
Combinatorial Optimization
and Machine Learning – Part I

Thibaut Vidal1, Thiago Serra2

1 Departamento de Informática, PUC-Rio
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Combinatorial Optimization in Machine Learning

• Combinatorial problems occur in many situations in the machine
learning domain. For example, when

I Choosing subsets of training samples or dimensions (e.g., dimension
reduction, outliers detection, sparse models)

I Training non-linear models (e.g., ReLU neural networks)

I Aggregating elements (e.g., clustering or community detection)

I Searching in high-dimensional spaces (e.g., adversarial examples or
meta-parameter tuning)...
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Combinatorial Optimization in Machine Learning

• Though, ML and OR application contexts are quite different:

I Large data set ⇒ Large combinatorial problems

I Training data is only a glimpse of the true distribution, but
performance should generalize

I No consensus on an ideal objective or model for many tasks of
interest

I Computational requirements can be constraining (e.g., limited time
or processor capacity in on-line applications or embarked systems)

I Data may change over time

• Many ML algorithms are heuristics for some mathematical
optimization problem.
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Disciplined Evaluation of ML algorithms

• Many algorithms used in ML are in fact heuristics for some
mathematical optimization problem, but their optimization
performance (quality of the local minima in the objective space) is
not always investigated.

• This represents a challenge for scientific evaluation of methods, as
it becomes difficult to discern two main sources of errors:

A) inadequate solution algorithm for the model at hand,
B) inadequate choice of model for the task at hand.

• Experimental analyses relying on task-based performance metrics
(e.g., accuracy, F1 score, NMI) only measure an aggregate
performance which includes both error sources.
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Disciplined Evaluation of ML algorithms

• Separating these errors requires:

A) The development of state-of-the-art optimization algorithms (ideally,
exact methods) with performance evaluations in the objective space.

B) The use of state-of-the-art optimization algorithms with a good
performance record to assess model suitability for a given task.
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Minimum sum-of-squares clustering

• MSSC: minimization of the squared Euclidean distances of objects
to their cluster means (minimization of within-group
sum-of-squares).

• Given a set P = {p1, . . . , pn} of n samples in Rd .

• Return a set of centers {y1, y2, ..., yk} in Rd .

• For optimal solution algorithms, see [1]

min
n∑

i=1

m∑
k=1

xik ‖pi − yk‖2 (1)

s.t.
m∑

k=1

xik = 1 i ∈ {1, . . . , n} (2)

xik ∈ {0, 1} i ∈ {1, . . . , n}, k ∈ {1, . . . ,m} (3)

yk ∈ Rd k ∈ {1, . . . ,m} (4)
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Two important properties

Property (1)

In any optimal MSSC solution, for each k ∈ {1, . . . ,m}, the position of
the center yk coincides with the centroid of the points assigned to it.

Property (2)

In any optimal MSSC solution, each sample pi is assigned to its closest
center.
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Methodology

• Combination of genetic algorithm (GA) with local search [10] with
additional strategies:

I Population-diversity management
I Elimination of clones
I Specialized crossover based on a bipartite-matching procedure
I Adaptive mutation to avoid excessive attraction towards outliers

• Local search is operated by running the K-means algorithm, taking
the candidate solution generated by the crossover as a starting
point.
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Methodology

Algorithm 1 HG-means – general structure

1: Initialize population with Πmax individuals/solutions
2: while (number of iterations without improvement < N1) ∧ (number of

iterations < N2) do
3: Select parents P1 and P2 by binary tournament
4: Apply crossover to P1 and P2 to generate an offspring C
5: Mutate C to obtain C ′

6: Apply local search (K-means) to C ′ to obtain an individual C ′′

7: Add C ′′ to the population
8: if the size of the population exceeds Πmax then
9: Eliminate clones and select Πmin survivors

10: end if
11: end while
12: Return best solution
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Methodology

Crossover
Crossover applied to two parent solutions P1 and P2 to produce a
(child) solution:

• Centroids matching. Solve bipartite matching problem based on
the centroids of P1 and P2.

• Selection. For each pair of centroids, inherit one randomly into
the offspring.

• Assignment. Re-assign data points to the closest offspring
centroid.
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Methodology

Crossover

(a) (b) (c) (d)

Figure 1: Crossover based on centroids matching: (a) Parent P1; (b)Parent
P2; (c) The assignment between centroids of P1 and P2, and random selection
(d) The resulting offspring
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Methodology

Mutation

• Randomly select a centroid c∗ and remove it from the solution.

