Arc Routing, Vehicle Routing, and Turn Penalties

Thibaut Vidal

Departamento de Informática, Pontifícia Universidade Católica do Rio de Janeiro Rua Marquês de São Vicente, 225 - Gávea, Rio de Janeiro - RJ, 22451-900, Brazil vidalt@inf.puc-rio.br

Seminar Bologna, May 31th, 2016

Contents

- Node and edge routing problems
- 2 Combined neighborhoods for arc routing problems
 - Methodology
 - Cutting off complexity: memories + bidirectional search
 - Cutting off complexity: moves filtering via LBs
- 3 Problem generalizations
- 4 Very large neighborhoods
- 5 Computational experiments
 - Integration into two state-of-the-art metaheuristics
 - Comparison with previous literature
 - CARP To reduce or not to reduce
 - Problems with turn penalties and delays at intersections
- 6 Conclusions/Perspectives

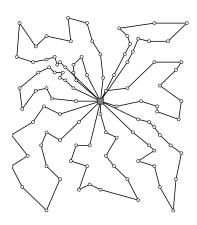
Contents

- 1 Node and edge routing problems
- 2 Combined neighborhoods for arc routing problems
 - Methodology
 - Cutting off complexity: memories + bidirectional search
 - Cutting off complexity: moves filtering via LBs
- 3 Problem generalizations
- 4 Very large neighborhoods
- 5 Computational experiments
 - Integration into two state-of-the-art metaheuristics
 - Comparison with previous literature
 - CARP To reduce or not to reduce
 - Problems with turn penalties and delays at intersections
- 6 Conclusions/Perspectives

Challenges

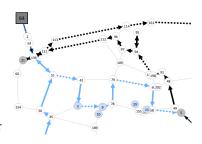
• Capacitated Vehicle Routing Problem

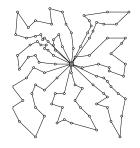
- Consider:
 - \triangleright n customers, with demands q_i
 - ightharpoonup Complete distance matrix c_{ij}
 - \blacktriangleright Homogeneous fleet of m vehicles with capacity Q, located at a single depot
- Find:
 - ► Least-distance delivery routes
 - ► Servicing all customers
 - ► Respecting capacity limits



Challenges

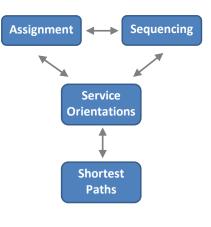
- Arc routing for home delivery, snow plowing, refuse collection, postal services, among others.
- Lead to additional challenges:
 - \Rightarrow Deciding on travel directions for services on edges
 - ⇒ Shortest path between services are *conditioned* by service orientations (may also need to include some additional aspects such as turn penalties or delays at intersections).





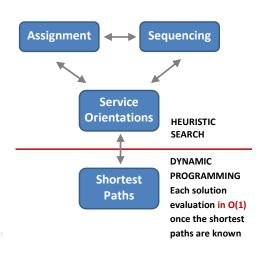
Challenges

- Arc routing for home delivery, snow plowing, refuse collection, postal services, among others.
- Lead to additional challenges:
 - \Rightarrow Deciding on travel directions for services on edges
 - ⇒ Shortest path between services are conditioned by service orientations (may also need to include some additional aspects such as turn penalties or delays at intersections).



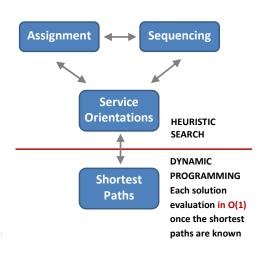
3/54

- Most recent CARP heuristics rely on several enumerative neighborhood classes to optimize assignment, sequencing and service orientation decisions
 - ► See, e.g. Brandão and Eglese (2008); Usberti et al. (2013); Dell'Amico et al. (2016)...
 - ► Shortest paths between node extremities have been pre-processed
 - ► Three decision classes are heuristically addressed



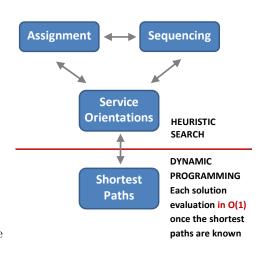
\Rightarrow This is, however, not the only option.

- Most recent CARP heuristics rely on several enumerative neighborhood classes to optimize assignment, sequencing and service orientation decisions
 - ► See, e.g. Brandão and Eglese (2008); Usberti et al. (2013); Dell'Amico et al. (2016)...
 - Shortest paths between node extremities have been pre-processed
 - ► Three decision classes are heuristically addressed



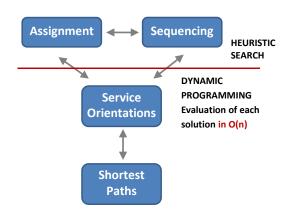
\Rightarrow This is, however, not the only option.

- Most recent CARP heuristics rely on several enumerative neighborhood classes to optimize assignment, sequencing and service orientation decisions
 - ► See, e.g. Brandão and Eglese (2008); Usberti et al. (2013); Dell'Amico et al. (2016)...
 - ► Shortest paths between node extremities have been pre-processed
 - ► Three decision classes are heuristically addressed

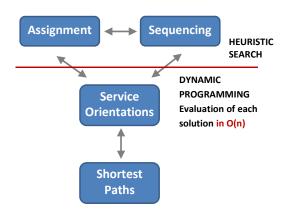


 \Rightarrow This is, however, not the only option.

