200 problems... 2200

different methods, and 2200 papers ?!!!

• “Double” combinatorial explosion: Combinatorial
optimization problem and combinatorial family of problems

⇒ Progress towards unified solution concepts and methods

⇒ Solvers that can address a wide range of problems without need
for extensive adaptation or user expertise.

⇒ Necessary tools for the timely application of current optimization
methods to industrial settings.

[SHOW EXAMPLE 2. PROBLEM VARIETY]
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Constructive methods

• Constructive methods: mostly between 1960s and 1980s.
I Making step-by-step definitive decisions, which cannot be revoked

afterwards

• Savings method (Clarke and Wright 1964)
I Merge routes step by step based on a

savings measure sij sij = ci0 + c0j − cij
I Some refinements by Gaskell (1967) and

Yellow (1970): sij = ci0 + c0j − λcij
I Mole and Jameson (1976) and Solomon

(1987) later generalize the concepts and
consider insertions inside the routes.

© Vidal Thibaut 2012 28

Classic Heuristics and Metaheuristics

 Constructive methods : mostly between 1960s and 1980s. 
 Making step-by-step definitive decisions, which cannot be 

reversed afterwards

 Savings method (Clarke and Wright 1964)
 Merge routes step by step based 

on a savings measure sij

 Some refinements by Gaskell (1967) 
and Yellow (1970) : 

 Mole and Jameson (1976) and Solomon (1987) generalize the 
concepts and also consider insertions inside the routes.
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Constructive methods

• Constructive methods: mostly between 1960s and 1980s.
I Making step-by-step definitive decisions, which cannot be revoked

afterwards

• Sweep algorithm (Gillett and Miller, 1974)
I Sweep the deliveries in circular order to

create routes.
I A new route is initiated each time the

capacity is exceeded.

• Petal methods : generate several
alternative routes, called petals, and select
a subset of these by solving a set-covering
linear program.

© Vidal Thibaut 2012 29
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 Constructive methods : mostly 
between 1960s and 1980s.
 Making step-by-step definitive 

decisions, which cannot be 
reversed afterwards

 Sweep algorithm (Gillett a
 Sweep the deliveries in

circular order to create
routes, a new route is
initiated each time the
capacity is exceeded.

 “Petal” methods : generate
several alternative routes,
called petals, and select a s
solving a set-covering linear program. 
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Constructive methods

• Constructive methods: mostly between 1960s and 1980s.
I Making step-by-step definitive decisions, which cannot be revoked

afterwards

• Route first cluster second (Newton and Thomas, 1974; Bodin and
Berman, 1979; Beasley, 1983)
I construct a giant circuit (TSP tour) that visits all customers.
I Segmenting this tour into several routes. Optimal segmentation is

assimilated to a shortest path problem in a auxiliary directed
acyclic graph

I Possible to solve the segmentation problem (Split) in O(n)
(Vidal, 2016)
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Classical Local Searches

• Local-improvement procedures :

I From an incumbent solution
s define a neighborhood N(s)
of solutions obtained by
applying some changes.

I The set of solutions, linked
by neighborhood
relationships = search space.

I LS-improvement method
progress from one solution to
another in this search space
as long at the cost improves.

© Vidal Thibaut 2012 53

An analysis of winning strategies

 19 aspects of the methods have been scrutinized :
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Classical Local Searches

• For optimizing a single route (TSP tour);

I in the terminology of Lin (1965), λ-opt neighborhood = subset of
moves obtained by deleting and reinserting λ arcs.

I 2-opt and 3-opt are commonly used,

I Or-opt which comes to relocate sequences of bounded size, and is a
subset of 3-opt.

Classical Local Searches
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 in the terminology of Lin (1965), λ-opt neighborhood = subset of 
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 Or-opt which comes to relocate sequences of bounded size, and 
is a subset of 3-opt. 
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Classical Local Searches

• For optimizing multiple routes together,

I Insert neighborhood (relocate a delivery)

I Swap neighborhoods (swap two deliveries from different routes)

I CROSS-exchange (exchange two sequences of visits)

I I-CROSS (exchange and reverse two sequences)

I 2-opt* exchange two route tails (special case of CROSS)

Classical Local Searches
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 For optimizing multiple routes together, 

 Insert neighborhood (relocate a delivery) 

 Swap neighborhoods (swap two deliveries from different routes) 

 CROSS-exchange (exchange two sequences of visits) 

 I-CROSS (exchange and reverse two sequences) 

 2-opt* exchange two route tails (special case of CROSS) 
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Classical Local Searches

• These neighborhoods contain a polynomial number of moves.
I For all moves except CROSS and I-CROSS, the number of

neighbors is O(n2)
I CROSS and I-CROSS are often limited of sequences of bounded size

with less than k customers, in that case the number of neighbors
becomes O(k2n2)

• Other non-enumerative large-scale neighborhoods:
I Heuristic of Lin and Kernighan (1973) – efficient implementation

from Helsgaun (2000);
I Ruin-and-recreate (Shaw, 1998; Schrimpf et al., 2000);
I Ejection chains (Glover, 1992, 1996)
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Classical Local Searches

• Efficient move evaluations and pruning procedures are critical to
address large-scale problem instances

I Neighborhood restrictions, granular search (Johnson and McGeoch,
1997; Toth and Vigo, 2003): restrain the subset of moves to
spatially related customers

I Sequential search (Christofides and Eilon, 1972; Irnich and
Villeneuve, 2003): any profitable move can be broken down into a
list of arc exchanges (a1, . . . , aλ) with gains (g1, . . . , gλ) such that
for any k ∈ {1, . . . , λ}, g1 + · · ·+ gk ≥ 0.

I This condition allows to prune many non-promising moves.
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Classical Metaheuristics

• Local-improvement methods ⇒ local optima.

• Metaheuristics to escape and guide the search

• Main classes of methods:
I Neighborhood-centered search – iterative improvement of one

single solution – Tabu search, Simulated annealing, ILS, VNS...
I Population-based search – improving a population of solutions –

Hybrid GA, evolutionary algorithms, ACO, path relinking...
I Hybrid approaches – often combining many successful strategies

• Hybrids are very common ⇒ the limits between metaheuristics
become blurred – Necessity to use a simple and
optimization-oriented terminology to identify their common
structures and success elements (Sörensen, 2015).
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Unified Tabu Search – Cordeau et al. (1997, 2001)

• Tabu search – choice of best move at each step (possibly
non-improving).

• Neighborhood: single Relocate

• Short-term tabu memories to avoid cycling:
I Moving Client i from route R1 to R2 ⇒ Not allowed to insert i back

into route R1 for X iterations.

• Longer term diversification strategies:
I Penalizing recurrent solution attributes in the objective function
I Penalized infeasible solutions (excess load or duration)
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TS with adaptive memory – Rochat and Taillard (1995)

• From 1995, but already contained most of the ideas used
nowadays:

• Diversification
I Tabu search based on Swap and Relocate moves
I Probabilistic selection of moves driven by measures of

attractiveness

• and Intensification:
I Detection of good fragments of solutions that consistently

appear in elite solutions and creation of new solutions from
these fragments to obtain new stating points

I Decomposition phases based on spatial proximity
I Exact solution of the TSPs at regular intervals
I Set covering optimization as a post-optimization
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ALNS – Pisinger and Ropke (2007)

• Large neighborhoods based on the ruin-and-recreate principle
(Shaw, 1998; Schrimpf et al., 2000).

• Variety of operators to partially
destroy the solutions
I Based on randomness, cost metrics,

relatedness, history...
I Adaptive probabilities for operator

selection

• Variety of operators to reconstruct
the solutions

• Deteriorating solutions are accepted
with some probability, as in a
simulated annealing

© Vidal Thibaut 2012 41
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3. ALNS – Pisinger and Ropke (2007)

 Large neighborhoods based on the Ruin-and-
recreate principle.

 Variety of operators for destroying the 
solution 
 Using randomness, quality measures, 

relatedness, proximity, or history
 Adaptive probabilities of operator

selection

 Deteriorating solutions are accepted with 
some probability, as in Simulated Annealing.
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Iterated Local Search – Subramanian et al. (2013)

• Iterated local search: at each iteration local search until
a local optimum is encountered, shaking and local search
again...

• A large diversity of neighborhoods is used

I Relocate and Swap of one to three customers in different
routes, 2-Opt, 2-Opt*, empty-route, swap depot...

I Multiple shaking operators : multi-swap, multi-shift,
double-bridge ...
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Iterated Local Search – Subramanian et al. (2013)

• Set covering model to
create new solutions out
of a set of high-quality
routes.
Adaptation of the pool
size.

Iterated Local Search – Subramanian et al. (2013)
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ELITE ROUTES 
found during the 

search

Solver for integer 
linear programming 

(Cplex)BEST SOLUTION 
CREATED FROM 
THESE ROUTES
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Hybrid Genetic Algorithm – Prins (2004)

• First Genetic Algorithm (GA) to achieve competitive results
on some VRP variants.

• Genetic algorithms mimic natural
evolution

I Population of solutions

I Selection

I Crossover

I Mutation
(replaced here by a local search)

21 

 Hybrid genetic search with Advanced Diversity Control (HGA): 

 Hybrid genetic Algorithm 

 Well-designed selection and crossover operators 

 High-performance local-improvement procedure (“education”) 

 Management of penalized infeasible solutions in two subpopulations 

 Diversity & Cost objective for individuals evaluations 

Vehicle routing optimization 

 

General HGA Methodology : Evolving a 
population of solutions with genetic operators, 
selection, crossover and mutation. The latter is 
replaced by a local search procedure. 
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Hybrid Genetic Algorithm – Prins (2004)

• The algorithm of Prins (2004) includes a few important “tricks”:

• Giant-tour solution representation
I Polynomial Split algorithm to obtain a complete solution

• Simple Crossover

• Local search on the
offspring

• Population management
(spacing constraint)

Hybrid Genetic Algorithm – Prins (2004)
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5. HGA – Prins (2004)

 The algorithm of Prins (2004) includes a few important « tricks »: 

 Giant-tour solution representation
 Polynomial Split algorithm to obtain a complete solution

 Simple Crossover
 Local search on the 

offspring
 Population management

(spacing constraint)
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Unif. Hybrid Genetic Search – Vidal et al. (2012, 2014)

• Classic hybrid genetic algorithm with:
I Giant-tour solution representation in the

crossover: the same as Prins (2004)
I Efficient local search
I Management of penalized infeasible

solutions
I Promotion of diversity in the population:

Biased fitness

• Easily generalizable ⇒ Applied to over 50
VRP variants

21 

 Hybrid genetic search with Advanced Diversity Control (HGA): 

 Hybrid genetic Algorithm 

 Well-designed selection and crossover operators 

 High-performance local-improvement procedure (“education”) 

 Management of penalized infeasible solutions in two subpopulations 

 Diversity & Cost objective for individuals evaluations 

Vehicle routing optimization 

 

General HGA Methodology : Evolving a 
population of solutions with genetic operators, 
selection, crossover and mutation. The latter is 
replaced by a local search procedure. 
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Unif. Hybrid Genetic Search – Vidal et al. (2012, 2014)

Biased fitness: combining ranks in terms of solution cost C (I ) and
contribution to the population diversity D(I ), measured as a distance
to other individuals :

BF (I ) = C (I ) +

(
1− nbElite

popSize − 1

)
D(I )

• Used for parents selection

⇒ Balancing quality with innovation
to promote a more thorough
exploration of the search space.

• Used during selection of survivors

⇒ Removing individuals with worst
BF (I ) still guarantees elitism

31 

 5. Biased Fitness is a tradeoff between ranks in terms of  
penalized cost fit(I), and contribution to the diversity dc(I), 
measured as a distance to others individuals. 

 

 

 

 
 

 Used during selection of the parents  

 Balancing strength with innovation  
during reproduction, and thus favoring  
exploration of the search space.  
 

 and during selection of survivors:  

 Removing the individual I with worst  
BF(I) also guarantees some elitism  
in terms of solution quality. 

 

Unified Hybrid Genetic Search 
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Knowledge-Guided LS Arnold and Sörensen (2018)

• Based on a Guided local search
I Detect and temporarily penalize bad edges
I Characterization of bad edges result from a prior study of defining

features of good and bad solutions

• Three efficient types of neighborhoods
I CROSS-exchanges
I Ejection chains
I Heuristic of Lin and Kernighan (1973)

• Leading to an efficient and fast method for the CVRP

[SHOW EXAMPLE 3. ALGO. ARNOLD & SORENSEN]
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SISRs – Christiaens and Vanden Berghe (2018)

• Based on the ruin-and-recreate principle
• One ruin operator (adjacent string removals)

I Aims to introduce capacity and spatial slack
• One recreate method (greedy insertion with blinks)

I Skipping best insertions in a controlled manner

SISRs – Christiaens and Vanden Berghe (2018) 

ASB-RR          jan.christiaens@cs.kuleuven.be 

• Based on ruin-and-recreate principle 

• One ruin operator (adjacent string removals) 

o Aims to introduce capacity and spatial slack 

• One recreate method (greedy insertion with blinks) 

o Skipping best insertions in a controlled manner 

• Excellent results on the new large-scale CVRP instances of Uchoa
et al. (2017)
• State-of-the-art results for multiple problem variants: CVRP,

VRPTW, PDPTW...
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Summary

• A very large variety of metaheuristics have been developed.

• Many existing concepts and methods... and many open questions:

• Why using a strategy or a metaheuristic of a given type

• For which problems some strategies are most successful

• Method: tradeoff between solution quality, speed, ability to
generalize, robustness and simplicity
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Successful strategies – Analysis

• Vidal et al. (2013b): analysis of solution concepts for
multiple VRP variants

• Protocole:
I Selection of 14 multi-attribute VRPs – Criterion : classic

benchmark instances available + large number of heuristics).
I Identification of the top 3 to 5 best metaheuristics for each

problem
I Analysis of the resulting 64 methods, to pinpoint successful

methodological elements.
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Successful strategies – Analysis

• 19 aspects of the methods have been examined:

© Vidal Thibaut 2012 53

An analysis of winning strategies

 19 aspects of the methods have been scrutinized :
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Successful strategies – Analysis

• 19 aspects of the methods have been examined:
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An analysis of winning strategies

…
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Successful strategies – Analysis

• Search Space: Using infeasible solutions (31/64 methods).

• Usual to relax route constraints and
penalize violations: capacity, duration,
TW...

• Enables to transition more easily in the
search space between feasible solutions.

• Strategic oscillation (Glover, 1986):
good solutions are known to be close to
the borders of feasibility – Oscillating
close to these borders by adapting the
penalty coefficients.
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An analysis of winning strategies
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Successful strategies – Analysis

• The space of feasible solutions is often...

29 

 3. Using intermediate infeasible solutions 
 

 Geometric interpretation : quite often the polytope 
characterizing feasible solutions can be very flat: 

 

 

 

 

 

 

 

 

 Problem relaxations and intermediate penalized infeasible 
solutions may be needed to transition from one feasible 
solution to another. 