• Re-assign the samples to their closest center.

• Randomly select a data point xu and re-insert c∗ in the position of
xu. The probability to select xj as the new centroid is

P(xj) =

(
(1− αC ′)× 1

n

)
+

(
αC ′ × d(xj ,C (xj))∑n

i=1 d(xi ,C (xi ))

)
,

where αC ′ is the mutation parameter to control the impact of
outliers. This parameter evolves along with the genetic material of
the solutions through dedicated mutation and crossover operations.
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Methodology

(a) Removal of a random center
(b) Re-assignment of the samples to their
nearest center

(c) Randomized reinsertion of center, bi-
ased by sample-to-center distances (d) Final solution (after local search)

Figure 3: Mutation based on centroid relocation.

3.4. Local Search

Each coordinate chromosome generated through selection, crossover, and mutation serves as a starting

point for a local search based on K-means. This algorithm iteratively 1) reassigns each sample to its

closest center and 2) moves each center position to the centroid of the samples to which it is assigned.

These two steps are iterated until convergence to a local optimum.

We use the fast K-means of [12]. This algorithm has a worst-case complexity of O(nmd) per loop

when m ≤ n, and exploits lower bounds on distances to eliminate many distance computations while

retaining the same results as the classical K-means.

13
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Methodology

Local improvement

One run of the K-means algorithm. Starts with the initial solution θ′

with m centroids c1, c2, ..., cm, and proceeds by alternating between
two steps:

1. Assignment step. Assign each data point xi to the closest cluster.

cluster(xi ) = min
j

d(xi , cj), j = 1, ...,m (5)

2. Update step. Locate the new centroids cj at the location of the
barycenters of the clusters.

cj =

∑
x∈Sj x

|Sj |
, j = 1, ...,m (6)
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Methodology

Survivors selection

• Selects the best individuals to propagate when the maximum
population size Πmax is reached, determining the Πmin individuals
that will go on to the next generation, by discarding λ individuals
(λ = Πmax − Πmin)

• Individuals selected for removal:

I Clones (identical to any other solution)
I Bad solution quality
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Computational Experiments and Analysis

Experiments focused around three main goals:

• Performance on the MSSC Optimization Problem

• Computational time and Scalability

• Relation between Optimization Performance and
Classification Performance
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Computational Experiments and Analysis

In the tables,

• n is the number of samples;

• m is the number of clusters;

• d is the number of features (data dimensionality);

• Gap is the error from the best known solution, calculated as:

GAP = f−fbest
fbest
× 100

where f is the value of the MSSC objective found by any previous
algorithm and fbest is the best known value;
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Instances

Group Dataset n d n × d Clusters

A1

German Towns 59 2 118
m ∈ {2, 3, 4...Bavaria Postal 1 89 3 267
5, 6, 7, 8, 9, 10}Bavaria Postal 2 89 4 356

Fisher’s Iris Plant 150 4 600

A2

Liver Disorders 345 6 2k

m ∈ {2, 5, 10, 15...
Heart Disease 297 13 4k

20, 25, 30, 40, 50}
Breast Cancer 683 9 6k
Pima Indians Diabetes 768 8 6k
Congressional Voting 435 16 7k
Ionosphere 351 34 12k

B

TSPLib1060 1,060 2 2k

m ∈ {2, 10, 20, 30...
TSPLib3038 3,038 2 6k

40, 50, 60, 80, 100}
Image Segmentation 2,310 19 44k
Page Blocks 5,473 10 55k
Pendigit 10,992 16 176k
Letters 20,000 16 320k

Table 1: Small to Medium datasets used for performance comparisons on the
MSSC optimization problem
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Instances

Group Dataset n d n × d Clusters

C

D15112 15,112 2 30k

m ∈ {2, 3, 5, 10...