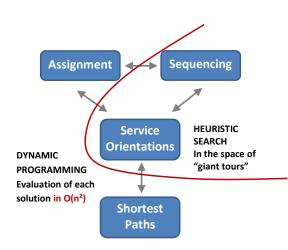
- In Beullens et al. (2003) and Muyldermans et al. (2005), O(n)dynamic-programming based optimization of service orientations:
- Combined in Irnich



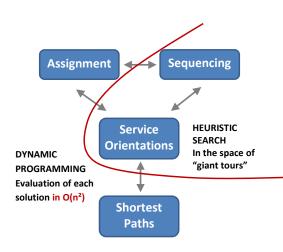
- In Beullens et al. (2003) and Muyldermans et al. (2005), O(n) dynamic-programming based optimization of service orientations:
- Combined in Irnich (2008) with the neighborhood of Balas and Simonetti (2001), leading to promising results on mail delivery applications.



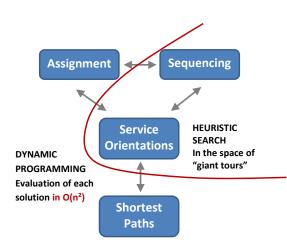
- Also the search space of giant tours (Lacomme et al., 2001, 2004; Ramdane-Cherif, 2002)
- Evaluating a solution
- Because of this higher



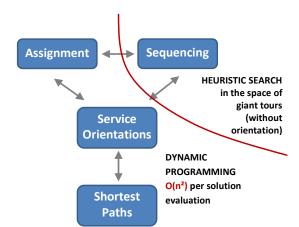
- Also the search space of giant tours (Lacomme et al., 2001, 2004; Ramdane-Cherif, 2002)
- Evaluating a solution takes $O(n^2)$ operations (or O(n) with a faster Split algorithm, see Vidal 2016)
- Because of this higher



- Also the search space of giant tours (Lacomme et al., 2001, 2004; Ramdane-Cherif, 2002)
- Evaluating a solution takes $O(n^2)$ operations (or O(n) with a faster Split algorithm, see Vidal 2016)
- Because of this higher complexity, such solution representation is rarely used in a LS.

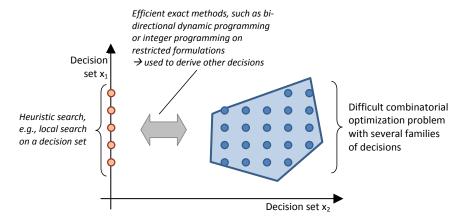


• Finally, the search space used in Wøhlk (2003, 2004), also evoked in Ramdane-Cherif (2002):



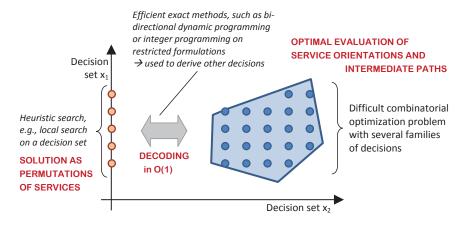
>

- Transferring several decision classes into exact dynamic-programming based components.
- This is a structural problem decomposition:



>

- Transferring several decision classes into exact dynamic-programming based components.
- This is a structural problem decomposition:

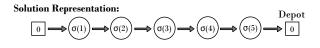


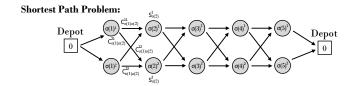
Contents

- Node and edge routing problems
- 2 Combined neighborhoods for arc routing problems
 - Methodology
 - Cutting off complexity: memories + bidirectional search
 - Cutting off complexity: moves filtering via LBs
- 3 Problem generalizations
- 4 Very large neighborhoods
- 6 Computational experiments
 - Integration into two state-of-the-art metaheuristics
 - Comparison with previous literature
 - CARP To reduce or not to reduce
 - Problems with turn penalties and delays at intersections
- 6 Conclusions/Perspectives

Solution representation and decoding

- How to decode/evaluate a solution = deriving optimal orientations for the services ?
 - ⇒ Simple dynamic programming subproblem (Beullens et al., 2003; Wøhlk, 2003, 2004):

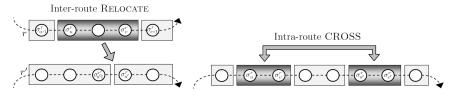




• Each service represented by two nodes, one for each orientation. Travel costs c_{ij}^{kl} between (i,j) are conditioned by the orientations (k,l) for departure and arrival.

Seeking low complexity for solution evaluations

- Modern neighborhood-centered heuristics evaluate millions/billions of neighbor solutions during one run.
- Key property of classical routing neighborhoods:
 - ▶ Any local-search move involving a bounded number of node relocations or arc exchanges can be assimilated to a concatenation of a bounded number of sub-sequences.
 - ► Same subsequences appear many times during different moves



▶ To decrease the computational complexity, compute auxiliary data on subsequences by induction on concatenation (\oplus) .