Not quite like this: But rather like this: 

Unified Hybrid Genetic Search 

• On problems with tight constraints, infeasible solutions are
necessary to transition from one solution to another
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Successful strategies – Analysis

• Experimental analysis of TW relaxations in Vidal et al. (2015a).
I Solomon VRPTW instances – simple LS-improvement procedure.

© Vidal Thibaut 2012 56

An analysis of winning strategies

 Search Space : Relaxations (31/64 methods).

 We conducted some experiments on this topic:
 Solomon VRPTW instances, (several types of) relaxations of time 

windows, simple LS-improvement procedure.

 Same observations on distance and load relaxations on CVRP, 
PVRP and MDVRP with advanced metaheuristics (Vidal et al 2012).

I Similar conclusions regarding distance and load relaxations on
CVRP, PVRP and MDVRP (Vidal et al 2012).
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Successful strategies – Analysis

• Search Space: Indirect solution representations (12/64)

• Focus the heuristic search on a subset
of the decision variables

• Use a decoder to determine the rest of
the decisions – Exact algorithms may
be used for decoding

• Examples:
I Giant tours without trip delimiters in

Prins (2004)
I Storing a subset of the decision sets:

visit-day choices for the PVRP,
sequences of visits without visit-time
information... 59 

 Several indirect solution may be 
decoded into the same complete 
solution.  
 

 Decoders may nondeterministic  

 warning when evaluating 
solutions twice in a 
metaheuristic, keep track of 
the previous or best cost ? 

Indirect Solution Representation 

SPACE OF COMPLETE SOLUTIONS 

SPACE OF INDIRECT SOLUTIONS 

DECODER 
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Successful strategies – Analysis

• Neighborhoods
I All successful VRP metaheuristics use either local or large

neighborhood search.

I LS neighborhoods usally contain O(n2) moves

I Ruin-and-recreate is also frequently used

I Covering at least the main families of moves (Relocate, Swap,
2-Opt) is determining to achieve high-quality solutions.

I Trade-off between neighborhood size and search speed

I Optimizing all attributes of the problems (sequencing,
assignment to depots,vehicles, days) is a key to success.
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Successful strategies – Analysis

• Neighborhood search = bottleneck of most recent
metaheuristics (but for a good reason)

• Speed-up techniques (used in 26/64 methods)
I Neighborhood restrictions: granular or sequential search
I Memories: matrices for move evaluations, hashtables for

route evaluations.
I Preprocessing on subsequences to speed move evaluations

in presence of complicating attributes (discussed later in this
talk).
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Successful strategies – Analysis

• Search Trajectory – Randomization (56/64)

I Prerequisite for some asymptotic convergence properties
(e.g., SA, GA).

I A simple way of avoiding cycling and bringing more diversity.

I “an intelligent use of randomization, which is not blindly uniform
but embedded in probabilities that account for history and measures
of attractiveness, offers a useful type of diversification that can
substitute for more complex uses of memory”
(Rochat and Taillard, 1995)

I If needed, fix the seed to obtain a deterministic algorithm.

I Random order is not worse than any fixed customer-indices order
obtained from the instance (often arbitrary).
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Successful strategies – Analysis

• Populations (28/64)

• Acquisition, management, and exploitation of problem-knowledge
⇒ Core function of a metaheuristics.

• Glover (1989) discern two types of memories
I Short term memories (e.g. tabu lists) – used to escape local optima
I Medium and long-term memories – guide the overall exploration

• Other forms of memories: populations to store full solutions,
routes or fragments of solutions, statistics on decision variables,
pheromones, supported patterns...
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Successful strategies – Analysis

• Population management (14/28)

• A need for diverse and high-quality solutions

I Critical to avoid premature convergence. Needed to counterbalance
the aggressive-improvement abilities of local search in hybrid GA.

I Diversity management
strategies (Prins, 2004;
Sörensen and Sevaux, 2006)

I Promotion of diversity in the
objective (Vidal et al., 2012)

I Based on distance measures,
in objective or solution
space.
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 5. Biased Fitness is a tradeoff between ranks in terms of  
penalized cost fit(I), and contribution to the diversity dc(I), 
measured as a distance to others individuals. 

 

 

 

 
 

 Used during selection of the parents  

 Balancing strength with innovation  
during reproduction, and thus favoring  
exploration of the search space.  
 

 and during selection of survivors:  

 Removing the individual I with worst  
BF(I) also guarantees some elitism  
in terms of solution quality. 

 

Unified Hybrid Genetic Search 
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Successful strategies – Analysis

• Memories and control – Population management (14/28)
• Some experiments on this topic in Vidal et al. (2012), solution

quality of HGSADC on standard PVRP, MDVRP, and MDPVRP
instances:
I HGA: No diversity management method
I HGA-DR: Spacing rule in objective space (Prins, 2004)
I HGA-PM: Spacing rule in solution space

(Sörensen and Sevaux, 2006)
I HGSADC: Promotion of diversity in the objective

(Vidal et al., 2012)

© Vidal Thibaut 2012 65

An analysis of winning strategies

 Memories and control : population management (14/28)

 Some experiments on this topic (Vidal 2012), solution-quality with 
HGSADC on standard PVRP, MDVRP, and MDPVRP instances. 
 HGA : No diversity management method
 HGA-DR : Dispersal rule on objective space (Prins 2004)
 HGA-PM : Dispersal rule on solution space (Sörensen and Sevaux 2006)
 HGSADC : Promotion of diversity in the objective (Vidal et al 2012)

Benchmark HGA HGA-DR HGA-PM HGSADC

PVRP
T 6.86 min 7.01 min 7.66 min 8.17 min

% +0.64% +0.49% +0.39% +0.13%

MDVRP
T 7.93 min 7.58 min 9.03 min 8.56 min

% +1.04% +0.87% +0.25% -0.04%

MDPVRP
T 25.32 min 26.68 min 28.33 min 40.15 min

% +4.80% +4.07% +3.60% +0.44%
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Successful strategies – Analysis
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Successful strategies – Analysis

• Search Guidance

• A very simple form of guidance: parameters adaptation (30/64)
I Driving infeasibility penalties, mutation and crossover rates,

frequency of use of some operators or strategies.

• More advanced forms of guidance: collect and analyze information
on the past search to guide the method
I Collect historical statistics on solution features, arcs, sets of arcs,

routes, or problem specic attributes.
I Mine supported patterns (Ribeiro et al., 2006; Santana, 2018)
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Successful strategies – Analysis

• Exploitation of guidance information :

I Guidance actions to
• Either intensify the search around promising solution features
• Or diversify the search around promising unexplored areas.

I Applying penalties or incentives on solution features

I Restarts from elite solutions or fragments of solutions

I Target solutions in path relinking

I Neighborhood choice driven by pheromone matrices in ACO

• Continuous through the search, or punctually through a
purposeful move
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Successful strategies – Analysis

• Hybridizations (39/64)

I Combining features of several methods

I Most frequent in the heuristics surveyed : GA+LS, ACO+LS or
ACO+LNS, Tabu + recombinations, ILS + VNS...

• Generally speaking, metaheuristics are inherently hybrids,
described sometimes as “heuristics that guide other heuristics”

• Matheuristics (9/64), blending metaheuristics with math.
programming components:
I Handling problem-attributes (e.g. loading constraints or split

deliveries)

I Exploring large neighborhoods

I Recombining solution elements...
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Successful strategies – Analysis

• Decompositions

I Help to focus on subsets of decision variables: useful as an
intensification procedure or to deal with large-scale problems

I Some examples:

© Vidal Thibaut 2012 72

An analysis of winning strategies

 Some possible decompositions for the CVRP:
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 Some possible decompositions for the CVRP:
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Some conclusions

• Success is not related a single feature but rather to a
combination of concepts

• Several search strategies are combined to achieve a good
balance between search intensification and diversification

• Well-designed LS or LNS-based improvement methods
are essential to refine the solutions
I Computational complexity. Do not confound search and

enumeration (Bentley and Friedman, 1978; Bentley, 1992; De Berg
et al., 2018)

I Preprocessing, memories, neighborhood restrictions...
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Some conclusions

• Many components can contribute to increase
performance

⇒ One can always improve a method by “adding more”...

⇒ Success comes from a good tradeoff between performance
and simplicity.

⇒ To gain methodological insights, need to trim off all
unnecessary component and avoid complex methodologies
with only marginal contributions to performance.

⇒ Computational experiments to assess the impact of each
separate component
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Unified Hybrid Genetic Search

• Unified Hybrid Genetic Search (UHGS): aiming to address the
challenges related to the variety of problem combinations
(Vidal et al., 2014)

21 

 Hybrid genetic search with Advanced Diversity Control (HGA): 

 Hybrid genetic Algorithm 

 Well-designed selection and crossover operators 

 High-performance local-improvement procedure (“education”) 

 Management of penalized infeasible solutions in two subpopulations 

 Diversity & Cost objective for individuals evaluations 

Vehicle routing optimization 

 

General HGA Methodology : Evolving a 
population of solutions with genetic operators, 
selection, crossover and mutation. The latter is 
replaced by a local search procedure. > Problem Metaheuristics UHGS Decompositions Conclusions References 60/168



Unified Hybrid Genetic Search

• The method relies on assignment, sequencing & route evaluation
operators, which are selected and combined by the method
relatively to the problem structure (using polymorphism and
inheritance), to perform the assignment, sequencing and route
evaluations.
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Unified Hybrid Genetic Search
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Unified Hybrid Genetic Search

• One important structural property of local searches helps
to progress towards unified and efficient metaheuristics:

I Vidal et al. (2015b): Any LS move involving a bounded number of
node relocations or arc exchanges can be assimilated to a
recombination of a bounded number of consecutive visit sequences
from the incumbent solution
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Unified Hybrid Genetic Search

• Data preprocessing: compute auxiliary data on subsequences to
speed up the search

• Evaluate moves by induction on the concatenation operator (⊕)

• Easy to adapt:
I Define all moves based on the concatenation operators
I To deal with multiple problems: adapt the preprocessing and

concatenation operators
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Unified Hybrid Genetic Search

• Example 1) Distance and capacity constraints

Auxiliary data structures:

Partial loads Q(σ) and distance D(σ)

Initialization

For a sequence σ0 with a single visit vi , Q(σ0) = qi and D(σ0) = 0

Induction Step:

Q(σ1 ⊕ σ2) = Q(σ1) + Q(σ2)

D(σ1 ⊕ σ2) = D(σ1) + dσ1(|σ1|)σ2(1) + D(σ2)
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Unified Hybrid Genetic Search

• Example 2) Objectives based on cumulated arrival time objectives

Auxiliary data structures in use:

Travel time D(σ), Cumulated arrival time C (σ), Delay Cost W (σ)
associated to one unit of delay in starting time

Initialization

For a sequence σ0 with a single visit vi , D(σ0) = 0 and C (σ0) = 0, and
W (σ0) = 1 if vi is a customer, and W (σ0) = 0 if vi is a depot visit.

Induction Step:

D(σ1 ⊕ σ2) = D(σ1) + dσ1(|σ1|)σ2(1) + D(σ2)

C (σ1 ⊕ σ2) = C (σ1) + W (σ2)(D(σ1) + dσ1(|σ1|)σ2(1)) + C (σ2)

W (σ1 ⊕ σ2) = W (σ1) + W (σ2)
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Unified Hybrid Genetic Search

• Example 3) Time windows (only feasibility check, see Vidal et al.
2013a for similar equations with penalized infeasibility)

Auxiliary data structures in use:

Travel time and service time T (σ), earliest feasible completion time
E (σ), latest feasible starting date L(σ), statement of feasibility F (σ).

Initialization:

For a sequence σ0 with a single visit vi , T (σ0) = si , E (σ0) = ei + si ,
L(σ0) = li and F (σ0) = true.

Induction Step:

T (σ1 ⊕ σ2) = T (σ1) + dσ1(|σ1|)σ2(1) + T (σ2)

E (σ1 ⊕ σ2) = max{E (σ1) + dσ1(|σ1|)σ2(1) + T (σ2),E (σ2)}
L(σ1 ⊕ σ2) = min{L(σ1),L(σ2)− dσ1(|σ1|)σ2(1) − T (σ1)}
F (σ1 ⊕ σ2) ≡ F (σ1) ∧ F (σ2) ∧ (E (σ1) + dσ1(|σ1|)σ2(1) ≤ L(σ2))
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Unified Hybrid Genetic Search

• Example 4) Clustered VRP (CluVRP)

• Cluster constraint: All visits of each cluster need to be
consecutive and in the same route

Problem definition Taking advantage of a pre-processing scheme Metaheuristics Computational results Conclusions

The Clustered VRP (Clu-VRP)

• G = (V ,E ), 0 depot;

• di , i ∈ V \ {0} demands;

• cij , (i , j) ∈ E ;

• m homogeneous vehicles;

• Q vehicle capacity;

• C set of clusters;

Obj: Minimum Routing Cost.

Additional constraint: A vehicle visiting one vertex in cluster C ∈ C
must visit all vertices i ∈ C before any other vertex.
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Unified Hybrid Genetic Search

• Example 4) Clustered VRP (CluVRP)

• We can work on solutions as sequences of clusters

⇒ From the heuristic point of view, a solution looks like this:
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Unified Hybrid Genetic Search

• Example 4) Clustered VRP (CluVRP)

• We can work on solutions as sequences of clusters

⇒ For route evaluation operator, it’s a shortest path subproblem:

been preprocessed (Battarra et al., 2014). Using this information, it is possible to obtain from a

route represented as a sequence of clusters the best sequence of visits to customers in polynomial

time by solving the shortest path problem in an auxiliary graph G′ = (V ′,A′), as illustrated in

Figure 1.
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Figure 1: Route representation in UHGS

In Figure 1, black lines correspond to precomputed Hamiltonian paths within clusters. For

each cluster in the route, a set containing two copies of each node is generated. Pairs of node

copies are connected by an arc and the cost of an arc (k, l) is set to be the cost of the shortest

Hamiltonian path ĉkl in the cluster between the endpoints of the arcs. The depot is then connected

to the first copy of each node in the first cluster Vσ(1) by an arc c0j , and the second copies of the

nodes are connected to the first node copies of the next cluster, and so on. The cost associated

to gray arcs is the travel distance between the endpoints. A similar route representation was

previously used for the GVRP by Pop et al. (2013) and Vidal (2013). It leads to an implicit

structural problem decomposition, considering only a VRP of a size proportional to the number

of clusters N < n. Difficult combinatorial decisions on path selections within clusters are thus

relegated to the route-evaluation operators.

A straightforward application of this technique leads to route evaluations in O(NB2) op-

erations, where B is the maximum number of customers in a cluster. These evaluations are

computationally expensive. A contribution of this work is to show that efficient procedures based

on preprocessing and concatenations allow for performing each move evaluation in amortized

O(B2) operations, thus only depending on the square of the cluster size. Our method prepro-

cesses for each subsequence σ = (σ(1), . . . , σ(|σ|)) the shortest paths S(σ)[i, j] that starts with

any ith customer of σ and terminates at any jth customer. The size of cluster i is denoted as λi.