Pla85900 85,900 2 172k

15, 20, 25}

EEG Eye State 14,980 14 210k
Shuttle Control 58,000 9 522k
Skin Segmentation 245,057 3 735k
KEGG Metabolic Relation 53,413 20 1M
3D Road Network 434,874 3 1M
Gas Sensor 13,910 128 2M
Online News Popularity 39,644 58 2M
Sensorless Drive Diagnosis 58,509 48 3M
Isolet 7,797 617 5M
MiniBooNE 130,064 50 7M
Gisette 13,500 5,000 68M

Table 2: Large datasets used for performance comparisons on the MSSC
optimization problem
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Parameters

• Πmin: Population size

• Πmax : Maximum size of population

• Imax : Maximum number of iterations

Configuration Πmin Πmax Imax Time(s) Gap

Standard 10 20 5000 1060.48 -0.35
Fast 5 10 500 127.48 0.16

Table 3: Fast and Standard configurations of HG-means

Combinatorial Optimization, and Machine Learning – Part I 26



Performance on the MSSC Optimization Problem

A
ve

ra
ge

 g
ap

 (
%

)

0

1

2

3

4

5

2.42

4.33

1.71

0.11

−0.4

GKM
SAGA
MGKM
MS−MGKM
HG−means

Figure 2: Average gap from the best known solution for UCI Small to Medium
datasets
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Performance on the MSSC Optimization Problem
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Figure 3: Average gap from the best known solution for UCI Large datasets
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Computational time on largest datasets
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Figure 4: CPU time of state-of-the-art algorithms on UCI large-scale datasets



Solution Quality and Classification Performance

• Experimental setting to measure the ability of HG-means,
K-means and K-means++ to classify 50,000 samples issued
from a mixture of spherical Gaussian distributions:

X ∼ 1/m

m∑
i=1

N (µi ,Σi ) with Σi = σ2
i I

.

• For each i ∈ {1, . . . ,m}, µi and σ2
i are uniformly selected in [0, 5]

and [1, 10], respectively.

• Generated to be hardly separable.

• Fundamental setting: no hidden structure, a lot of independent
information.
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Computational Experiments and Analysis

BKS Gap (%) Time (s)
Objective K-means K-means++ HG-means K-means K-means++ HG-means

m d Value 1 Run 500 Runs 1 Run 500 Runs 1 Run 500 Runs 1 Run 500 Runs

20 20 5432601.91 0.73 0.0 1.15 0.0 0.0 2.40 668.93 3.00 764.76 1085.40
20 50 12815114.52 6.19 0.0 3.75 1.15 0.0 2.86 860.95 3.17 1171.09 1308.96
20 100 24266784.28 14.84 0.0 5.01 4.83 0.0 5.38 1243.53 4.75 1958.25 553.25
20 200 59340268.17 17.70 2.57 11.79 7.00 0.0 14.90 2677.57 12.43 3938.29 1505.16
20 500 125359202.26 16.53 8.06 25.35 8.00 0.0 30.13 6118.59 25.17 8389.50 2563.73
50 20 5305274.24 0.47 0.0 0.43 0.0 0.0 5.03 2599.11 4.84 2755.17 3189.56
50 50 13864882.54 2.10 0.0 3.22 0.72 0.0 7.28 2695.69 8.23 3258.11 4307.12
50 100 25645070.92 8.86 3.70 12.04 5.76 0.0 10.78 4226.64 14.33 5871.70 2934.41
50 200 52561077.57 14.62 7.76 19.90 9.92 0.0 22.98 7837.70 37.60 11063.60 9629.09
50 500 143469250.17 16.92 9.79 20.0 11.11 0.0 38.89 14778.04 58.13 19077.48 18360.24

100 20 5027688.54 0.34 0.12 0.54 0.04 0.0 19.79 7281.83 18.89 8435.48 13529.09
100 50 12897680.57 3.07 1.17 4.81 2.25 0.0 12.07 6612.89 15.27 7962.07 10344.57
100 100 27284752.32 6.30 4.67 10.58 6.89 0.0 24.43 11864.87 30.54 14991.49 6728.71
100 200 51552765.51 14.03 7.97 15.78 11.13 0.0 34.63 14537.27 52.73 20128.89 20499.22
100 500 130903680.95 18.90 15.61 22.71 15.69 0.0 61.45 25313.95 86.04 34062.29 38217.57
200 20 4774890.45 0.72 0.45 1.24 0.53 0.0 42.85 18861.45 38.91 19896.36 38126.21
200 50 13490838.00 1.97 1.16 2.88 1.86 0.0 34.49 18792.14 39.88 21036.63 28513.22
200 100 27337380.17 8.08 5.29 9.68 7.56 0.0 70.30 30880.39 82.03 36219.66 39980.98
200 200 52946223.09 15.77 11.70 19.67 14.45 0.0 74.33 37459.76 139.62 46365.94 67745.79
200 500 135201463.76 20.97 17.32 23.83 19.28 0.0 142.85 63202.41 210.16 92765.62 93444.51