Seeking low complexity for solution evaluations

Auxiliary data structures = partial shortest paths

Partial shortest path $C(\sigma)[k,l]$ between the first and last service in the sequence σ , for any (entry, exit) direction pair (k,l)

Initialization

For
$$\sigma_0$$
 with a single visit v_i , $S(\sigma_0)[k, l] = \begin{cases} 0 & \text{if } k = l \\ +\infty & \text{if } k \neq l \end{cases}$

Evaluation

By induction on the concatenation operator:

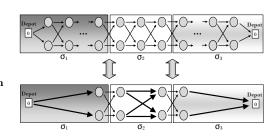
$$C(\sigma_1 \oplus \sigma_2)[k, l] = \min_{x, y} \left\{ C(\sigma_1)[k, x] + c_{\sigma_1(|\sigma_1|)\sigma_2(1)}^{xy} + C(\sigma_2)[y, l] \right\}$$

Seeking low complexity for solution evaluations

• Pre-processing partial shortest paths in the incumbent **solution** – in $\mathcal{O}(n^2)$ before the neighborhood exploration – dramatically simplifies the shortest paths:

Shortest path problem:

Shortest path problem on a reduced graph, using pre-processed labels:



• Only a constant number of edges

- Each move evaluation was still taking a bit more operations (constant of $4\times$) than in the classic CVRP.
- Even this can be avoided...
 - \Rightarrow by developing lower bounds on the cost of neighbors...

- Let $Z(\sigma)$ be a lower bound on the cost of a route σ
- A move that modifies two routes: $\{\sigma_1, \sigma_2\} \Rightarrow \{\sigma'_1, \sigma'_2\}$ has a chance to be improving if and only if:

$$\Delta_{\Pi} = \bar{Z}(\sigma_1') + \bar{Z}(\sigma_2') - Z(\sigma_1) - Z(\sigma_2) < 0.$$

- Let $C^{\text{MIN}}(\sigma) = \min_{k,l} \{C(\sigma)[k,l]\}$ the shortest path for the sequence σ between any pair of origin/end orientations.
- Let $c_{ij}^{\text{MIN}} = \min_{k,l} \{c_{ij}^{kl}\}$ be the minimum cost of a shortest path between services i and j, for any orientation.
- Lower bound on the cost of a route $\sigma = \sigma_1 \oplus \cdots \oplus \sigma_X$ composed of a concatenation of X sequences:

$$\bar{Z}(\sigma_1 \oplus \cdots \oplus \sigma_X) = \sum_{j=1}^X C^{\text{MIN}}(\sigma_j) + \sum_{j=1}^{X-1} c_{\sigma_j,\sigma_{j+1}}^{\text{MIN}}.$$

- The bound helps to filter a lot of moves ($\geq 90\%$ even when used with granular search)
 - ▶ In practice: possible to evaluate a move with implicit service orientations for the CARP, using roughly the same number of elementary operations as the same move for a CVRP!

- Let $C^{\text{MIN}}(\sigma) = \min_{k,l} \{C(\sigma)[k,l]\}$ the shortest path for the sequence σ between any pair of origin/end orientations.
- Let $c_{ij}^{\text{MIN}} = \min_{k,l} \{c_{ij}^{kl}\}$ be the minimum cost of a shortest path between services i and j, for any orientation.
- Lower bound on the cost of a route $\sigma = \sigma_1 \oplus \cdots \oplus \sigma_X$ composed of a concatenation of X sequences:

$$\bar{Z}(\sigma_1 \oplus \cdots \oplus \sigma_X) = \sum_{j=1}^X C^{\text{MIN}}(\sigma_j) + \sum_{j=1}^{X-1} c_{\sigma_j,\sigma_{j+1}}^{\text{MIN}}.$$

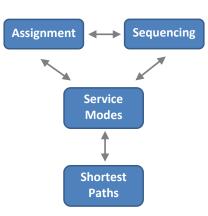
- The bound helps to filter a lot of moves ($\geq 90\%$ even when used with granular search)
 - ▶ In practice: possible to evaluate a move with implicit service orientations for the CARP, using roughly the same number of elementary operations as the same move for a CVRP!

Contents

- Node and edge routing problems
- 2 Combined neighborhoods for arc routing problems
 - Methodology
 - Cutting off complexity: memories + bidirectional search
 - Cutting off complexity: moves filtering via LBs
- 3 Problem generalizations
- 4 Very large neighborhoods
- 5 Computational experiments
 - Integration into two state-of-the-art metaheuristics
 - Comparison with previous literature
 - CARP To reduce or not to reduce
 - Problems with turn penalties and delays at intersections
- 6 Conclusions/Perspectives

Preliminary definitions

- Service: A visit to a client, which cannot be split, but may be operated in different alternative ways
- Service Mode: Alternative way to perform a service, may impact travel or service cost.
 - \Rightarrow The set of possible *modes* for a service will be notated M_i



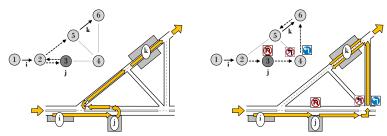
- CARP each service has two modes, one for each possible orientation (curb direction during service).
- Many other mode choices in problem variants:
 - choice of sidewalk and impact on intersection time (postal delivery, refuse collection)
 - ▶ lane (snow plowing)
 - ► parking spot
 - choice of visit location (GVRP and arc routing equivalents)
 - orders of visit clusters, e.g., in a city district (CluVRP and arc routing equivalents)
 - entry-exit of a facility...