For a sequence σ0 = (sk) containing a single cluster, if the cluster is restricted to a single

customer vi, then S(σ0)[i, i] = 0, else S(σ0)[i, j] = +∞ for i = j and S(σ0)[i, j] = ĉij for

(i, j) ∈ {1, . . . , λk}2, ĉij being the distance of the best Hamiltonian path connecting i and j in

the cluster. As in Vidal (2013), the following equation enables us to evaluate S(σ) on larger

sub-sequences by induction on the concatenation operation. Note that it is a direct application

9

• Like this, a route evaluation would be in O(n), assuming that the
number of customers in a cluster is bounded by a constant
I Difficult to evaluate many solutions, need to do better.
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Unified Hybrid Genetic Search

• Example 4) Clustered VRP (CluVRP)

• Idea: Store shortest paths on partial sequences.

⇒ To evaluate a move, solve a shortest path sub-problem with
only O(1) arcs:

of the Floyd-Warshall algorithm:

S(σ1 ⊕ σ2)[i, j] = min
1≤x≤λσ1(|σ1|),1≤y≤λσ2(1)

S(σ1)[i, x] + cxy + S(σ2)[y, j].

∀i ∈ {1, . . . , λσ1(1)}, ∀j ∈ {1, . . . , λσ2(|σ2|)}
(1)

Equation (1) can therefore be used to perform preprocessing on all subsequences of customers.

The same equation is then used during move evaluations to compute the cost of a new route as

a concatenation of a bounded number of existing subsequences with limited effort. Indeed, as

illustrated in Figure 2, preprocessing this data is equivalent to preprocessing all-pairs of shortest

paths between nodes in each subsequence (in boldface in the figure). As a consequence, the size

of the shortest path graph considered during separate move evaluations is considerably reduced.
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Figure 2: Using preprocessed information on subsequences

Proposition 1. Using the proposed preprocessing, the amortized complexity of move evaluations,

for classic VRP neighborhoods such as Relocate, Swap, 2-Opt, 2-Opt*, is O(B2) instead of

O(NB2).

Proof. First, from the current incumbent solution, the preprocessing phase requires computing

the shortest paths between each pair of nodes, for each route. For each route, the graph G′ is

directed and acyclic. Equation (1) is applied iteratively, in lexicographic order starting from any

cluster σi, i ∈ {1, . . . , |σ|} and iteratively applied to σj for j ∈ {i + 1, . . . , |σ|} to produce all

shortest paths. This equation is thus used O(N2) times to perform a complete preprocessing

on all routes. Each evaluation of this expression requires O(B2) time. The total effort for the

preprocessing phase is O(N2B2).

After preprocessing, a local search using classic VRP neighborhoods is performed. Any move

based on less than k edge exchanges can be assimilated to a recombination of up to k + 1 sub-

sequences of consecutive clusters. This is the case for the mentioned neighborhoods with k ≤ 4.

10
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Unified Hybrid Genetic Search

• Example 4) Clustered VRP (CluVRP)

Auxiliary data

Shortest path S (σ)[i , j ] inside sequence σ starting at the location i of
the starting cluster and finishing at location j of the ending cluster

Initialization

For σ0 with a single visit vi , S (σ0)[i , j ] =

{
+∞ if i = j

ĉij if i 6= j

Induction step

By induction on the concatenation operator:

S (σ1 ⊕ σ2)[i , j ] = min
1≤x≤λσ1(|σ1|),1≤y≤λσ2(1)

S (σ1)[i , x ] + cxy + S (σ2)[y , j ]

∀i ∈ {1, . . . , λσ1(1)},∀j ∈ {1, . . . , λσ2(|σ2|)}
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Unified Hybrid Genetic Search

• Solution representation and Split:

© Vidal Thibaut 2013 18 

Unified Solution Representation and Split 

 Now dealing with MAVRPs with both ASSIGN and EVAL attributes: 
Assignment of customer services to some ASSIGN attributes 
resources (AARs) + separate optimization of routes for each AARs. 

 Solution representation is designed accordingly. 

 Furthermore,  representation without trip delimiters for each 
AAR. 
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Unified Hybrid Genetic Search

• Crossover operator:

© Vidal Thibaut 2013 18 

Unified Crossover Operator 
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Unified Hybrid Genetic Search

Biased fitness: combining ranks in terms of solution cost C (I ) and
contribution to the population diversity D(I ), measured as a distance
to other individuals :

BF (I ) = C (I ) +

(
1− nbElite

popSize − 1

)
D(I )

• Used for parents selection

⇒ Balancing quality with innovation
to promote a more thorough
exploration of the search space.

• Used during selection of survivors

⇒ Removing individuals with worst
BF (I ) still guarantees elitism

31 
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Unified Hybrid Genetic Search

• Computational Experiments: UHGS has been tested on more
than 2000 benchmark instances, and 50 different problems from
the vehicle routing literature

• The method has been compared to over 240 previous algorithms

I State-of-the-art results in the literature on all considered problems:
VRP with capacity constraints, duration, backhauls, asymmetry,
cumulative costs, simultaneous and mix pickup and deliveries, fleet
mix, load dependency, multiple periods, depots, generalized
deliveries, open routes, time windows, time-dependent travel time
and costs, soft and multiple TW, truck driver scheduling
regulations, many other problems and their combinations...

I First method which addresses efficiently many problems and their
combinations, equals or outperforms all available methods from the
literature.
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Unified Hybrid Genetic Search

© Vidal Thibaut 2013 22 

Comparison with problem-tailored state-of-the-art methods  
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Unified Hybrid Genetic Search
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Unified Hybrid Genetic Search
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Unified Hybrid Genetic Search
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Tricks of the trade – Quick discussion

• A few lessons learned through the years:

I Neighborhood restrictions or granular search – some
“better ways” (Vidal et al., 2013a; Schneider et al., 2017)

I When applicable: consider the Relocate, Swap, 2-Opt,
2-Opt* moves as a single neighborhood – don’t evaluate in
different phases (Vidal et al., 2014)

I Eliminate useless move re-evaluations: remember when a
route was last modified and when a move was last tested
(Vidal et al., 2014; Homsi et al., 2018)

I Hash memories can help (Goel and Vidal, 2014; Toffolo
et al., 2018)

I Move lower bounds – multi-phase evaluations for
harder problems (Vidal, 2017)
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General Idea

• Studying some other problems from the perspective of structural
problem decomposition:

 

Decision set x2 

Decision  
set x1 

Difficult combinatorial 
optimization problem 
with several families 
of decisions 

Efficient exact methods, such as bi-
directional dynamic programming 
or integer programming on 
restricted formulations 
 used to derive other decisions 

Heuristic search, 
e.g., local search 
on a decision set 
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Challenges

• Arc routing for home delivery,
snow plowing, refuse collection,
postal services, among others.

• Lead to additional challenges:

⇒ Deciding on travel directions for
services on edges

⇒ Shortest path between services
are conditioned by service
orientations
(may also need to include some
additional aspects such as turn
penalties or delays at
intersections).
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Challenges

• Arc routing for home delivery,
snow plowing, refuse collection,
postal services, among others.

• Lead to additional challenges:

⇒ Deciding on travel directions for
services on edges

⇒ Shortest path between services
are conditioned by service
orientations
(may also need to include some
additional aspects such as turn
penalties or delays at
intersections).

 

Assignment Sequencing 

Service 
Orientations 

Shortest 
Paths 
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A question of neighborhood

• Most recent CARP
heuristics rely on
several enumerative
neighborhood classes to
optimize assignment,
sequencing and service
orientation decisions
I See, e.g. Brandão and

Eglese (2008); Usberti
et al. (2013); Dell’Amico
et al. (2016)...

I Shortest paths between
node extremities have
been pre-processed

I Three decision classes are
heuristically addressed

 

Assignment Sequencing 

Service 
Orientations 

Shortest 
Paths 

HEURISTIC  
SEARCH 
 

DYNAMIC  

PROGRAMMING 

Each solution 

evaluation in O(1)  

once the shortest  

paths are known 

 

⇒ This is, however, not the only option.
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A question of neighborhood

• In Beullens et al. (2003)
and Muyldermans et al.
(2005), O(n)
dynamic-programming
based optimization of
service orientations:

• Combined in Irnich
(2008) with the
neighborhood of Balas
and Simonetti (2001),
leading to promising
results on mail delivery
applications.

 

Assignment Sequencing 

Service 
Orientations 

Shortest 
Paths 

HEURISTIC  
SEARCH 

DYNAMIC  

PROGRAMMING 

Evaluation of each  

solution in O(n) 
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A question of neighborhood

• Transferring several decision classes into exact
dynamic-programming based components.

• This is a structural problem decomposition:

 

Decision set x2 

Decision
set x1

Difficult combinatorial 
optimization problem 
with several families 
of decisions 

Efficient exact methods, such as bi-
directional dynamic programming 
or integer programming on 
restricted formulations 

 used to derive other decisions 

Heuristic search, 
e.g., local search 
on a decision set 

DECODING 

  in O(1)
SOLUTION AS  

PERMUTATIONS 

OF SERVICES

OPTIMAL EVALUATION OF 

SERVICE ORIENTATIONS AND 

                        INTERMEDIATE PATHS
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Solution representation and decoding

• How to decode/evaluate a solution = deriving optimal
orientations for the services ?

⇒ Simple dynamic programming subproblem (Beullens et al.,
2003; Wøhlk, 2003, 2004):
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Solution Representation: 

Shortest Path Problem: 

C22
 σ(1)σ(2) 

C12
 σ(1)σ(2) 

σ(1)σ(2) C11
 

C21
 σ(1)σ(2) 

σ(2) S1
 

S2
 σ(2) 

• Each service represented by two nodes, one for each
orientation. Travel costs cklij between (i , j ) are conditioned
by the orientations (k , l) for departure and arrival.
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Seeking low complexity for solution evaluations

• Modern neighborhood-centered heuristics evaluate
millions/billions of neighbor solutions during one run.

• Back to our key property of classical routing neighborhoods:
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Seeking low complexity for solution evaluations

Auxiliary data structures = partial shortest paths

Partial shortest path C (σ)[k , l ] between the first and last service in the
sequence σ, for any (entry, exit) direction pair (k , l)

Initialization

For σ0 with a single visit vi , S (σ0)[k , l ] =

{
0 if k = l

+∞ if k 6= l

Induction Step:

By induction on the concatenation operator:

C (σ1 ⊕ σ2)[k , l ] = min
x ,y

{
C (σ1)[k , x ] + cxyσ1(|σ1|)σ2(1) + C (σ2)[y , l ]

}

> Problem Metaheuristics UHGS Decompositions Conclusions References 93/168



Seeking low complexity for solution evaluations

• Pre-processing partial shortest paths in the incumbent
solution – in O(n2) before the neighborhood exploration –
dramatically simplifies the shortest paths:

Shortest path
problem:

Shortest path problem
on a reduced graph,
using pre-processed
labels:
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• Only a constant number of edges
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Lower bounds on moves

• Each move evaluation was still taking a bit more operations
(constant of 4×) than in the classic CVRP.

• Even this can be avoided...
⇒ by developing lower bounds on the cost of neighbors...
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Lower bounds on moves

• Let Z̄ (σ) be a lower bound on the cost of a route σ

• A move that modifies two routes: {σ1, σ2} ⇒ {σ′1, σ′2} has a
chance to be improving if and only if:

∆Π = Z̄ (σ′1) + Z̄ (σ′2)− Z (σ1)− Z (σ2) < 0.
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Lower bounds on moves

• Let Cmin(σ) = mink ,l {C (σ)[k , l ]} the shortest path for the
sequence σ between any pair of origin/end orientations.

• Let cminij = mink ,l{cklij } be the minimum cost of a shortest path
between services i and j , for any orientation.

• Lower bound on the cost of a route σ = σ1 ⊕ · · · ⊕ σX composed
of a concatenation of X sequences:

Z̄ (σ1 ⊕ · · · ⊕ σX ) =

X∑

j=1

Cmin(σj ) +

X−1∑

j=1

cminσj ,σj+1
.

• The bound helps to filter a lot of moves (≥ 90%)
I In practice : possible to evaluate a move with implicit service

orientations for the CARP, using roughly the same number of
elementary operations as the same move for a CVRP!
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Experimental setting

• Initial experiments on CARP and MCGRP

• Literature on CARP and MCGRP built around several sets of
well-known benchmark instances:

# Reference |NR| |ER| |AR| n Specificities

CARP:

GDB (23) Golden et al. (1983) 0 [11,55] 0 [11,55] Random graphs; Only required edges

VAL (34) Benavent et al. (1992) 0 [39,97] 0 [39,97] Random graphs; Only required edges

BMCV (100) Beullens et al. (2003) 0 [28,121] 0 [28,121] Intercity road network in Flanders

EGL (24) Li and Eglese (1996) 0 [51,190] 0 [51,190] Winter-gritting application in Lancashire

EGL-L (10) Brandão and E. (2008) 0 [347,375] 0 [347,375] Larger winter-gritting application

MCGRP:

MGGDB (138) Bosco et al. (2012) [3,16] [1,9] [4,31] [8,48] From CARP instances GBD

MGVAL (210) Bosco et al. (2012) [7,46] [6,33] [12,79] [36,129] From CARP instances VAL

CBMix (23) Prins and B. (2005) [0,93] [0,94] [0,149] [20,212] Randomly generated planar networks

BHW (20) Bach et al. (2013) [4,50] [0,51] [7,380] [20,410] From CARP instances GDB, VAL, & EGL

DI-NEARP (24) Bach et al. (2013) [120,347] [120,486] 0 [240,833] Newspaper and media product distribution
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Experimental setting

• For each benchmark set, we collected the best three
solution methods in the literature (some are heavily tailored
for specific benchmark sets).