Table 4: Mixture of spherical Gaussian distributions – Solution quality
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Computational Experiments and Analysis

CRand NMI CI

K-means K-means++ HG-means K-means K-means++ HG-means K-means K-means++ HG-means

m d 1 Run 500 Runs 1 Run 500 Runs 1 Run 500 Runs 1 Run 500 Runs 1 Run 500 Runs 1 Run 500 Runs

20 20 0.69 0.72 0.67 0.72 0.72 0.73 0.75 0.73 0.75 0.75 1 0 1 0 0

20 50 0.76 0.98 0.86 0.92 0.98 0.91 0.98 0.94 0.96 0.98 3 0 2 1 0

20 100 0.63 1.00 0.89 0.89 1.00 0.89 1.00 0.97 0.97 1.00 5 0 2 2 0

20 200 0.47 0.94 0.61 0.83 1.00 0.84 0.98 0.89 0.95 1.00 7 1 5 3 0

20 500 0.55 0.81 0.32 0.81 1.00 0.88 0.95 0.79 0.95 1.00 6 2 9 3 0

50 20 0.58 0.59 0.57 0.59 0.59 0.67 0.68 0.67 0.68 0.68 1 0 2 0 0

50 50 0.87 0.94 0.82 0.92 0.94 0.93 0.95 0.92 0.94 0.95 3 0 5 1 0

50 100 0.76 0.90 0.59 0.85 1.00 0.95 0.98 0.92 0.96 1.00 9 4 12 6 0

50 200 0.52 0.80 0.34 0.72 1.00 0.90 0.96 0.85 0.94 1.00 14 8 19 10 0

50 500 0.41 0.69 0.24 0.39 1.00 0.88 0.94 0.83 0.91 1.00 16 9 16 10 0

100 20 0.48 0.48 0.47 0.49 0.49 0.62 0.63 0.62 0.63 0.63 4 2 5 1 0

100 50 0.80 0.86 0.78 0.84 0.91 0.91 0.93 0.90 0.92 0.94 9 4 13 6 0

100 100 0.80 0.86 0.68 0.74 0.99 0.96 0.97 0.93 0.94 1.00 15 11 23 16 1

100 200 0.63 0.79 0.53 0.74 0.99 0.93 0.96 0.92 0.95 1.00 27 16 30 20 1

100 500 0.40 0.60 0.23 0.35 0.98 0.89 0.93 0.84 0.90 1.00 33 27 37 29 2

200 20 0.39 0.40 0.38 0.39 0.41 0.59 0.59 0.58 0.59 0.60 22 14 25 20 6

200 50 0.81 0.82 0.78 0.80 0.87 0.91 0.90 0.90 0.89 0.92 12 10 18 13 0

200 100 0.71 0.81 0.66 0.73 0.96 0.94 0.95 0.94 0.94 0.99 38 27 49 38 5

200 200 0.51 0.64 0.31 0.56 0.99 0.92 0.94 0.87 0.93 1.00 61 45 71 53 3

200 500 0.41 0.50 0.26 0.33 0.98 0.90 0.92 0.85 0.89 1.00 65 57 74 60 5

Table 5: Mixture of spherical Gaussian distributions – Clustering performance

Combinatorial Optimization, and Machine Learning – Part I 32



Discussions and Perspectives

• Possible to design efficient and scalable algorithms for MSSC which
outperform by far the existing ones.

• Optimization performance matters: directly influences
classification performance, especially for high-dimensional
datasets.
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SBMs for community detection

• Optimal solutions of Community Detection in the Stochastic Block
Model using mixed integer programming
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Stochastic Block Model (SBM)
A simple model for generating random graphs with community structure

G ∼ SBM(g ,Ω)

g ∈ {1, . . . ,K}n : group membership vector

Ω ∈ RK×K : connectivity matrix

Aij ∼ Bernoulli(ωgigj ) for simple graphs

Aij ∼ Pois(ωgigj ) for multi-graphs
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Different types of community structure

Figure 5: Assortative structure Figure 6: Disassortative structure

Figure 7: Core-periphery structure Figure 8: Random graph
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Community detection with the DCSBM

The DCSBM is an extension of the SBM that allows the generation of
networks with arbitrary degree distributions, by introducing parameters
θi that control the expected degree of vertex i : G ∼ SBM(g ,Ω,θ).