• To address the mixed capacitated general routing **problem** (also called *node*, *edge* and arc routing problem):

```
Node
           |M_i| = 1
                        One mode for service;
           |M_i| = 1
ARC
                        One mode for the only feasible service orientation;
Edge
           |M_i| = 2
                       Two modes, one for each service orientation.
```

• Route-evaluation subproblem are even more efficient since the auxiliary graph contains some single nodes

- Problems with turn penalties and delays at intersections:
- In previous literature feasibility issues:
 - ► Solution of MCGRP with turn penalties represented as sequences of services + SPs with turn restrictions between services did not necessarily lead to viable solutions:



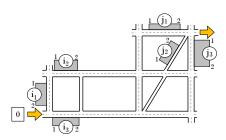
► Because of a lack of characterization of the arrival edge when servicing a node

• The needed information can be included in the definition of the mode:

```
Node
             |\mathbf{M_i}| = \mathbf{p_i}
                           \mathbf{p_i} modes to specify the arrival direction, where p_i
                           is the in-degree of v_i;
Arc
            |M_i| = 1
                           One mode for the only feasible service orientation;
Edge
             |M_i| = 2
                           Two modes, one for each service orientation.
```

- Then, turn penalties can easily be included in arc costs, in the auxiliary graph
- ⇒ turn penalties are now optimally addressed (for any fixed sequence of services) without any further change

• Problems with service clusters...



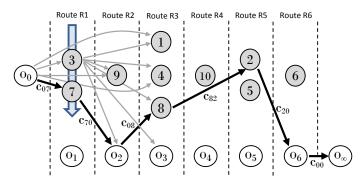
- Problems with **choices of service location** (Generalized routing problems GVRP)...
- But also, inserting a lunch break, going to an intermediate facility, recharging electric vehicles... are many ways of choosing a mode when servicing a customer.
 - ▶ Keep in mind that in these cases, other resources than cost may be involved \Rightarrow RCSPs...

Contents

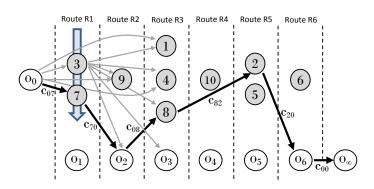
- Node and edge routing problems
- 2 Combined neighborhoods for arc routing problems
 - Methodology
 - Cutting off complexity: memories + bidirectional search
 - Cutting off complexity: moves filtering via LBs
- 3 Problem generalizations
- 4 Very large neighborhoods
- 5 Computational experiments
 - Integration into two state-of-the-art metaheuristics
 - Comparison with previous literature
 - CARP To reduce or not to reduce
 - Problems with turn penalties and delays at intersections
- 6 Conclusions/Perspectives

Very large neighborhoods

• The concept can even be integrated into ejection chains-type neighborhoods to search an **exponential set of solutions** (obtained via combined chained service relocations & mode changes) **in polynomial time** via a shortest-path formulation:



Very large neighborhoods



• The cost c_{ij} of an arc (i, j) corresponds to the difference of cost of R(j) when removing service j and inserting service i with minimum cost in the route.

Contents

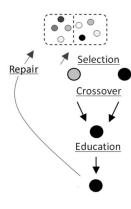
- Node and edge routing problems
- 2 Combined neighborhoods for arc routing problems
 - Methodology
 - Cutting off complexity: memories + bidirectional search
 - Cutting off complexity: moves filtering via LBs
- 3 Problem generalizations
- 4 Very large neighborhoods
- 5 Computational experiments
 - Integration into two state-of-the-art metaheuristics
 - Comparison with previous literature
 - CARP To reduce or not to reduce
 - Problems with turn penalties and delays at intersections
- 6 Conclusions/Perspectives

- Integration into two state-of-the-art metaheuristics:
- The iterated local search variant (ILS) of Prins (2009)
 - ightharpoonup Produces n_C offspring from the incumbent solution and selects the best
 - Search is restarted n_P times, each run terminates after n_I consecutive iterations
 - ▶ Added the possibility to use penalized infeasible solutions (not in the original version of the algorithm).
- The unified hybrid genetic search (UHGS) of Vidal et al. (2012, 2014)

UHGS

Classic genetic algorithm components: population, selection, crossover, and

- Efficient local-improvement procedure. Replaces random mutation
- Management of penalized infeasible solutions
- Individual evaluation: solution quality and contribution to population diversity



Local improvement procedure used in both methods: Very standard neighborhoods:

- Relocate, Swap, CROSS, 2-opt and 2-opt*.
 - ► Exploration in random order
 - ► First improvement policy
 - ▶ Restrictions of moves to the Γ^{TH} closest services
 - \Rightarrow Number of neighbors in $\mathcal{O}(n)$
 - ▶ + one attempt of ejection chain on any local minimum.