BE08 Brandão and Eglese (2008) HKSG12 Hasle et al. (2012) MTY09 Mei et al. (2009)

BLMV14 Bosco et al. (2014) LPR01 Lacomme et al. (2001) PDHM08 Polacek et al. (2008)

BMCV03 Beullens et al. (2003) MLY14 Mei et al. (2014) TMY09 Tang et al. (2009)

DHDI14 Dell’Amico et al. (2016) MPS13 Martinelli et al. (2013) UFF13 Usberti et al. (2013)

• Comparison with the proposed metaheuristics, which are
searching the space of service permutations (our methods
are not fine-tuned for any of these instance sets).
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Comparison with previous literature

Variant Bench. n Author Runs Avg. Best T T* CPU

CARP

GDB [11,55]

TMY09 30 0.009% 0.000% 0.11 — Xe 2.0G

BMCV03 1 0.000% — — 0.03 P-II 500M

MTY09 1 0.000% — — 0.01 Xe 2.0G

ILS 10 0.002% 0.000% 0.16 0.03 Xe 3.07G

UHGS 10 0.000% 0.000% 0.22 0.01 Xe 3.07G

VAL [39,97]

MTY09 1 0.142% — — 0.11 Xe 2.0G

LPR01 1 0.126% — 2.00 — P-III 500M

BMCV03 1 0.060% — — 1.36 P-II 500M

ILS 10 0.054% 0.024% 0.68 0.16 Xe 3.07G

UHGS 10 0.048% 0.021% 0.82 0.08 Xe 3.07G

BMCV [28,121]

BE08 1 0.156% — — 1.08 P-M 1.4G

MTY09 1 0.073% — — 0.35 Xe 2.0G

BMCV03 1 0.036% — 2.57 — P-II 450M

ILS 10 0.027% 0.000% 0.82 0.22 Xe 3.07G

UHGS 10 0.007% 0.000% 0.87 0.11 Xe 3.07G

EGL [51,190]

PDHM08 10 0.624% — 30.0 8.39 P-IV 3.6G

UFF13 15 0.560% 0.206% 13.3 — I4 3.0G

MTY09 1 0.553% — — 2.10 Xe 2.0G

ILS 10 0.236% 0.106% 2.35 1.33 Xe 3.07G

UHGS 10 0.153% 0.058% 4.76 3.14 Xe 3.07G

EGL-L [347,375]

BE08 1 4.679% — — 17.0 P-M 1.4G

MPS13 10 2.950% 2.523% 20.7 — I5 3.2G

MLY14 30 1.603% 0.895% 33.4 — I7 3.4G

ILS 10 0.880% 0.598% 23.6 15.4 Xe 3.07G

UHGS 10 0.645% 0.237% 36.5 27.5 Xe 3.07G
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Comparison with previous literature

Variant Bench. n Author Runs Avg. Best T T* CPU

MCGRP

MGGDB [8,48]

BLMV14 1 1.342% — 0.31 — Xe 3.0G

DHDI14 1 0.018% — 60.0 0.86 CPU 3G

ILS 10 0.010% 0.000% 0.13 0.03 Xe 3.07G

UHGS 10 0.015% 0.000% 0.16 0.01 Xe 3.07G

MGVAL [36,129]

BLMV14 1 2.620% — 16.7 — Xe 3.0G

DHDI14 1 0.071% — 60.0 3.69 CPU 3G

ILS 10 0.067% 0.019% 1.18 0.32 Xe 3.07G

UHGS 10 0.045% 0.011% 1.20 0.17 Xe 3.07G

CBMix [20,212]

HKSG12 2 — 3.076% 120 56.9 CPU 3G

BLMV14 1 2.697% — 44.7 — Xe 3.0G

DHDI14 1 0.884% — 60.0 19.6 CPU 3G

ILS 10 0.733% 0.363% 2.46 1.48 Xe 3.07G

UHGS 10 0.381% 0.109% 4.56 3.08 Xe 3.07G

BHW [20,410]

HKSG12 2 — 1.949% 120 60.1 CPU 3G

DHDI14 1 0.555% — 60.0 21.4 CPU 3G

ILS 10 0.440% 0.196% 5.22 2.90 Xe 3.07G

UHGS 10 0.208% 0.077% 7.95 5.87 Xe 3.07G

DI-NEARP [240,833]

HKSG12 2 — 1.639% 120 93.0 CPU 3G

DHDI14 1 0.536% — 60.0 36.3 CPU 3G

ILS 10 0.199% 0.084% 30.0 21.3 Xe 3.07G

UHGS 10 0.139% 0.055% 29.6 16.7 Xe 3.07G
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Comparison with previous literature

• Boxplot visualizations of Gap(%) of various methods on large-scale
instances:

• Gray colors indicate a significant difference of performance, as
highlighted by pairwise Wilcoxon tests with adequate correction
for multiplicity
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Comparison with previous literature
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Scalability

• Growth of the CPU time of UHGS as a function of the number of
services, for the CARP instances (left figure) and MCGRP
instances (right figure). Log-log scale.
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• A linear fit, with a least square regression, has been performed on
the sample after logarithmic transformation:
⇒ CPU time appears to grow in O(n2)
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Real-case application

• Currently being used as the optimization core for a refuse
collection application in Rio de Janeiro

⇒ Multiple periods, multiple trips, heterogeneous vehicle types,
access restrictions, risk areas, congestion...

• 5 minute CPU time for graphs containing thousands of requests
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Large Neighborhoods: team-orienteering problem

• Team-orienteering problem:
I Each customer i is associated with a prize pi . Not all customers are

to be serviced.
I Each route must have a distance of less than D .
I The goal is to generate m feasible routes while maximizing the total

amount of prizes

• Numerous applications, including:
I Logistics, third party providers,

secondary market (Tricoire et al.,
2010; Aksen et al., 2012)

I Humanitary relief (Campbell et al.,
2008)

I Robotics, maintenance & military
surveillance (Falcon et al., 2012;
Mufalli et al., 2012).
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Large Neighborhoods: Team-orienteering Problem

• Large amount of literature on TOP heuristics and metaheuristics

Acronym Authors Methodology

CGW Chao et al. (1996) Tabu Search
TMH Tang and Miller-Hooks (2005) Tabu Search
GTF Archetti et al. (2007) Tabu Search & VNS
ASe Ke et al. (2008) Ant colony optimization

BDM Bouly et al. (2009) Memetic Algorithm
GLS Vansteenwegen et al. (2009) Guided Local Search

SVNS Vansteenwegen and Souffriau (2009) Skewed VNS
SPR Souffriau et al. (2010) Path Relinking

DGM Dang et al. (2011) Particle Swarm Optimization
MSA Lin (2013) Multi-Start Simulated Annealing

Table: Metaheuristics for team-orienteering problems
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Large Neighborhoods: Team-orienteering Problem

• Main Idea : always work on a full solution with all visits
I Q : How will customers be selected ?
I A : Directly during separate route evaluations

• The problem of optimally selecting the customers from a complete
solution can be assimilated to a shortest path with maximum
profit under distance constraints for each route.

• We propose efficient techniques to solve this problem, combining
I bi-directional dynamic programming,
I graph sparsification,
I and data preprocessing techniques.
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Large Neighborhoods: Team-orienteering Problem

• Again a structural decomposition:

 

Assignment Sequencing 

Customers 
Selection 

HEURISTIC SEARCH 
in the space of 

complete solutions 

DYNAMIC  

PROGRAMMING from each 

complete solution 
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Large Neighborhoods: Team-orienteering Problem

• Main interest: Classic VRP neighborhoods on the complete
solution representation ⇔ large neighborhoods with an
exponential number of implicit insertions and removal of visits.

• Select algorithm at each move ⇔ resource-constrained SP

i d0,i di−1,i pi
1 15 – 10
2 25 30 15
3 15 20 15
4 15 20 10
5 20 25 12
6 15 10 15
7 20 15 15
8 25 15 12
9 25 20 15
10 15 35 15

Dmax = 100
d7,9 = 25

all other distances = +∞

σ D(σ) P(σ)
(3,4,5,6) 85 52
(7,9,10) 95 45
(1,2,3,4) 100 50
(6,7,8,9) 90 57
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Large Neighborhoods: Team-orienteering Problem

Proposition

Let B be an upper bound on the number of labels per node. Then, the
Select algorithm is pseudo-polynomial, with a complexity of

O(n2B). (4.1)

• In practice the number of labels remains very small, i.e., B ≤ 10.
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Large Neighborhoods: Team-orienteering Problem

• Using a particular hierarchical cost function which considers in
priority the Team-Orienteering cost (with only selected
customers), and then the VRP cost with all customers.

Z ′ = max
∑

σ∈R
Z Select(σ)− ω

∑

σ∈R

∑

i∈{1,...,|σ|−1}
dσ(i)σ(i+1)

• As a consequence, when the method is unable to improve the
primary objective, moves may still be performed to improve the
second objective = the positions of unserviced customers.

• This may lead in turn to a new repartition of customers and new
opportunities of improvement of the main objective.
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Large Neighborhoods: Team-orienteering Problem

• Speed-ups for move evaluations – 1. Graph Sparsification
I For a given sparsification parameter H ∈ {1, . . . ,n}, only the arcs

(i , j ), with (i < j ) satisfying Equation (4.2) are kept.

j < i + H or i = 0 or j = |σ| (4.2)

I H is a sparsification parameter, usually small, e.g. H = 3.
I Thus there are only O(Hn) arcs

 

… 

From the depot 

To the depot 
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Large Neighborhoods: Team-orienteering Problem

• Speed-ups for move evaluations – 1. Graph Sparsification

Proposition

After sparsification, the number of arcs |A′| in the new graph becomes
O(nH ), and the complexity of Select, in terms of number of
elementary operations, is

O(nHB). (4.3) 

… 

From the depot 

To the depot 
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Large Neighborhoods: Team-orienteering Problem

• Speed-ups for move evaluations – 2. Evaluation by Concatenation

• For any sequence σ of successive nodes from the incumbent
solution, we propose to pre-process the following information :

Auxiliary data structures in use:

I Set of labels Sij (σ) associated to each resource-constrained path (i , j )
between any node among the H first of σ, and any node among the H
last of σ.

I Set of labels S end
i (σ) associated to each resource-constrained path

between any node among the H first nodes of σ and the ending depot.

I Set of labels Sbeg
j (σ) associated to each resource-constrained path

between the beginning depot and any node among the H last of σ.

I Best profit Z (σ) of a inside resource-feasible path in σ, starting from the
depot, visiting a subset of customers in σ, and coming back to the depot.
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Large Neighborhoods: Team-orienteering Problem

Initialization and Pre-processing:

Preprocessing these values for a sequence σ requires O(n2HB)
elementary operations

 

σ1 σ2 σ3 

… … 

σ1 σ2 σ3 

 n 
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Large Neighborhoods: Team-orienteering Problem

Initialization and Pre-processing:

Preprocessing these values for a sequence σ requires O(n2HB)
elementary operations

 

σ1 σ2 σ3 

… … 

σ1 σ2 σ3 

 n 

 

σ4 

σ4 

i 

i j 

j 

Sij SBEG
j 

SEND
i 

• The resulting reduced multi-graph G′′ = (V ′′,A′′) is such that
|A′′| = O(MH 2) arcs and |V ′′| = O(MH ) nodes. M is the number
of subsequences.
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Large Neighborhoods: Team-orienteering Problem

Proposition (Concatenation – general)

The optimal profit Z (σ1 ⊕ · · · ⊕ σM ) of Select, for a combination of
M sequences is the maximum between the profit Z̄ (σ1 ⊕ · · · ⊕ σM ) of
the resource-constrained shortest path in G′′, and the maximum profit
Z (σi) of an inside resource-feasible path in σi for i ∈ {1, . . . ,M }.
Furthermore, Z̄ (σ1 ⊕ · · · ⊕ σM ) can be evaluated in

ΦC-M = O(MH 2B2). (4.4)
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Large Neighborhoods: Team-orienteering Problem

Proposition (Concatenation – 2 or 3 subsequences)

The optimal cost Z (σ1 ⊕ σ0 ⊕ σ2) of Select, for a route assimilated to
a recombination of three subsequences σ1, σ0 and σ2 such that σ0

contains a bounded number of customers can be evaluated using
bi-directional dynamic programming for a complexity of

ΦC-3 = O(H 2B). (4.5)

 

σ1 σ2 σ0 

j 

Bounded Size 

i j 

• The same complexity is achieved for a concatenation of two
sequences σ1 and σ2.

> Problem Metaheuristics UHGS Decompositions Conclusions References 121/168



Computational Experiments

• Experimental analysis of three heuristics and metaheuristics based
on our large-neighborhood concepts
I A simple local search (LS), restarted 100 times.
I An Iterated Local Search (ILS), based on Prins (2009)
I Unified Hybrid Genetic Search (UHGS) of Vidal et al. (2014)

• Benchmark instances:
I Chao et al. (1996) for the TOP : 7 groups of instances. Groups 4-7

are the largest with 64 to 102 customers.
I Bolduc et al. (2008) for a variant called VRP with private fleet and

common carrier. These instances are derived from the CVRP
instances of Christofides et al. (1979) and Golden et al. (1998).

• Tests conducted on a single Xeon 3.0GHz processor.

• Method performance evaluated relatively to Gap to Best Known
Solutions BKS and CPU time.
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Computational Experiments

Table: Summary of results on TOP benchmark instances

CGW TMH GTF SVF ASe SVNS SPR MSA UHGS ILS LI

Best Gap 4 4.36% 1.99% 0.48% 0.06% 0.30% 1.46% 0.11% 0.06% 0.01% 0.05% 0.09%
Best Gap 5 1.36% 1.38% 0.01% 0.03% 0.04% 0.61% 0.05% 0.01% 0.00% 0.01% 0.01%
Best Gap 6 0.37% 0.79% 0.04% 0.00% 0.00% 0.52% 0.00% 0.00% 0.00% 0.00% 0.00%
Best Gap 7 2.68% 1.15% 0.29% 0.06% 0.00% 1.31% 0.04% 0.03% 0.00% 0.00% 0.07%

Avg Time 4 796.70 105.30 22.50 11.40 32.00 36.70 367.40 81.00 298.57 301.54 76.72
Avg Time 5 71.30 69.50 34.20 3.50 15.10 11.20 119.90 6.60 222.92 193.97 11.31
Avg Time 6 45.70 66.30 8.70 4.30 14.10 9.00 89.60 1.40 184.60 138.25 6.86
Avg Time 7 432.60 160.00 10.30 12.10 24.60 27.30 272.80 32.20 306.35 309.62 50.22

• Equaled or improved 380 of the 387 best known solutions.