When used for community detection, the goal is to find the parameter
values that best fit the observed graph G , by Maximum Likelihood
Estimation (MLE):

P(G |θ,Ω, g) =
∏
i<j

(θiθjωgi gj )
Aij

Aij !
exp (−θiθjωgi gj )×

∏
i

(
1
2
θ2
i ωgi gi

)Aii/2(
1
2
Aii

)
!

exp
(
− 1

2
θ2
i ωgi gi

)

We consider the special case where θiθj =
kikj
2m . After removing constant

terms, the log-likelihood objective simplifies to:

logP(G |Ω, g) = 1
2

∑
i ,j

(
Aij logωgigj −

kikj
2m ωgigj

)
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Descriptive formulation (MINLP)

• C = {1, . . . ,K} is the set of possible communities

• zir = 1 iff vertex i ∈ V is assigned to group r ∈ C and 0 otherwise

• ωrs ∈ R+ represents the expected number of edges between two nodes
belonging to communities r and s

minimize
Z,Ω

1

2

n∑
i,j

K∑
r ,s

fij(ωrs) zirzjs

subject to
K∑
r=1

zir = 1, ∀i ∈ V

zir ∈ {0, 1}, ∀i ∈ V , r ∈ C
ωrs ∈ R+, ∀r , s ∈ C

where fij(ωrs) = −Aij logωrs +
kikj
2m ωrs

The model can be solved by MINLP solvers such as Couenne.
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Mixed Integer Linear Programming (MILP) formulation

This problem can be reformulated as a MILP by piecewise
outer-approximation and linearization [6]:

minimize
Z,Ω,Y,X

1

2

n∑
i,j

K∑
r,s

xijrs

subject to xijrs ≥ aijωrs + bij −Mijrs(1− yijrs), ∀i , j ∈ V , ∀r , s ∈ C, ∀ω̃ ∈ R+

xijrs ≤ Mijrs yijrs

xijrs ≥ Mijrs yijrs

zir − yijrs ≥ 0 ∀i , j ∈ V , ∀r , s ∈ C
zjs − yijrs ≥ 0

1− zir − zjs + yijrs ≥ 0

K∑
r=1

zir = 1 ∀i ∈ V

zir , yijrs ∈ {0, 1} ∀i , j ∈ V , ∀r , s ∈ C

ωrs , xijrs ∈ R+ ∀i , j ∈ V , ∀r , s ∈ C
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Solving the MILP

• Lazy constraints: The MILP has an infinite number of
constraints due to the outer-approximation process. We introduce
violated constraints every time an integer feasible solution is found
(lazy constraints callback in CPLEX).

• Bounds tightening: Formulations with big-M constants tend to
suffer from a weak continuous relaxation, especially if the values
for the lower and upper bounds, M and M, are not tight enough.
To circumvent this issue we identified tighter bounds.

• Symmetry-breaking constraints: Any permutation of the
clusters indices gives an equivalent solution ⇒ we use additional
symmetry-breaking constraints.
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Performance of the exact methods
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Figure 9: Impact of symmetry breaking constraints, for the MINLP (left) and
MILP (right)
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Figure 10: MILP vs. MINLP model, without (left) and with (right) symmetry
breaking constraints.
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Expectation-Maximization (EM) algorithms

As seen in our experiments, the optimal solution approaches do not
scale to very large problems. Therefore, we aim to assess the
performance of classical heuristics for this problem based on
expectation-maximization (EM). These heuristics work in two steps:

� Maximization step (M-step): Fix the assignments Z and find the
optimal value of Ω. Solved by differentiation.

ω∗rs =

∑
i ,j Aijzirzjs∑
i ,j

kikj
2m zirzjs

=
2m ·mrs

κrκs

� Expectation step (E-step): Fix Ω and search for the optimal
community assignments Z. Three variants:
I Local search on the community assignment variables (E-LS1)
I Local search integrated with M-step (E-LS2)
I Exact community assignments (E-exact)

Combinatorial Optimization, and Machine Learning – Part I 44



Performance of the heuristic methods
• For these data sets, the solution value (in the objective space) of

the EM algorithms can be quite volatile, with average gaps around
10%.
• Multiple runs need to performance for a more robust performance
• Further investigation is needed on larger-scale data sets, though

this will require significant methodological progress on
mathematical programming algorithms for community detection.
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Support Vector Machines (SVM)

• Identifying a hyperplane that separates two classes of data points
with maximal separation.