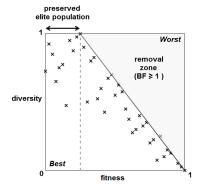
Penalized infeasible solutions:

- Simple linear combination of the excess of load, distance or other resource constraints on routes.
 - ▶ Penalty coefficients are adapted during the search.

UHGS – Biased fitness: combining ranks in terms of solution cost C(I) and contribution to the population diversity D(I), measured as a distance to other individuals:

$$BF(I) = C(I) + \left(1 - \frac{nbElite}{popSize - 1}\right)D(I)$$

- Used for parents selection
 - ⇒ Balancing quality with innovation to promote a more thorough exploration of the search space.
- Used during selection of survivors
 - \Rightarrow Removing individuals with worst BF(I) still guarantees elitism



- Initial experiments on CARP and MCGRP
- Literature on CARP and MCGRP built around several sets of well-known benchmark instances:

	#	Reference	$ N_R $	$ E_R $	$ A_R $	n	Specificities
CARP:							
GDB	(23)	Golden et al. (1983)	0	[11,55]	0	[11,55]	Random graphs; Only required edges
VAL	(34)	Benavent et al. (1992)	0	[39,97]	0	[39,97]	Random graphs; Only required edges
BMCV	(100)	Beullens et al. (2003)	0	[28,121]	0	[28,121]	Intercity road network in Flanders
EGL	(24)	Li and Eglese (1996)	0	[51,190]	0	[51,190]	Winter-gritting application in Lancashire
EGL-L	(10)	Brandão and E. (2008	0	$[347,\!375]$	0	$[347,\!375]$	Larger winter-gritting application
MCGRP:							
MGGDB	(138)	Bosco et al. (2012)	[3,16]	[1,9]	[4,31]	[8,48]	From CARP instances GBD
MGVAL	(210)	Bosco et al. (2012)	[7,46]	[6,33]	[12,79]	[36,129]	From CARP instances VAL
CBMix	(23)	Prins and B. (2005)	[0,93]	[0,94]	[0,149]	[20,212]	Randomly generated planar networks
$_{ m BHW}$	(20)	Bach et al. (2013)	[4,50]	[0,51]	[7,380]	[20,410]	From CARP instances GDB, VAL, & EGL
DI-NEARP	(24)	Bach et al. (2013) [120,347]	[120,486]	0	[240,833]	Newspaper and media product distribution

- To prevent any possible over-tuning
 ⇒ using the original parameters of the metaheuristics
- Single core: Xeon 3.07 GHz CPU with 16 GB of RAM
- Single termination criterion on all instances
 ⇒ scaled to reach a similar CPU time as previous
 - competitive algorithms.

• For each benchmark set, we collected the best three solution methods in the literature (some are heavily tailored for specific benchmark sets).

BE08	Brandão and Eglese (2008)	HKSG12	Hasle et al. (2012)	MTY09	Mei et al. (2009)
BLMV14	Bosco et al. (2014)	LPR01	Lacomme et al. (2001)	PDHM08	Polacek et al. (2008)
BMCV03	Beullens et al. (2003)	MLY14	Mei et al. (2014)	TMY09	Tang et al. (2009)
DHDI14	Dell'Amico et al. (2016)	MPS13	Martinelli et al. (2013)	UFF13	Usberti et al. (2013)

• Comparison with the proposed metaheuristics, which are searching the space of service permutations (our methods are not fine-tuned for any of these instance sets).

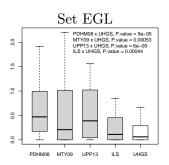
- Reporting the average and best solution on 10 runs.
- All Gap(%) values measured from the current best known solutions (BKS)
- Warning time measures for some previous algorithms: using known optimal solutions to trigger termination, or reporting the time to reach the best solution
 - ▶ Dependent on exogenous information
 - ▶ Not the complete search time
- Hence, two columns for time measures:
 - \Rightarrow "T" for total CPU time when available,
 - \Rightarrow "T*" for time to reach final solution.

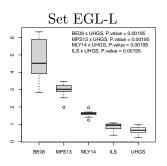
Variant	Bench.	n	Author	Runs	Avg.	Best	Т	Т*	CPU
			TMY09	30	0.009%	0.000%	0.11	_	Xe 2.0G
			BMCV03	1	0.000%	_	_	0.03	P-II 500M
	GDB	[11,55]	MTY09	1	0.000%	_	_	0.01	Xe~2.0G
			ILS	10	0.002%	0.000%	0.16	0.03	Xe~3.07G
			UHGS	10	0.000%	0.000%	0.22	0.01	Xe~3.07G
			MTY09	1	0.142%	_	_	0.11	Xe 2.0G
			LPR01	1	0.126%	_	2.00	_	P-III 500M
	VAL	[39,97]	BMCV03	1	0.060%	_	_	1.36	P-II 500M
			ILS	10	0.054%	0.024%	0.68	0.16	Xe 3.07G
			UHGS	10	$\boldsymbol{0.048\%}$	0.021%	0.82	0.08	Xe~3.07G
	BMCV	[28,121]	BE08	1	0.156%	_		1.08	P-M 1.4G
			MTY09	1	0.073%	_	_	0.35	Xe~2.0G
CARP			BMCV03	1	0.036%	_	2.57	_	P-II 450M
			ILS	10	0.027%	0.000%	0.82	0.22	Xe 3.07G
			UHGS	10	0.007%	0.000%	0.87	0.11	Xe 3.07G
		[51,190]	PDHM08	10	0.624%	_	30.0	8.39	P-IV 3.6G
			UFF13	15	0.560%	0.206%	13.3	_	I4 3.0G
	EGL		MTY09	1	0.553%	_	_	2.10	Xe~2.0G
			ILS	10	0.236%	0.106%	2.35	1.33	Xe 3.07G
			UHGS	10	0.153%	0.058%	4.76	3.14	Xe~3.07G
			BE08	1	4.679%	_		17.0	P-M 1.4G
			MPS13	10	2.950%	2.523%	20.7	_	I5 3.2G
	EGL-L	[347,375]	MLY14	30	1.603%	0.895%	33.4	_	I7 3.4G
			ILS	10	0.880%	0.598%	23.6	15.4	Xe~3.07G
			UHGS	10	$\boldsymbol{0.645\%}$	0.237%	36.5	27.5	Xe~3.07G