• 4 new BKS, quite surprising since the problems have been studied
by dozens of previous papers
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Computational Experiments

Table: Highlight of the results on some of the most difficult problems

Inst CGW TMH GTF SVF ASe SVNS SPR MSA UHGS ILS LI BKS

p4.2.o 1147 1175 1192 1218 1215 1195 1218 1217 1218 1218 1218 1218
p4.2.p 1199 1208 1239 1241 1242 1237 1242 1241 1241 1241 1241 1242
p4.2.q 1242 1255 1255 1263 1263 1239 1263 1259 1267 1265 1265 1265
p4.2.r 1199 1277 1283 1285 1288 1279 1286 1290 1286 1281 1285 1290
p4.2.s 1286 1294 1299 1301 1304 1295 1296 1300 1302 1297 1301 1304
p4.2.t 1299 1306 1306 1306 1306 1305 1306 1306 1306 1306 1306 1306
p4.3.o 1078 1151 1157 1172 1170 1136 1170 1170 1172 1172 1170 1172
p4.3.p 1115 1218 1221 1222 1221 1200 1220 1222 1222 1222 1222 1222
p4.3.q 1222 1249 1241 1245 1252 1236 1253 1251 1253 1253 1251 1253
p4.3.r 1225 1265 1269 1273 1267 1250 1272 1265 1273 1272 1269 1272
p4.3.s 1239 1282 1294 1295 1293 1280 1287 1293 1295 1295 1295 1295
p4.3.t 1285 1288 1304 1304 1305 1299 1299 1299 1305 1305 1299 1305
p4.4.o 995 1014 1057 1061 1036 1030 1057 1061 1061 1061 1061 1061
p4.4.p 996 1056 1120 1120 1111 1120 1122 1124 1124 1124 1124 1124
p4.4.q 1084 1124 1157 1161 1145 1149 1160 1161 1161 1161 1157 1161
p4.4.r 1155 1165 1211 1207 1200 1193 1213 1216 1216 1216 1211 1216
p4.4.s 1230 1243 1256 1260 1249 1213 1250 1256 1260 1260 1260 1259
p4.4.t 1253 1255 1285 1285 1281 1281 1280 1285 1285 1285 1285 1285

Best Gap 4.36% 1.99% 0.48% 0.06% 0.30% 1.46% 0.11% 0.06% 0.01% 0.05% 0.09%
Avg Time 796.70 105.30 22.50 457.90 32.00 36.70 367.40 81.00 298.57 301.54 76.72
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CVRP = Assignment + Sequencing

• Most state-of-the-art CVRP metaheuristics built on a
combination of inter- and intra-route neighborhoods, usually
simple variations of Swap, Relocate, Cross-Echanges,
2-opt and 2-opt*

• These neighborhoods alone are generally sufficient to obtain
TSP-optimal routes for classical benchmark instances (rarely

contain over 20 customers per route)
⇒ Larger intra-route neighborhoods are not commonly used

• Does this mean that we should consider Sequencing
optimization a “solved case” and focus on Assignment
optimization in majority ?
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CVRP = Assignment + Sequencing

• Does this mean that we should consider Sequencing
optimization a “solved case” and focus on Assignment
optimization in majority ?

• Inter-route moves often lead to TSP-suboptimal tours which are
rejected due to their higher cost, but could be accepted if the
tours were simultaneously optimized
⇒ (see, e.g., GENI – Gendreau et al. 1994).
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CVRP = Assignment + Sequencing

• The two decision sets – Assignments and Sequencing – can
be used to decompose the problem and define search space SA
• Assignments decisions are decoded into complete solutions by

a TSP solver:
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Our quest...

• Question 1: Is it practical and worthwhile to search in
SA rather than S?

• Question 2: If searching in SA requires too much effort,
can we define an intermediate search space with some
properties of SA but easier to explore?
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Small example with 3 customers

• From S to SA: a much smaller search space

solution quality

[1][2][3]

[1][2,3] [1][3,2]

[2][1,3] [2][3,1]

[3][2,1] [3][1,2]

[1,3,2]

[2,1,3]
[2,3,1]

[3,2,1]

[1,2,3]

[3,1,2]
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Using Concorde to search in SA

• The Concorde solver was used for TSP optimizations (Applegate
et al., 2006)

• Experiments consider a single local search execution. Results
consider 100 executions for each instance.

• The initial solution was produced by the savings algorithm of
Clarke and Wright (1964).
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Computational experiments

• Idea seems promising!

• Local search on the space of
assignments (SA) resulted in
improved solutions

• However... runtime was prohibitive
(even with efficient exploration
strategies)

• We went from less than a second to
over an hour
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An intermediate approach?

• In a recent conference presentation, Irnich (2013) proposed
using the B&S neighborhood in combination with some classical
CVRP moves.

• B&S Neighborhood (Balas and Simonetti, 2001)
I Given a range parameter k and an initial tour, the B&S

algorithm finds, in O(k22k−2n) operations, the vertex sequence
with minimum cost such that no vertex is displaced by more than
k positions.

• ⇒ Bk–optimal tour
I A tour σ is Bk–optimal if there exists no other permutation of its

visits π ◦ σ with a shorter total distance such that π(1) = 1 and
π(i) ≤ π(j ) for all i , j ∈ {1, . . . ,n} with i + k ≤ j .
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An alternative search space

• We decided to investigate a systematic use of B&S in
combination with every move of a LS.

• Search Space SB
k :

I Set of primitive solutions Y is a subset of the complete solutions,
those containing only Bk–optimal tours;

I A nontrivial decoder f is used, consisting of applying B&S
multiple times to each route with a fixed k -range until tours are
Bk–optimal;

Properties:
I From an initial solution containing Bk–optimal tours, a local

search in the space SBk explores only Bk–optimal tours.
I For a fixed range k , each move evaluation and subsequent

solution decoding is done in polynomial time as a function of n
and the number of applications of B&S.

I The search space SBk is such that SB0 = S and SBn−1 = SA.
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Small example with 3 customers

• Beginning from S = SB
0 , then SB

1 , and finally SA = SB
2 :

solution quality

[1][2][3]

[1][2,3] [1][3,2]

[2][1,3] [2][3,1]

[3][2,1] [3][1,2]

[1,3,2]

[2,1,3]
[2,3,1]

[3,2,1]

[1,2,3]

[3,1,2]
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Efficient Local Search

• LS based on classical Relocate and Swap, for single
vertices or generalized to consecutive vertex pairs, along
with 2-opt and 2-opt* moves.

• Speedup techniques to reduce the search effort: static
neighborhood restrictions, dynamic move filters,
concatenation techniques and memory structures.
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Static Neighborhood Restrictions

• As detailed in Vidal et al. (2013a), and in a similar way as
Johnson and McGeoch (1997) and Toth and Vigo (2003):
we restrict the search to the subset of moves that reconnect
at least one vertex i with a vertex j belonging to the Γ
closest vertices of i .

⇒ Number of moves is O(Γn)
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Dynamic move filters

• Decoding solutions (by applying B&S multiple times) is time
consuming.

• It is thus important to reduce the number of decoded solutions,
filtering infeasible and non-promising moves.

• Dynamic move filters:
I Only solutions resulting from moves that increased the distance by

a factor 1 + φ or less are decoded:

z (φ(x t)) ≤ (1 + ψ)× z (x t)

I Parameter φ plays an important role defining the percentage of
evaluated moves.
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Dynamic move filters

• Parameter φ is dynamically adjusted given a target range [ξ−, ξ+]
for the fraction of filtered moves.

• After each 1,000 move evaluations, the fraction ξ of filtered moves
is collected and φ is updated.

ψ =





ψ × α if ξ ≤ ξ−,
ψ / α if ξ ≥ ξ+,

ψ otherwise.
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Constant-time Evaluations

• Constant-time feasibility checks and computations of hash
functions play an important role in the algorithm, exploiting the
same concepts as Vidal et al. (2014):

Q(σ1 ⊕ σ2) = Q(σ1) + Q(σ2)

C (σ1 ⊕ σ2) = C (σ1) + dσ1(|σ1|),σ2(1) + C (σ2)

H p(σ1 ⊕ σ2) = H p(σ1) + ρ|σ1| ×H p(σ2)

H s(σ1 ⊕ σ2) = H s(σ1) + H s(σ2).
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Reshaping the neighborhood

• Moreover, can we transform the search space S or SB
k so that it

converges towards SA as the optimization is run?
I Definitely, using long-term memories to implement a tunneling

strategy!
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Tunneling strategy

 Input route σ 

Has σ already been 
decoded in the past 

search 

Apply B&S iteratively 
on σ to generate a  
Bk-optimal route π’ 

If π’ is better than the 
best known route for 

this visit set, update π 

Return the best known 
route π for this visit set 

“Decoded” route π 

NO 

YES 
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Small example with 3 customers

• Tunneling effect on search space SB
1 : in this example, search

space converges to SA when solution [3,1,2] is discovered

solution quality

[1][2][3]

[1][2,3] [1][3,2]

[2][1,3] [2][3,1]

[3][2,1] [3][1,2]

[1,3,2]

[2,1,3]
[2,3,1]

[3,2,1]

[1,2,3]

[3,1,2]
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Small example with 3 customers

• Tunneling effect on search space SB
1 : in this example, search

space converges to SA when solution [3,1,2] is discovered

solution quality

[1,2,3]

[1][2][3]

[1][2,3] [1][3,2]

[2][1,3] [2][3,1]

[3][2,1] [3][1,2]

[1,3,2]

[2,1,3]
[2,3,1]

[3,2,1]

[3,1,2]
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Algorithm 1: Efficient local search in the space SB
k

Input: An initial complete solution x0, an evaluation threshold ψ and a granularity threshold Γ
1 t← 0
2 repeat

// Enumerating O(Γn) moves - candidate lists based on vertex proximity

3 for each move φ(xt) ∈ N (xt) involving a vertex pair (i, j), j ∈ Γ(i)

4 The move φ modifies up to two routes of xt. Let zbefore be the sum of the costs of these
two routes, and let (σ1

1 , . . . , σ
1
b1

) and (σ2
1 , . . . , σ

2
b2

) be the new routes in φ(xt).

// First, filter infeasible moves with respect to capacity constraints in O(1):

5 if Q(σ1
1 ⊕ · · · ⊕ σ1

b1
) > Q or Q(σ2

1 ⊕ · · · ⊕ σ2
b2

) > Q then

6 continue.

// Second, consider the cost of the classical CVRP move to filter non-promising solutions in O(1):

7 if z(xt) + C(σ1
1 ⊕ · · · ⊕ σ1

b1
) + C(σ2

1 ⊕ · · · ⊕ σ2
b2

)− zbefore > (1 + ψ)× z(xt) then

8 continue.

// Third, decode the routes σ1 and σ2 to evaluate the move φ in SBk :

9 zmove ← 0
10 for each route σi with i ∈ {1, 2}

// Compute hash key in O(1) and check memory in O(1):

11 (σ̄i, z̄i)← Lookup(H(σi
1 ⊕ · · · ⊕ σi

bi
))

12 if (σ̄i, z̄i) = Not Found then
13 (σ̄i, z̄i)← Balas-Simonetti(σi

1 ⊕ · · · ⊕ σi
bi

)

14 Store((σ̄i, z̄i), H(σi
1 ⊕ · · · ⊕ σi

bi
))

15 zmove ← zmove + z̄i

// Filter non-improving moves:

16 if zmove ≥ zbefore then

17 continue.

// At this stage, apply φ since it is an improving move in SBk :

18 Set xt+1 = φ(x) ; t = t+ 1
19 Replace the routes (σ1,σ2) by (σ̄1,σ̄2) in xt+1

20 until xt is a local minimum
21 return xt

12
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Computational experiments

• Experiments with simple local search – on all instances
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Computational experiments

• Experiments with simple local search – instances with route
cardinality in range [3.0, 4.55]:
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Computational experiments

• Experiments with simple local search – instances with route
cardinality in range [16.47, 24.43]:
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Computational experiments

• Results with different target target intervals [ξ−, ξ+]
(desired quantity of filtered moves):
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Computational experiments

• Experiments with UHGS-BS and different values for parameter k :
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• Wilcoxon tests show that statistically significant differences exist
between the results of S, SB

1 and SB
2 (p-values < 0.05)
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• Wilcoxon tests show that statistically significant differences exist
between the results of S, SB

1 and SB
2 (p-values < 0.05)
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Final results (small instances)
Table 2: Results for the instances with up to 331 customers from Uchoa et al. (2017)

# Instance
ILS UHGS UHGS-BS

Time Average Best Time Average Best Time Average Best

1 X-n101-k25 0.1 27591.0 27591 1.4 27591.0 27591 2.4 27591.0 27591
2 X-n106-k14 2.0 26375.9 26362 4.0 26381.8 26378 17.6 26374.3 26362
3 X-n110-k13 0.2 14971.0 14971 1.6 14971.0 14971 3.9 14971.0 14971
4 X-n115-k10 0.2 12747.0 12747 1.8 12747.0 12747 6.4 12747.0 12747
5 X-n120-k6 1.7 13337.6 13332 2.3 13332.0 13332 38.3 13332.0 13332
6 X-n125-k30 1.4 55673.8 55539 2.7 55542.1 55539 6.1 55540.0 55539
7 X-n129-k18 1.9 28998.0 28948 2.7 28948.5 28940 8.4 28940.0 28940
8 X-n134-k13 2.1 10947.4 10916 3.3 10934.9 10916 20.2 10916.0 10916
9 X-n139-k10 1.6 13603.1 13590 2.3 13590.0 13590 8.9 13590.0 13590

10 X-n143-k7 1.6 15745.2 15726 3.1 15700.2 15700 33.1 15700.0 15700
11 X-n148-k46 0.8 43452.1 43448 3.2 43448.0 43448 5.1 43448.0 43448
12 X-n153-k22 0.5 21400.0 21340 5.5 21226.3 21220 15.2 21225.6 21225
13 X-n157-k13 0.8 16876.0 16876 3.2 16876.0 16876 28.4 16876.0 16876
14 X-n162-k11 0.5 14160.1 14138 3.3 14141.3 14138 12.2 14138.0 14138
15 X-n167-k10 0.9 20608.7 20562 3.7 20563.2 20557 36.1 20557.0 20557
16 X-n172-k51 0.6 45616.1 45607 3.8 45607.0 45607 5.7 45607.0 45607
17 X-n176-k26 1.1 48249.8 48140 7.6 47957.2 47812 16.2 47830.7 47812
18 X-n181-k23 1.6 25571.5 25569 6.3 25591.1 25569 13.9 25569.4 25569
19 X-n186-k15 1.7 24186.0 24145 5.9 24147.2 24145 20.2 24145.0 24145

20 X-n190-k8 2.1 17143.1 17085 12.1 16987.9 16980 161.9 16985.3 16980
21 X-n195-k51 0.9 44234.3 44225 6.1 44244.1 44225 9.3 44283.8 44225
22 X-n200-k36 7.5 58697.2 58626 8.0 58626.4 58578 12.0 58615.1 58578
23 X-n204-k19 1.1 19625.2 19570 5.4 19571.5 19565 15.7 19567.0 19565
24 X-n209-k16 3.8 30765.4 30667 8.6 30680.4 30656 35.7 30671.3 30656
25 X-n214-k11 2.3 11126.9 10985 10.2 10877.4 10856 52.3 10872.1 10856
26 X-n219-k73 0.9 117595.0 117595 7.7 117604.9 117595 18.2 117600.5 117595
27 X-n223-k34 8.5 40533.5 40471 8.3 40499.0 40437 18.6 40478.4 40437
28 X-n228-k23 2.4 25795.8 25743 9.8 25779.3 25742 29.0 25768.0 25743
29 X-n233-k16 3.0 19336.7 19266 6.8 19288.4 19230 34.0 19276.5 19230