• When data is not linearly separable (as common in practical
applications), SVMs rely on loss functions to penalize data points
within the margin or on the wrong side of the hyperplane.

Figure 11: A hyperplane separating two classes
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Support Vector Machines (SVM)

Classical SVM with hinge-loss penalization:

min
w,b,ξ

1

2
||w||2 + C

n∑
i=1

ξi (7)

s.t. yi (w · xi + b) ≥ 1− ξi (8)

ξi ≥ 0 (9)

• ξi stands for the continuous error for an observation i proportionally
to the distance from the separating hyperplane, and C is the
trade-off in maximizing the margin versus minimizing the error and

• The hinge-loss function is known to be very sensitive to outliers
and lack robustness since this function is unbounded [13].
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Non-convex support vector machines

• In recent years, there has been renewed interest on interpretable
and robust machine learning models trained through combinatorial
optimization algorithms.

• The classical SVM has a main weakness: outliers have an
unbounded influence on the objective. Therefore, non-convex
variations of this model have been proposed to mitigate the impact
of these outliers [5].

• Due to non-convexity, requires a MILP formulation.
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Non-convex support vector machines
SVM with hard-margin loss:

min
w,b,ξ,z

1

2
||w||2 + C

n∑
i=1

zi (10)

s.t. yi (w · xi + b) ≥ 1, if zi = 0 (11)

zi ∈ {0, 1} (12)

SVM with ramp loss:

min
w,b,ξ,z

1

2
||w||2 + C

(
n∑

i=1

ξi + 2
n∑

i=1

zi

)
(13)

s.t. yi (w · xi + b) ≥ 1− ξi , if zi = 0 (14)

zi ∈ {0, 1} (15)

0 ≤ ξi ≤ 2 (16)

Constraints (11) and (14) are indicator constraints, i.e., constraints that either hold or are
relaxed depending on the value of a binary variable. These constraints can be linearized
using a big “M”, such that (11) becomes yi (w · xi + b) ≥ 1−Mzi .
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Misclassified samples are
on the left side.
(a) traditional hinge loss,
(b) ramp loss, and
(c) hard margin loss.

An observation whose
left-hand side falls
between −1 and 1 lies in
the margin.

Source of the figure: [5].

Combinatorial Optimization, and Machine Learning – Part I 51



Non-convex support vector machines

• However, non-convex SVM models are much harder to solve.
Instances of a few hundreds (up to 500) training samples are still
out of reach of current MILP approaches:

Size # Opts Gap (%)

60 75 0.00
100 44 13.17
200 5 54.32
500 0 90.28

Size # Opts Gap (%)

60 69 1.49
100 31 25.34
200 0 66.69
500 0 92.64

Table 6: Results on SVM with hard-margin loss: set A (left) and set B
(right). Data sets from [5]
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Non-convex support vector machines

• However, non-convex SVM models are much harder to solve.
Instances of a few hundreds (up to 500) training samples are still
out of reach of current MILP approaches:

Size # Opts Gap (%)

60 30 16.89
100 0 46.16
200 0 78.88
500 0 94.38

Size # Opts Gap (%)

60 16 34.21
100 0 67.07
200 0 88.79
500 0 96.07

Table 7: Results on SVM with ramp loss: set A (left) and set B (right).
Data sets from [5]
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Non-convex support vector machines

• More effective MIP approaches are needed (possibly exploiting
sparsity and other decomposition approaches?).

• A disciplined evaluation of heuristics for these formulations would
also be a critical asset for practical cases.
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Other combinatorial optimization models in ML

• Many other ML models are currently being re-evaluated under the
lenses of modern MIP approaches:

I Optimal decision trees [3, 4, 7, 11]
I Optimal training of sparse ML models [2, 9, 12]
I Combinational optimization for adversary generation and model

validation [8]
I Optimization for interpretable ML... (see the 2nd part of this course)

• The opportunities and research perspectives along these lines are
numerous.
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Thank you

THANK YOU FOR YOUR ATTENTION !

Further reading:

“Gribel, D., & Vidal, T. (2019). HG-means: A scalable hybrid metaheuristic for
minimum sum-of-squares clustering. Pattern Recognition, 88, 569–583”

“de Araujo, B.S. A MIP approach for Community Detection in the Stochastic
Block Model. Master Thesis, PUC-Rio, 2020”

Source codes available at:
https://github.com/danielgribel

https://github.com/vidalt
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