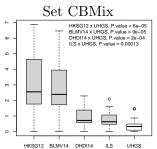
Variant	Bench.	n	Author	Runs	Avg.	Best	Т	Т*	CPU
			BLMV14	1	1.342%	_	0.31	_	Xe 3.0G
	MGGDB	[8,48]	DHDI14	1	0.018%	_	60.0	0.86	CPU~3G
	MGGDB	[0,40]	ILS	10	0.010%	0.000%	0.13	0.03	Xe~3.07G
			UHGS	10	0.015%	0.000%	0.16	0.01	Xe~3.07G
			BLMV14	1	2.620%	_	16.7	_	Xe~3.0G
	MGVAL	[36,129]	DHDI14	1	0.071%	_	60.0	3.69	CPU 3G
	MGVAL	[30,129]	ILS	10	0.067%	0.019%	1.18	0.32	Xe 3.07G
			UHGS	10	0.045%	0.011%	1.20	0.17	Xe 3.07G
	CBMix	[20,212]	HKSG12	2	_	3.076%	120	56.9	CPU 3G
			BLMV14	1	2.697%	_	44.7	_	Xe 3.0G
MCGRP			DHDI14	1	0.884%	_	60.0	19.6	CPU 3G
			ILS	10	0.733%	0.363%	2.46	1.48	Xe 3.07G
			UHGS	10	0.381%	0.109%	4.56	3.08	Xe~3.07G
			HKSG12	2	_	1.949%	120	60.1	CPU 3G
	BHW	[20,410]	DHDI14	1	0.555%	_	60.0	21.4	CPU 3G
	DIIV	[20,410]	ILS	10	0.440%	0.196%	5.22	2.90	Xe 3.07G
			UHGS	10	$\boldsymbol{0.208\%}$	0.077%	7.95	5.87	Xe~3.07G
			HKSG12	2	_	1.639%	120	93.0	CPU 3G
	DI-NEARP	[240,833]	DHDI14	1	0.536%	_	60.0	36.3	CPU~3G
	DI-NEAIG	[240,033]	ILS	10	0.199%	0.084%	30.0	21.3	Xe~3.07G
			UHGS	10	0.139%	0.055%	29.6	16.7	Xe~3.07G

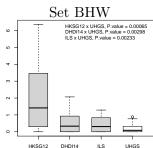
- New neighborhoods lead to much better solutions.
- ILS already produces better solutions than previous literature, and UHGS goes further in performance $\Rightarrow 0.503\%$ and 0.958% improvement on the large instance sets
- Average standard deviation in [0.000%, 0.292%]
- On the CARP benchmark sets, 187/191 BKS have been matched or improved. 153/155 known optimal solutions were found
- For the MCGRP, 408/409 BKS have been matched or improved. All 217 known optimal solutions found.

- Boxplot visualizations of Gap(%) of various methods on large-scale instances:
- Gray colors indicate a significant difference of performance, as highlighted by pairwise Wilcoxon tests with adequate correction for multiplicity



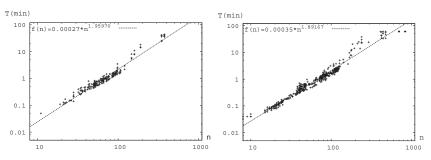






Scalability

• Growth of the CPU time of UHGS as a function of the number of services, for the CARP instances (left figure) and MCGRP instances (right figure). Log-log scale.



- A linear fit, with a least square regression, has been performed on the sample after logarithmic transformation:
 - \Rightarrow CPU time appears to grow in $\mathcal{O}(n^2)$

To reduce or not to reduce

- Previous slides: investigated whether methods using combined neighborhoods – with optimal choices of service orientations – can outperform methods based on more traditional neighborhoods
- Now analyzing whether relying on a problem reduction from CARP to CVRP (Martinelli et al., 2013) with a classical routing metaheuristic can be profitable.
- The reduction increases the number of services by $\times 2$.
 - ► Half of the edges of a CVRP solution, with a large fixed negative cost, directly determine the service orientations in the associated CARP solution.