30 X-n237-k14 3.5 27078.8 27042 8.9 27067.3 27042 32.2 27048.8 27042
31 X-n242-k48 17.8 82874.2 82774 12.4 82948.7 82804 18.1 82920.9 82751
32 X-n247-k47 2.1 37507.2 37289 20.4 37284.4 37274 27.7 37388.9 37274
33 X-n251-k28 10.8 38840.0 38727 11.7 38796.4 38699 20.2 38778.7 38684
34 X-n256-k16 2.0 18883.9 18880 6.5 18880.0 18880 23.0 18867.7 18839 ~
35 X-n261-k13 6.7 26869.0 26706 12.7 26629.6 26558 48.6 26618.1 26558
36 X-n266-k58 10.0 75563.3 75478 21.4 75759.3 75517 29.9 75710.7 75478
37 X-n270-k35 9.1 35363.4 35324 11.3 35367.2 35303 18.9 35314.6 35303
38 X-n275-k28 3.6 21256.0 21245 12.0 21280.6 21245 22.7 21255.0 21245
39 X-n280-k17 9.6 33769.4 33624 19.1 33605.8 33505 136.2 33587.9 33503

40 X-n284-k15 8.6 20448.5 20295 19.9 20286.4 20227 97.7 20282.1 20228
41 X-n289-k60 16.1 95450.6 95315 21.3 95469.5 95244 41.7 95447.2 95211
42 X-n294-k50 12.4 47254.7 47190 14.7 47259.0 47171 27.0 47272.7 47161 ~
43 X-n298-k31 6.9 34356.0 34239 10.9 34292.1 34231 20.7 34276.3 34231
44 X-n303-k21 14.2 21895.8 21812 17.3 21850.9 21748 48.4 21811.2 21744
45 X-n308-k13 9.5 26101.1 25901 15.3 25895.4 25859 112.8 25897.3 25861
46 X-n313-k71 17.5 94297.3 94192 22.4 94265.2 94093 30.6 94280.4 94045
47 X-n317-k53 8.6 78356.0 78355 22.4 78387.8 78355 50.3 78385.3 78355
48 X-n322-k28 14.7 29991.3 29877 15.2 29956.1 29870 27.7 29892.5 29834 ~
49 X-n327-k20 19.1 27812.4 27599 18.2 27628.2 27564 68.7 27590.8 27532 ~
50 X-n331-k15 15.7 31235.5 31105 24.4 31159.6 31103 102.1 31126.7 31103

Average gap: 0.37% 0.13% 0.14% 0.02% 0.10% 0.00%
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1 X-n101-k25 0.1 27591.0 27591 1.4 27591.0 27591 2.4 27591.0 27591
2 X-n106-k14 2.0 26375.9 26362 4.0 26381.8 26378 17.6 26374.3 26362
3 X-n110-k13 0.2 14971.0 14971 1.6 14971.0 14971 3.9 14971.0 14971
4 X-n115-k10 0.2 12747.0 12747 1.8 12747.0 12747 6.4 12747.0 12747
5 X-n120-k6 1.7 13337.6 13332 2.3 13332.0 13332 38.3 13332.0 13332
6 X-n125-k30 1.4 55673.8 55539 2.7 55542.1 55539 6.1 55540.0 55539
7 X-n129-k18 1.9 28998.0 28948 2.7 28948.5 28940 8.4 28940.0 28940
8 X-n134-k13 2.1 10947.4 10916 3.3 10934.9 10916 20.2 10916.0 10916
9 X-n139-k10 1.6 13603.1 13590 2.3 13590.0 13590 8.9 13590.0 13590

10 X-n143-k7 1.6 15745.2 15726 3.1 15700.2 15700 33.1 15700.0 15700
11 X-n148-k46 0.8 43452.1 43448 3.2 43448.0 43448 5.1 43448.0 43448
12 X-n153-k22 0.5 21400.0 21340 5.5 21226.3 21220 15.2 21225.6 21225
13 X-n157-k13 0.8 16876.0 16876 3.2 16876.0 16876 28.4 16876.0 16876
14 X-n162-k11 0.5 14160.1 14138 3.3 14141.3 14138 12.2 14138.0 14138
15 X-n167-k10 0.9 20608.7 20562 3.7 20563.2 20557 36.1 20557.0 20557
16 X-n172-k51 0.6 45616.1 45607 3.8 45607.0 45607 5.7 45607.0 45607
17 X-n176-k26 1.1 48249.8 48140 7.6 47957.2 47812 16.2 47830.7 47812
18 X-n181-k23 1.6 25571.5 25569 6.3 25591.1 25569 13.9 25569.4 25569
19 X-n186-k15 1.7 24186.0 24145 5.9 24147.2 24145 20.2 24145.0 24145

20 X-n190-k8 2.1 17143.1 17085 12.1 16987.9 16980 161.9 16985.3 16980
21 X-n195-k51 0.9 44234.3 44225 6.1 44244.1 44225 9.3 44283.8 44225
22 X-n200-k36 7.5 58697.2 58626 8.0 58626.4 58578 12.0 58615.1 58578
23 X-n204-k19 1.1 19625.2 19570 5.4 19571.5 19565 15.7 19567.0 19565
24 X-n209-k16 3.8 30765.4 30667 8.6 30680.4 30656 35.7 30671.3 30656
25 X-n214-k11 2.3 11126.9 10985 10.2 10877.4 10856 52.3 10872.1 10856
26 X-n219-k73 0.9 117595.0 117595 7.7 117604.9 117595 18.2 117600.5 117595
27 X-n223-k34 8.5 40533.5 40471 8.3 40499.0 40437 18.6 40478.4 40437
28 X-n228-k23 2.4 25795.8 25743 9.8 25779.3 25742 29.0 25768.0 25743
29 X-n233-k16 3.0 19336.7 19266 6.8 19288.4 19230 34.0 19276.5 19230

30 X-n237-k14 3.5 27078.8 27042 8.9 27067.3 27042 32.2 27048.8 27042
31 X-n242-k48 17.8 82874.2 82774 12.4 82948.7 82804 18.1 82920.9 82751
32 X-n247-k47 2.1 37507.2 37289 20.4 37284.4 37274 27.7 37388.9 37274
33 X-n251-k28 10.8 38840.0 38727 11.7 38796.4 38699 20.2 38778.7 38684
34 X-n256-k16 2.0 18883.9 18880 6.5 18880.0 18880 23.0 18867.7 18839 ~
35 X-n261-k13 6.7 26869.0 26706 12.7 26629.6 26558 48.6 26618.1 26558
36 X-n266-k58 10.0 75563.3 75478 21.4 75759.3 75517 29.9 75710.7 75478
37 X-n270-k35 9.1 35363.4 35324 11.3 35367.2 35303 18.9 35314.6 35303
38 X-n275-k28 3.6 21256.0 21245 12.0 21280.6 21245 22.7 21255.0 21245
39 X-n280-k17 9.6 33769.4 33624 19.1 33605.8 33505 136.2 33587.9 33503

40 X-n284-k15 8.6 20448.5 20295 19.9 20286.4 20227 97.7 20282.1 20228
41 X-n289-k60 16.1 95450.6 95315 21.3 95469.5 95244 41.7 95447.2 95211
42 X-n294-k50 12.4 47254.7 47190 14.7 47259.0 47171 27.0 47272.7 47161 ~
43 X-n298-k31 6.9 34356.0 34239 10.9 34292.1 34231 20.7 34276.3 34231
44 X-n303-k21 14.2 21895.8 21812 17.3 21850.9 21748 48.4 21811.2 21744
45 X-n308-k13 9.5 26101.1 25901 15.3 25895.4 25859 112.8 25897.3 25861
46 X-n313-k71 17.5 94297.3 94192 22.4 94265.2 94093 30.6 94280.4 94045
47 X-n317-k53 8.6 78356.0 78355 22.4 78387.8 78355 50.3 78385.3 78355
48 X-n322-k28 14.7 29991.3 29877 15.2 29956.1 29870 27.7 29892.5 29834 ~
49 X-n327-k20 19.1 27812.4 27599 18.2 27628.2 27564 68.7 27590.8 27532 ~
50 X-n331-k15 15.7 31235.5 31105 24.4 31159.6 31103 102.1 31126.7 31103

Average gap: 0.37% 0.13% 0.14% 0.02% 0.10% 0.00%

27
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Final results (small instances)

Table 2: Results for the instances with up to 331 customers from Uchoa et al. (2017)

# Instance
ILS UHGS UHGS-BS

Time Average Best Time Average Best Time Average Best

1 X-n101-k25 0.1 27591.0 27591 1.4 27591.0 27591 2.4 27591.0 27591
2 X-n106-k14 2.0 26375.9 26362 4.0 26381.8 26378 17.6 26374.3 26362
3 X-n110-k13 0.2 14971.0 14971 1.6 14971.0 14971 3.9 14971.0 14971
4 X-n115-k10 0.2 12747.0 12747 1.8 12747.0 12747 6.4 12747.0 12747
5 X-n120-k6 1.7 13337.6 13332 2.3 13332.0 13332 38.3 13332.0 13332
6 X-n125-k30 1.4 55673.8 55539 2.7 55542.1 55539 6.1 55540.0 55539
7 X-n129-k18 1.9 28998.0 28948 2.7 28948.5 28940 8.4 28940.0 28940
8 X-n134-k13 2.1 10947.4 10916 3.3 10934.9 10916 20.2 10916.0 10916
9 X-n139-k10 1.6 13603.1 13590 2.3 13590.0 13590 8.9 13590.0 13590

10 X-n143-k7 1.6 15745.2 15726 3.1 15700.2 15700 33.1 15700.0 15700
11 X-n148-k46 0.8 43452.1 43448 3.2 43448.0 43448 5.1 43448.0 43448
12 X-n153-k22 0.5 21400.0 21340 5.5 21226.3 21220 15.2 21225.6 21225
13 X-n157-k13 0.8 16876.0 16876 3.2 16876.0 16876 28.4 16876.0 16876
14 X-n162-k11 0.5 14160.1 14138 3.3 14141.3 14138 12.2 14138.0 14138
15 X-n167-k10 0.9 20608.7 20562 3.7 20563.2 20557 36.1 20557.0 20557
16 X-n172-k51 0.6 45616.1 45607 3.8 45607.0 45607 5.7 45607.0 45607
17 X-n176-k26 1.1 48249.8 48140 7.6 47957.2 47812 16.2 47830.7 47812
18 X-n181-k23 1.6 25571.5 25569 6.3 25591.1 25569 13.9 25569.4 25569
19 X-n186-k15 1.7 24186.0 24145 5.9 24147.2 24145 20.2 24145.0 24145

20 X-n190-k8 2.1 17143.1 17085 12.1 16987.9 16980 161.9 16985.3 16980
21 X-n195-k51 0.9 44234.3 44225 6.1 44244.1 44225 9.3 44283.8 44225
22 X-n200-k36 7.5 58697.2 58626 8.0 58626.4 58578 12.0 58615.1 58578
23 X-n204-k19 1.1 19625.2 19570 5.4 19571.5 19565 15.7 19567.0 19565
24 X-n209-k16 3.8 30765.4 30667 8.6 30680.4 30656 35.7 30671.3 30656
25 X-n214-k11 2.3 11126.9 10985 10.2 10877.4 10856 52.3 10872.1 10856
26 X-n219-k73 0.9 117595.0 117595 7.7 117604.9 117595 18.2 117600.5 117595
27 X-n223-k34 8.5 40533.5 40471 8.3 40499.0 40437 18.6 40478.4 40437
28 X-n228-k23 2.4 25795.8 25743 9.8 25779.3 25742 29.0 25768.0 25743
29 X-n233-k16 3.0 19336.7 19266 6.8 19288.4 19230 34.0 19276.5 19230

30 X-n237-k14 3.5 27078.8 27042 8.9 27067.3 27042 32.2 27048.8 27042
31 X-n242-k48 17.8 82874.2 82774 12.4 82948.7 82804 18.1 82920.9 82751
32 X-n247-k47 2.1 37507.2 37289 20.4 37284.4 37274 27.7 37388.9 37274
33 X-n251-k28 10.8 38840.0 38727 11.7 38796.4 38699 20.2 38778.7 38684
34 X-n256-k16 2.0 18883.9 18880 6.5 18880.0 18880 23.0 18867.7 18839 ~
35 X-n261-k13 6.7 26869.0 26706 12.7 26629.6 26558 48.6 26618.1 26558
36 X-n266-k58 10.0 75563.3 75478 21.4 75759.3 75517 29.9 75710.7 75478
37 X-n270-k35 9.1 35363.4 35324 11.3 35367.2 35303 18.9 35314.6 35303
38 X-n275-k28 3.6 21256.0 21245 12.0 21280.6 21245 22.7 21255.0 21245
39 X-n280-k17 9.6 33769.4 33624 19.1 33605.8 33505 136.2 33587.9 33503

40 X-n284-k15 8.6 20448.5 20295 19.9 20286.4 20227 97.7 20282.1 20228
41 X-n289-k60 16.1 95450.6 95315 21.3 95469.5 95244 41.7 95447.2 95211
42 X-n294-k50 12.4 47254.7 47190 14.7 47259.0 47171 27.0 47272.7 47161 ~
43 X-n298-k31 6.9 34356.0 34239 10.9 34292.1 34231 20.7 34276.3 34231
44 X-n303-k21 14.2 21895.8 21812 17.3 21850.9 21748 48.4 21811.2 21744
45 X-n308-k13 9.5 26101.1 25901 15.3 25895.4 25859 112.8 25897.3 25861
46 X-n313-k71 17.5 94297.3 94192 22.4 94265.2 94093 30.6 94280.4 94045
47 X-n317-k53 8.6 78356.0 78355 22.4 78387.8 78355 50.3 78385.3 78355
48 X-n322-k28 14.7 29991.3 29877 15.2 29956.1 29870 27.7 29892.5 29834 ~
49 X-n327-k20 19.1 27812.4 27599 18.2 27628.2 27564 68.7 27590.8 27532 ~
50 X-n331-k15 15.7 31235.5 31105 24.4 31159.6 31103 102.1 31126.7 31103

Average gap: 0.37% 0.13% 0.14% 0.02% 0.10% 0.00%

27

Table 2: Results for the instances with up to 331 customers from Uchoa et al. (2017)

# Instance
ILS UHGS UHGS-BS

Time Average Best Time Average Best Time Average Best

1 X-n101-k25 0.1 27591.0 27591 1.4 27591.0 27591 2.4 27591.0 27591
2 X-n106-k14 2.0 26375.9 26362 4.0 26381.8 26378 17.6 26374.3 26362
3 X-n110-k13 0.2 14971.0 14971 1.6 14971.0 14971 3.9 14971.0 14971
4 X-n115-k10 0.2 12747.0 12747 1.8 12747.0 12747 6.4 12747.0 12747
5 X-n120-k6 1.7 13337.6 13332 2.3 13332.0 13332 38.3 13332.0 13332
6 X-n125-k30 1.4 55673.8 55539 2.7 55542.1 55539 6.1 55540.0 55539
7 X-n129-k18 1.9 28998.0 28948 2.7 28948.5 28940 8.4 28940.0 28940
8 X-n134-k13 2.1 10947.4 10916 3.3 10934.9 10916 20.2 10916.0 10916
9 X-n139-k10 1.6 13603.1 13590 2.3 13590.0 13590 8.9 13590.0 13590