To reduce or not to reduce

• Applied the same ILS and UHGS on the transformed instances, now using a classical move evaluation for the CVRP.

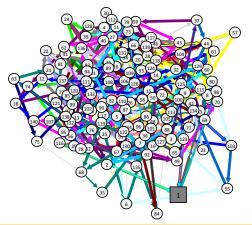
	Gap	o(%)	T (1	min)
	ILS	$\mathrm{ILS}_{\scriptscriptstyle\mathrm{CVRP}}$	ILS	$\mathrm{ILS}_{\scriptscriptstyle\mathrm{CVRP}}$
GDB	0.002%	0.000%	0.16	0.59
VAL	0.054%	0.061%	0.68	2.39
BMCV	0.027%	0.044%	0.82	2.79
EGL	0.236%	0.345%	2.35	8.50
EGL-L	0.880%	1.411%	23.6	60.0

	Ga	p(%)	T(min)		
	UHGS	$\mathrm{UHGS}_{\mathrm{CVRP}}$	UHGS	$\mathrm{UHGS}_{\mathrm{CVRP}}$	
GDB	0.000%	0.000%	0.22	0.72	
VAL	0.048%	0.048%	0.82	2.98	
BMCV	0.007%	0.014%	0.87	3.02	
EGL	0.153%	0.200%	4.76	12.65	
EGL-L	0.645%	1.001%	36.5	59.7	

- Final experiment about CARP and MCGRP with turn penalties
 - ▶ A must-have in various sectors of application, but more scarcely studied in the routing community.

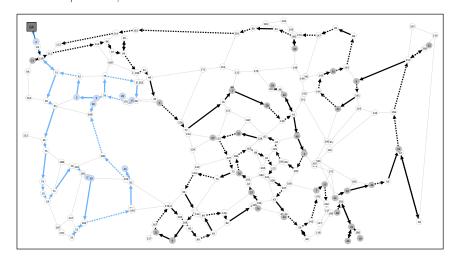
• Lack of reasonable benchmark sets, previous instances based on

random graphs:

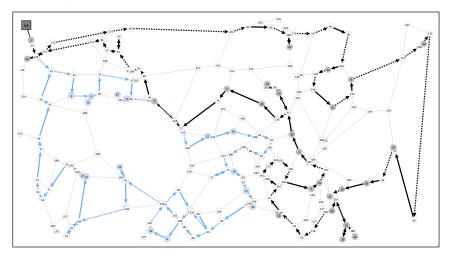


- Hence, also generating new benchmark instances to investigate the problem
- Extension of DI-NEARP (Bach et al., 2013), adding turn penalties \Rightarrow 28 instances with 240–833 services.
 - ▶ Application of media products distribution in Nordic countries
 - ▶ Edge distances are available but no node coordinates
- How to produce realistic turn penalties?
 - Reconstructing a plausible planar layout for each instance, with the FM³ algorithm of Hachul and Jünger (2005)
 ⇒ efficiently evaluates a force equilibrium, based on desired distances to obtain 2D node coordinates
 - ▶ 5γ for U-turns, 3γ for left turns, γ for intersection crossing
 - $ightharpoonup \gamma$ calibrated for turn penalties to scale to 30% of solution cost, (realistic according to analyses of Nielsen et al. 1998)

- Sample solution with small turn penalties:
 - $\gamma = 0.25$, distance = 4286:

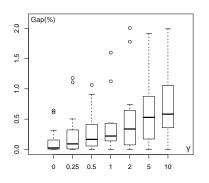


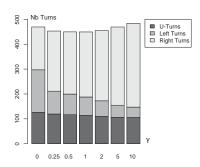
- Sample solution with slightly larger turn penalties:
 - $\gamma = 0.5$, distance of 4336:



	Gap (%)	Т	Cost	Distance	Nb Turns				
γ	Gap (%)	1		Distance	U-turns	Left	Right	All	
0	0.141%	50.68	25076.61	25076.61	126.24	170.85	172.35	469.44	
0.25	0.280%	51.32	27500.70	25164.44	119.40	91.72	241.98	453.10	
0.5	0.281%	51.65	29806.22	25250.74	116.79	82.77	250.17	449.73	
1	0.373%	51.74	34339.29	25451.40	113.87	73.91	261.63	449.41	
2	0.511%	51.77	43103.49	25986.19	109.84	62.54	282.69	455.06	
5	0.607%	51.90	68258.91	27243.48	106.31	48.52	314.51	469.34	
10	0.752%	51.92	109011.41	28534.13	105.23	42.01	336.76	484.00	

- To assess method performance, Gap(%) measured between average solutions and BKS produced by long runs.
- Gap and standard deviation remain moderate, usually good sign
- CPU time is moderate (≈ 50 min for 833 services).
 - ▶ Straightforward parallelization, or reduction of termination criterion if more speed is needed.





- Turn penalties seem to lead to slightly more difficult problems
- Significant reduction of left turns or U-turns even with very small penalties.
- A few turns cannot be avoided, due to the graph topology

Final experiments on other CARP variants

• Final experiments on CARP variants with multiple delivery periods (PCARP), multiple depots (MDCARP), and the min-max windy rural postman problem.