10 X-n143-k7 1.6 15745.2 15726 3.1 15700.2 15700 33.1 15700.0 15700
11 X-n148-k46 0.8 43452.1 43448 3.2 43448.0 43448 5.1 43448.0 43448
12 X-n153-k22 0.5 21400.0 21340 5.5 21226.3 21220 15.2 21225.6 21225
13 X-n157-k13 0.8 16876.0 16876 3.2 16876.0 16876 28.4 16876.0 16876
14 X-n162-k11 0.5 14160.1 14138 3.3 14141.3 14138 12.2 14138.0 14138
15 X-n167-k10 0.9 20608.7 20562 3.7 20563.2 20557 36.1 20557.0 20557
16 X-n172-k51 0.6 45616.1 45607 3.8 45607.0 45607 5.7 45607.0 45607
17 X-n176-k26 1.1 48249.8 48140 7.6 47957.2 47812 16.2 47830.7 47812
18 X-n181-k23 1.6 25571.5 25569 6.3 25591.1 25569 13.9 25569.4 25569
19 X-n186-k15 1.7 24186.0 24145 5.9 24147.2 24145 20.2 24145.0 24145

20 X-n190-k8 2.1 17143.1 17085 12.1 16987.9 16980 161.9 16985.3 16980
21 X-n195-k51 0.9 44234.3 44225 6.1 44244.1 44225 9.3 44283.8 44225
22 X-n200-k36 7.5 58697.2 58626 8.0 58626.4 58578 12.0 58615.1 58578
23 X-n204-k19 1.1 19625.2 19570 5.4 19571.5 19565 15.7 19567.0 19565
24 X-n209-k16 3.8 30765.4 30667 8.6 30680.4 30656 35.7 30671.3 30656
25 X-n214-k11 2.3 11126.9 10985 10.2 10877.4 10856 52.3 10872.1 10856
26 X-n219-k73 0.9 117595.0 117595 7.7 117604.9 117595 18.2 117600.5 117595
27 X-n223-k34 8.5 40533.5 40471 8.3 40499.0 40437 18.6 40478.4 40437
28 X-n228-k23 2.4 25795.8 25743 9.8 25779.3 25742 29.0 25768.0 25743
29 X-n233-k16 3.0 19336.7 19266 6.8 19288.4 19230 34.0 19276.5 19230

30 X-n237-k14 3.5 27078.8 27042 8.9 27067.3 27042 32.2 27048.8 27042
31 X-n242-k48 17.8 82874.2 82774 12.4 82948.7 82804 18.1 82920.9 82751
32 X-n247-k47 2.1 37507.2 37289 20.4 37284.4 37274 27.7 37388.9 37274
33 X-n251-k28 10.8 38840.0 38727 11.7 38796.4 38699 20.2 38778.7 38684
34 X-n256-k16 2.0 18883.9 18880 6.5 18880.0 18880 23.0 18867.7 18839 ~
35 X-n261-k13 6.7 26869.0 26706 12.7 26629.6 26558 48.6 26618.1 26558
36 X-n266-k58 10.0 75563.3 75478 21.4 75759.3 75517 29.9 75710.7 75478
37 X-n270-k35 9.1 35363.4 35324 11.3 35367.2 35303 18.9 35314.6 35303
38 X-n275-k28 3.6 21256.0 21245 12.0 21280.6 21245 22.7 21255.0 21245
39 X-n280-k17 9.6 33769.4 33624 19.1 33605.8 33505 136.2 33587.9 33503

40 X-n284-k15 8.6 20448.5 20295 19.9 20286.4 20227 97.7 20282.1 20228
41 X-n289-k60 16.1 95450.6 95315 21.3 95469.5 95244 41.7 95447.2 95211
42 X-n294-k50 12.4 47254.7 47190 14.7 47259.0 47171 27.0 47272.7 47161 ~
43 X-n298-k31 6.9 34356.0 34239 10.9 34292.1 34231 20.7 34276.3 34231
44 X-n303-k21 14.2 21895.8 21812 17.3 21850.9 21748 48.4 21811.2 21744
45 X-n308-k13 9.5 26101.1 25901 15.3 25895.4 25859 112.8 25897.3 25861
46 X-n313-k71 17.5 94297.3 94192 22.4 94265.2 94093 30.6 94280.4 94045
47 X-n317-k53 8.6 78356.0 78355 22.4 78387.8 78355 50.3 78385.3 78355
48 X-n322-k28 14.7 29991.3 29877 15.2 29956.1 29870 27.7 29892.5 29834 ~
49 X-n327-k20 19.1 27812.4 27599 18.2 27628.2 27564 68.7 27590.8 27532 ~
50 X-n331-k15 15.7 31235.5 31105 24.4 31159.6 31103 102.1 31126.7 31103

Average gap: 0.37% 0.13% 0.14% 0.02% 0.10% 0.00%
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Final results (large instances)
Table 3: Results for the instances with more than 331 customers from Uchoa et al. (2017)

# Instance
ILS UHGS UHGS-BS

Time Average Best Time Average Best Time Average Best

51 X-n336-k84 21.4 139461.0 139197 38.0 139534.9 139210 66.0 139460.1 139303
52 X-n344-k43 22.6 42284.0 42146 21.7 42208.8 42099 39.7 42156.1 42056 ~
53 X-n351-k40 25.2 26150.3 26021 33.7 26014.0 25946 51.5 25981.8 25938
54 X-n359-k29 48.9 52076.5 51706 34.9 51721.7 51509 112.0 51640.7 51555
55 X-n367-k17 13.1 23003.2 22902 22.0 22838.4 22814 117.3 22876.2 22814
56 X-n376-k94 7.1 147713.0 147713 28.3 147750.2 147717 70.3 147740.5 147714
57 X-n384-k52 34.5 66372.5 66116 40.2 66270.2 66081 56.8 66170.3 65997
58 X-n393-k38 20.8 38457.4 38298 28.7 38374.9 38269 49.3 38309.3 38260 ~
59 X-n401-k29 60.4 66715.1 66453 49.5 66365.4 66243 110.2 66359.0 66212

60 X-n411-k19 23.8 19954.9 19792 34.7 19743.8 19718 126.0 19736.7 19721
61 X-n420-k130 22.2 107838.0 107798 53.2 107924.1 107798 87.7 107913.7 107798
62 X-n429-k61 38.2 65746.6 65563 41.5 65648.5 65501 65.6 65661.6 65470
63 X-n439-k37 39.6 36441.6 36395 34.6 36451.1 36395 57.1 36410.1 36395
64 X-n449-k29 59.9 56204.9 55761 64.9 55553.1 55378 132.6 55432.7 55330
65 X-n459-k26 60.6 24462.4 24209 42.8 24272.6 24181 92.9 24226.0 24145 ~
66 X-n469-k138 36.3 222182.0 221909 86.7 222617.1 222070 142.3 222427.5 222235
67 X-n480-k70 50.4 89871.2 89694 67.0 89760.1 89535 73.1 89744.7 89513
68 X-n491-k59 52.2 67226.7 66965 71.9 66898.0 66633 81.9 66794.1 66607
69 X-n502-k39 80.8 69346.8 69284 63.6 69328.8 69253 177.7 69277.1 69247

70 X-n513-k21 35.0 24434.0 24332 33.1 24296.6 24201 99.4 24256.2 24201
71 X-n524-k137 27.3 155005.0 154709 80.7 154979.5 154774 207.3 155038.1 154787
72 X-n536-k96 62.1 95700.7 95524 107.5 95330.6 95122 144.5 95335.4 95112
73 X-n548-k50 64.0 86874.1 86710 84.2 86998.5 86822 136.6 86881.0 86778
74 X-n561-k42 68.9 43131.3 42952 60.6 42866.4 42756 77.2 42860.0 42733
75 X-n573-k30 112.0 51173.0 51092 188.2 50915.1 50780 782.4 50876.9 50801
76 X-n586-k159 78.5 190919.0 190612 175.3 190838.0 190543 234.3 190752.4 190442
77 X-n599-k92 73.0 109384.0 109056 125.9 109064.2 108813 166.9 108993.3 108576
78 X-n613-k62 74.8 60444.2 60229 117.3 59960.0 59778 103.6 59859.7 59654
79 X-n627-k43 162.7 62905.6 62783 239.7 62524.1 62366 543.1 62442.9 62254

80 X-n641-k35 140.4 64606.1 64462 158.8 64192.0 63839 304.4 64105.6 63859
81 X-n655-k131 47.2 106782.0 106780 150.5 106899.1 106829 253.2 106855.6 106804
82 X-n670-k126 61.2 147676.0 147045 264.1 147222.7 146705 267.7 147663.9 147163
83 X-n685-k75 73.9 68988.2 68646 156.7 68654.1 68425 177.0 68596.0 68496
84 X-n701-k44 210.1 83042.2 82888 253.2 82487.4 82293 368.0 82409.2 82174
85 X-n716-k35 225.8 44171.6 44021 264.3 43641.4 43525 437.2 43599.9 43498
86 X-n733-k159 111.6 137045.0 136832 244.5 136587.6 136366 334.2 136607.4 136424
87 X-n749-k98 127.2 78275.9 77952 313.9 77864.9 77715 308.3 77862.8 77605
88 X-n766-k71 242.1 115738.0 115443 383.0 115147.9 114683 330.5 115115.9 114812
89 X-n783-k48 235.5 73722.9 73447 269.7 73009.6 72781 351.2 72892.4 72738

90 X-n801-k40 432.6 74005.7 73830 289.2 73731.0 73587 424.0 73651.6 73466
91 X-n819-k171 148.9 159425.0 159164 374.3 158899.3 158611 675.6 158849.0 158592
92 X-n837-k142 173.2 195027.0 194804 463.4 194476.5 194266 634.9 194504.0 194356
93 X-n856-k95 153.7 89277.6 89060 288.4 89238.7 89118 314.6 89220.0 89020
94 X-n876-k59 409.3 100417.0 100177 495.4 99884.1 99715 543.1 99780.3 99610
95 X-n895-k37 410.2 54958.5 54713 321.9 54439.8 54172 500.2 54407.4 54254
96 X-n916-k207 226.1 330948.0 330639 560.8 330198.3 329836 1082.5 330153.2 329866
97 X-n936-k151 202.5 134530.0 133592 531.5 133512.9 133140 1022.2 133729.3 133376
98 X-n957-k87 311.2 85936.6 85697 432.9 85822.6 85672 307.9 85681.5 85555
99 X-n979-k58 687.2 120253.0 119994 554.0 119502.1 119194 928.4 119527.7 119188

100 X-n1001-k43 792.8 73985.4 73776 549.0 72956.0 72742 952.8 72903.3 72629

Average gap: 0.74% 0.42% 0.30% 0.06% 0.24% 0.03%
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Table 3: Results for the instances with more than 331 customers from Uchoa et al. (2017)

# Instance
ILS UHGS UHGS-BS

Time Average Best Time Average Best Time Average Best

51 X-n336-k84 21.4 139461.0 139197 38.0 139534.9 139210 66.0 139460.1 139303
52 X-n344-k43 22.6 42284.0 42146 21.7 42208.8 42099 39.7 42156.1 42056 ~
53 X-n351-k40 25.2 26150.3 26021 33.7 26014.0 25946 51.5 25981.8 25938
54 X-n359-k29 48.9 52076.5 51706 34.9 51721.7 51509 112.0 51640.7 51555
55 X-n367-k17 13.1 23003.2 22902 22.0 22838.4 22814 117.3 22876.2 22814
56 X-n376-k94 7.1 147713.0 147713 28.3 147750.2 147717 70.3 147740.5 147714
57 X-n384-k52 34.5 66372.5 66116 40.2 66270.2 66081 56.8 66170.3 65997
58 X-n393-k38 20.8 38457.4 38298 28.7 38374.9 38269 49.3 38309.3 38260 ~
59 X-n401-k29 60.4 66715.1 66453 49.5 66365.4 66243 110.2 66359.0 66212

60 X-n411-k19 23.8 19954.9 19792 34.7 19743.8 19718 126.0 19736.7 19721
61 X-n420-k130 22.2 107838.0 107798 53.2 107924.1 107798 87.7 107913.7 107798
62 X-n429-k61 38.2 65746.6 65563 41.5 65648.5 65501 65.6 65661.6 65470
63 X-n439-k37 39.6 36441.6 36395 34.6 36451.1 36395 57.1 36410.1 36395
64 X-n449-k29 59.9 56204.9 55761 64.9 55553.1 55378 132.6 55432.7 55330
65 X-n459-k26 60.6 24462.4 24209 42.8 24272.6 24181 92.9 24226.0 24145 ~
66 X-n469-k138 36.3 222182.0 221909 86.7 222617.1 222070 142.3 222427.5 222235
67 X-n480-k70 50.4 89871.2 89694 67.0 89760.1 89535 73.1 89744.7 89513
68 X-n491-k59 52.2 67226.7 66965 71.9 66898.0 66633 81.9 66794.1 66607
69 X-n502-k39 80.8 69346.8 69284 63.6 69328.8 69253 177.7 69277.1 69247

70 X-n513-k21 35.0 24434.0 24332 33.1 24296.6 24201 99.4 24256.2 24201
71 X-n524-k137 27.3 155005.0 154709 80.7 154979.5 154774 207.3 155038.1 154787
72 X-n536-k96 62.1 95700.7 95524 107.5 95330.6 95122 144.5 95335.4 95112
73 X-n548-k50 64.0 86874.1 86710 84.2 86998.5 86822 136.6 86881.0 86778
74 X-n561-k42 68.9 43131.3 42952 60.6 42866.4 42756 77.2 42860.0 42733
75 X-n573-k30 112.0 51173.0 51092 188.2 50915.1 50780 782.4 50876.9 50801
76 X-n586-k159 78.5 190919.0 190612 175.3 190838.0 190543 234.3 190752.4 190442
77 X-n599-k92 73.0 109384.0 109056 125.9 109064.2 108813 166.9 108993.3 108576
78 X-n613-k62 74.8 60444.2 60229 117.3 59960.0 59778 103.6 59859.7 59654
79 X-n627-k43 162.7 62905.6 62783 239.7 62524.1 62366 543.1 62442.9 62254

80 X-n641-k35 140.4 64606.1 64462 158.8 64192.0 63839 304.4 64105.6 63859
81 X-n655-k131 47.2 106782.0 106780 150.5 106899.1 106829 253.2 106855.6 106804
82 X-n670-k126 61.2 147676.0 147045 264.1 147222.7 146705 267.7 147663.9 147163
83 X-n685-k75 73.9 68988.2 68646 156.7 68654.1 68425 177.0 68596.0 68496
84 X-n701-k44 210.1 83042.2 82888 253.2 82487.4 82293 368.0 82409.2 82174
85 X-n716-k35 225.8 44171.6 44021 264.3 43641.4 43525 437.2 43599.9 43498
86 X-n733-k159 111.6 137045.0 136832 244.5 136587.6 136366 334.2 136607.4 136424
87 X-n749-k98 127.2 78275.9 77952 313.9 77864.9 77715 308.3 77862.8 77605
88 X-n766-k71 242.1 115738.0 115443 383.0 115147.9 114683 330.5 115115.9 114812
89 X-n783-k48 235.5 73722.9 73447 269.7 73009.6 72781 351.2 72892.4 72738

90 X-n801-k40 432.6 74005.7 73830 289.2 73731.0 73587 424.0 73651.6 73466
91 X-n819-k171 148.9 159425.0 159164 374.3 158899.3 158611 675.6 158849.0 158592
92 X-n837-k142 173.2 195027.0 194804 463.4 194476.5 194266 634.9 194504.0 194356
93 X-n856-k95 153.7 89277.6 89060 288.4 89238.7 89118 314.6 89220.0 89020
94 X-n876-k59 409.3 100417.0 100177 495.4 99884.1 99715 543.1 99780.3 99610
95 X-n895-k37 410.2 54958.5 54713 321.9 54439.8 54172 500.2 54407.4 54254
96 X-n916-k207 226.1 330948.0 330639 560.8 330198.3 329836 1082.5 330153.2 329866
97 X-n936-k151 202.5 134530.0 133592 531.5 133512.9 133140 1022.2 133729.3 133376
98 X-n957-k87 311.2 85936.6 85697 432.9 85822.6 85672 307.9 85681.5 85555
99 X-n979-k58 687.2 120253.0 119994 554.0 119502.1 119194 928.4 119527.7 119188

100 X-n1001-k43 792.8 73985.4 73776 549.0 72956.0 72742 952.8 72903.3 72629

Average gap: 0.74% 0.42% 0.30% 0.06% 0.24% 0.03%
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Final results (large instances)

Table 3: Results for the instances with more than 331 customers from Uchoa et al. (2017)

# Instance
ILS UHGS UHGS-BS

Time Average Best Time Average Best Time Average Best

51 X-n336-k84 21.4 139461.0 139197 38.0 139534.9 139210 66.0 139460.1 139303
52 X-n344-k43 22.6 42284.0 42146 21.7 42208.8 42099 39.7 42156.1 42056 ~
53 X-n351-k40 25.2 26150.3 26021 33.7 26014.0 25946 51.5 25981.8 25938
54 X-n359-k29 48.9 52076.5 51706 34.9 51721.7 51509 112.0 51640.7 51555
55 X-n367-k17 13.1 23003.2 22902 22.0 22838.4 22814 117.3 22876.2 22814
56 X-n376-k94 7.1 147713.0 147713 28.3 147750.2 147717 70.3 147740.5 147714
57 X-n384-k52 34.5 66372.5 66116 40.2 66270.2 66081 56.8 66170.3 65997
58 X-n393-k38 20.8 38457.4 38298 28.7 38374.9 38269 49.3 38309.3 38260 ~
59 X-n401-k29 60.4 66715.1 66453 49.5 66365.4 66243 110.2 66359.0 66212

60 X-n411-k19 23.8 19954.9 19792 34.7 19743.8 19718 126.0 19736.7 19721
61 X-n420-k130 22.2 107838.0 107798 53.2 107924.1 107798 87.7 107913.7 107798
62 X-n429-k61 38.2 65746.6 65563 41.5 65648.5 65501 65.6 65661.6 65470
63 X-n439-k37 39.6 36441.6 36395 34.6 36451.1 36395 57.1 36410.1 36395
64 X-n449-k29 59.9 56204.9 55761 64.9 55553.1 55378 132.6 55432.7 55330
65 X-n459-k26 60.6 24462.4 24209 42.8 24272.6 24181 92.9 24226.0 24145 ~
66 X-n469-k138 36.3 222182.0 221909 86.7 222617.1 222070 142.3 222427.5 222235
67 X-n480-k70 50.4 89871.2 89694 67.0 89760.1 89535 73.1 89744.7 89513
68 X-n491-k59 52.2 67226.7 66965 71.9 66898.0 66633 81.9 66794.1 66607
69 X-n502-k39 80.8 69346.8 69284 63.6 69328.8 69253 177.7 69277.1 69247

70 X-n513-k21 35.0 24434.0 24332 33.1 24296.6 24201 99.4 24256.2 24201
71 X-n524-k137 27.3 155005.0 154709 80.7 154979.5 154774 207.3 155038.1 154787
72 X-n536-k96 62.1 95700.7 95524 107.5 95330.6 95122 144.5 95335.4 95112
73 X-n548-k50 64.0 86874.1 86710 84.2 86998.5 86822 136.6 86881.0 86778
74 X-n561-k42 68.9 43131.3 42952 60.6 42866.4 42756 77.2 42860.0 42733
75 X-n573-k30 112.0 51173.0 51092 188.2 50915.1 50780 782.4 50876.9 50801
76 X-n586-k159 78.5 190919.0 190612 175.3 190838.0 190543 234.3 190752.4 190442
77 X-n599-k92 73.0 109384.0 109056 125.9 109064.2 108813 166.9 108993.3 108576
78 X-n613-k62 74.8 60444.2 60229 117.3 59960.0 59778 103.6 59859.7 59654
79 X-n627-k43 162.7 62905.6 62783 239.7 62524.1 62366 543.1 62442.9 62254

80 X-n641-k35 140.4 64606.1 64462 158.8 64192.0 63839 304.4 64105.6 63859
81 X-n655-k131 47.2 106782.0 106780 150.5 106899.1 106829 253.2 106855.6 106804
82 X-n670-k126 61.2 147676.0 147045 264.1 147222.7 146705 267.7 147663.9 147163
83 X-n685-k75 73.9 68988.2 68646 156.7 68654.1 68425 177.0 68596.0 68496
84 X-n701-k44 210.1 83042.2 82888 253.2 82487.4 82293 368.0 82409.2 82174
85 X-n716-k35 225.8 44171.6 44021 264.3 43641.4 43525 437.2 43599.9 43498
86 X-n733-k159 111.6 137045.0 136832 244.5 136587.6 136366 334.2 136607.4 136424
87 X-n749-k98 127.2 78275.9 77952 313.9 77864.9 77715 308.3 77862.8 77605
88 X-n766-k71 242.1 115738.0 115443 383.0 115147.9 114683 330.5 115115.9 114812
89 X-n783-k48 235.5 73722.9 73447 269.7 73009.6 72781 351.2 72892.4 72738

90 X-n801-k40 432.6 74005.7 73830 289.2 73731.0 73587 424.0 73651.6 73466
91 X-n819-k171 148.9 159425.0 159164 374.3 158899.3 158611 675.6 158849.0 158592
92 X-n837-k142 173.2 195027.0 194804 463.4 194476.5 194266 634.9 194504.0 194356
93 X-n856-k95 153.7 89277.6 89060 288.4 89238.7 89118 314.6 89220.0 89020
94 X-n876-k59 409.3 100417.0 100177 495.4 99884.1 99715 543.1 99780.3 99610
95 X-n895-k37 410.2 54958.5 54713 321.9 54439.8 54172 500.2 54407.4 54254
96 X-n916-k207 226.1 330948.0 330639 560.8 330198.3 329836 1082.5 330153.2 329866
97 X-n936-k151 202.5 134530.0 133592 531.5 133512.9 133140 1022.2 133729.3 133376
98 X-n957-k87 311.2 85936.6 85697 432.9 85822.6 85672 307.9 85681.5 85555
99 X-n979-k58 687.2 120253.0 119994 554.0 119502.1 119194 928.4 119527.7 119188

100 X-n1001-k43 792.8 73985.4 73776 549.0 72956.0 72742 952.8 72903.3 72629

Average gap: 0.74% 0.42% 0.30% 0.06% 0.24% 0.03%
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Table 3: Results for the instances with more than 331 customers from Uchoa et al. (2017)

# Instance
ILS UHGS UHGS-BS

Time Average Best Time Average Best Time Average Best

51 X-n336-k84 21.4 139461.0 139197 38.0 139534.9 139210 66.0 139460.1 139303
52 X-n344-k43 22.6 42284.0 42146 21.7 42208.8 42099 39.7 42156.1 42056 ~
53 X-n351-k40 25.2 26150.3 26021 33.7 26014.0 25946 51.5 25981.8 25938
54 X-n359-k29 48.9 52076.5 51706 34.9 51721.7 51509 112.0 51640.7 51555
55 X-n367-k17 13.1 23003.2 22902 22.0 22838.4 22814 117.3 22876.2 22814
56 X-n376-k94 7.1 147713.0 147713 28.3 147750.2 147717 70.3 147740.5 147714
57 X-n384-k52 34.5 66372.5 66116 40.2 66270.2 66081 56.8 66170.3 65997
58 X-n393-k38 20.8 38457.4 38298 28.7 38374.9 38269 49.3 38309.3 38260 ~
59 X-n401-k29 60.4 66715.1 66453 49.5 66365.4 66243 110.2 66359.0 66212

60 X-n411-k19 23.8 19954.9 19792 34.7 19743.8 19718 126.0 19736.7 19721
61 X-n420-k130 22.2 107838.0 107798 53.2 107924.1 107798 87.7 107913.7 107798
62 X-n429-k61 38.2 65746.6 65563 41.5 65648.5 65501 65.6 65661.6 65470
63 X-n439-k37 39.6 36441.6 36395 34.6 36451.1 36395 57.1 36410.1 36395
64 X-n449-k29 59.9 56204.9 55761 64.9 55553.1 55378 132.6 55432.7 55330
65 X-n459-k26 60.6 24462.4 24209 42.8 24272.6 24181 92.9 24226.0 24145 ~
66 X-n469-k138 36.3 222182.0 221909 86.7 222617.1 222070 142.3 222427.5 222235
67 X-n480-k70 50.4 89871.2 89694 67.0 89760.1 89535 73.1 89744.7 89513
68 X-n491-k59 52.2 67226.7 66965 71.9 66898.0 66633 81.9 66794.1 66607
69 X-n502-k39 80.8 69346.8 69284 63.6 69328.8 69253 177.7 69277.1 69247

70 X-n513-k21 35.0 24434.0 24332 33.1 24296.6 24201 99.4 24256.2 24201
71 X-n524-k137 27.3 155005.0 154709 80.7 154979.5 154774 207.3 155038.1 154787
72 X-n536-k96 62.1 95700.7 95524 107.5 95330.6 95122 144.5 95335.4 95112
73 X-n548-k50 64.0 86874.1 86710 84.2 86998.5 86822 136.6 86881.0 86778
74 X-n561-k42 68.9 43131.3 42952 60.6 42866.4 42756 77.2 42860.0 42733
75 X-n573-k30 112.0 51173.0 51092 188.2 50915.1 50780 782.4 50876.9 50801
76 X-n586-k159 78.5 190919.0 190612 175.3 190838.0 190543 234.3 190752.4 190442
77 X-n599-k92 73.0 109384.0 109056 125.9 109064.2 108813 166.9 108993.3 108576
78 X-n613-k62 74.8 60444.2 60229 117.3 59960.0 59778 103.6 59859.7 59654
79 X-n627-k43 162.7 62905.6 62783 239.7 62524.1 62366 543.1 62442.9 62254

80 X-n641-k35 140.4 64606.1 64462 158.8 64192.0 63839 304.4 64105.6 63859
81 X-n655-k131 47.2 106782.0 106780 150.5 106899.1 106829 253.2 106855.6 106804
82 X-n670-k126 61.2 147676.0 147045 264.1 147222.7 146705 267.7 147663.9 147163
83 X-n685-k75 73.9 68988.2 68646 156.7 68654.1 68425 177.0 68596.0 68496
84 X-n701-k44 210.1 83042.2 82888 253.2 82487.4 82293 368.0 82409.2 82174
85 X-n716-k35 225.8 44171.6 44021 264.3 43641.4 43525 437.2 43599.9 43498
86 X-n733-k159 111.6 137045.0 136832 244.5 136587.6 136366 334.2 136607.4 136424
87 X-n749-k98 127.2 78275.9 77952 313.9 77864.9 77715 308.3 77862.8 77605
88 X-n766-k71 242.1 115738.0 115443 383.0 115147.9 114683 330.5 115115.9 114812
89 X-n783-k48 235.5 73722.9 73447 269.7 73009.6 72781 351.2 72892.4 72738

90 X-n801-k40 432.6 74005.7 73830 289.2 73731.0 73587 424.0 73651.6 73466
91 X-n819-k171 148.9 159425.0 159164 374.3 158899.3 158611 675.6 158849.0 158592
92 X-n837-k142 173.2 195027.0 194804 463.4 194476.5 194266 634.9 194504.0 194356
93 X-n856-k95 153.7 89277.6 89060 288.4 89238.7 89118 314.6 89220.0 89020
94 X-n876-k59 409.3 100417.0 100177 495.4 99884.1 99715 543.1 99780.3 99610
95 X-n895-k37 410.2 54958.5 54713 321.9 54439.8 54172 500.2 54407.4 54254
96 X-n916-k207 226.1 330948.0 330639 560.8 330198.3 329836 1082.5 330153.2 329866
97 X-n936-k151 202.5 134530.0 133592 531.5 133512.9 133140 1022.2 133729.3 133376
98 X-n957-k87 311.2 85936.6 85697 432.9 85822.6 85672 307.9 85681.5 85555
99 X-n979-k58 687.2 120253.0 119994 554.0 119502.1 119194 928.4 119527.7 119188

100 X-n1001-k43 792.8 73985.4 73776 549.0 72956.0 72742 952.8 72903.3 72629

Average gap: 0.74% 0.42% 0.30% 0.06% 0.24% 0.03%
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Conclusions and Perspectives

• Unified methods for vehicle routing problems, no need to reinvent
the wheel for each new variant. Generality does not
necessarily impede efficiency for a large class of problems.

• Understanding the structure of the problems is critical for
the design of efficient methods

• Structural problem decompositions allow to relegate difficult
decision classes (e.g., customer selection, edge orientations etc...)
inside (modular) route-evaluation operators

• Efficient move evaluation strategies (e.g., pre-processing and
dynamic programming) can lead to considerable speedups.

• Structural problem decompositions can be used to explore
exponential-sized neighborhoods
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Conclusions and Perspectives

• Perspectives: keep on focusing problem structure,
computational complexity and neighborhood search.
Major breakthroughs are still possible around those
research lines.

• Following the recent advances of Arnold and Sörensen (2018) and
Christiaens and Vanden Berghe (2018), design advanced
inter-route moves which efficiently optimize the assignment
decisions.

• Exploit pattern mining, machine learning and guidance to a larger
extent...

• ...and many other promising perspectives
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Thank you

THANK YOU FOR YOUR ATTENTION !
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Articles, instances, detailed results and slides available at: 

http://w1.cirrelt.ca/~vidalt/

Source code available at:

https://github.com/vidalt/HGS-CARP – Node, edge, and arc routing 

https://github.com/vidalt/HGS-CVRP – Simple CVRP version
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