Final experiments on other CARP variants

Variant	Bench.	n	Author	Runs	Avg.	Best	Т	T *	\mathbf{CPU}
			LPR05	1	9.448%		12.5		P-IV 1.4G
			CLP06	1	7.741%	_	1.86	_	P–IV 2.4G
	PGDB	[65,165]	MPY11	30	3.900%	1.951%	0.20	_	Xe 2.0G
			UHGS [†]	10	0.730%	0.217%	0.14	0.09	Xe 3.07G
PCARP			UHGS	10	0.256%	0.071%	0.91	0.41	Xe~3.07G
			CLP06	1	16.494%	_	7.38	_	P–IV 2.4G
	PVAL	[94,300]	MPY11	30	8.691%	6.317%	0.87	_	Xe 2.0G
			UHGS [†]	10	1.614%	0.721%	0.82	0.61	Xe 3.07G
			UHGS	10	0.636%	0.161%	4.91	3.15	Xe 3.07G
	GDB	[8,48]	KY10	1	2.041%	_	0.02	_	P-IV 1.4G
MDCARP			UHGS [†]	10	0.296%	0.104%	0.01	0.01	Xe 3.07G
			UHGS	10	0.017%	0.000%	0.37	0.04	Xe~3.07G
	2V	[7,78]	BCS10	1	0.103%	_	0.94	_	I2 2.4G
	2.4		UHGS	10	0.008%	$\boldsymbol{0.002\%}$	0.18	0.07	Xe~3.07G
	3V	[7,78]	BCS10	1	0.230%	_	0.41		I2 2.4G
MM-kWRPP	3 4	[1,10]	UHGS	10	0.008%	0.000%	0.18	0.07	Xe~3.07G
IVIIVI-K VV I(I I	4V	[7,78]	BCS10	1	0.303%	_	0.29	_	I2 2.4G
	1 1	[1,10]	UHGS	10	0.014%	0.000%	0.18	0.06	Xe~3.07G
	5V	[7 78]	BCS10	1	0.392%	_	0.24		I2 2.4G
	5 V	[7,78]	UHGS	10	0.021%	0.000%	0.19	0.07	Xe~3.07G

 $[\]dagger :$ A shorter termination criteria has been used to make a fair comparison.

Contents

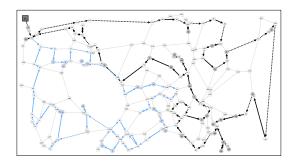
- Node and edge routing problems
- 2 Combined neighborhoods for arc routing problems
 - Methodology
 - Cutting off complexity: memories + bidirectional search
 - Cutting off complexity: moves filtering via LBs
- 3 Problem generalizations
- 4 Very large neighborhoods
- 5 Computational experiments
 - Integration into two state-of-the-art metaheuristics
 - Comparison with previous literature
 - CARP To reduce or not to reduce
 - Problems with turn penalties and delays at intersections
- 6 Conclusions/Perspectives

Conclusions

- Revisited a solution representation with implicit service orientations.
 - ⇒ made it efficient, systematic and general
- Interesting complexity (amortized O(1) in theory and very fast in practice) \Rightarrow Service orientations nearly come for free.
- Opportunities of problem and methodology generalizations
- State-of-the-art results for the CARP and MCGRP benchmark sets, as well as several other problems
- Connecting further arc and node routing worlds

Thank You I

THANK YOU FOR YOUR ATTENTION!



Technical report, instances, detailed results and slides available at: http://w1.cirrelt.ca/~vidalt/en/publications-thibaut-vidal.html

Source code will be available (GPL v3.0) when the article appears

Thank You II

- Bach, L., G. Hasle, S. Wøhlk. 2013. A lower bound for the node, edge, and arc routing problem. *Computers & Operations Research* 40(4) 943–952.
- Balas, E., N. Simonetti. 2001. Linear time dynamic-programming algorithms for new classes of restricted TSPs: A computational study. *INFORMS Journal on Computing* 13(1) 56–75.
- Benavent, E., V. Campos, A. Corberán, E. Mota. 1992. The capacitated arc routing problem: Lower bounds. *Networks* **22**(7) 669–690.
- Beullens, P., L. Muyldermans, D. Cattrysse, D. Van Oudheusden. 2003. A guided local search heuristic for the capacitated arc routing problem. European Journal of Operational Research 147(3) 629–643.
- Bosco, A., D. Laganà, R. Musmanno, F. Vocaturo. 2012. Modeling and solving the mixed capacitated general routing problem. *Optimization Letters* **7**(7) 1451–1469.
- Bosco, A., D. Laganà, R. Musmanno, F Vocaturo. 2014. A matheuristic algorithm for the mixed capacitated general routing problem. *Networks* **64**(4) 262–281.
- Brandão, J., R. Eglese. 2008. A deterministic tabu search algorithm for the capacitated arc routing problem. Computers & Operations Research $\bf 35(4)$ 1112–1126.
- Dell'Amico, Mauro, José Carlos Díaz Díaz, Geir Hasle, Manuel Iori. 2016. An adaptive iterated local search for the mixed capacitated general routing problem. $Transportation\ Science,\ Articles\ in\ Advance\ .$

Thank You III

- Golden, B.L., J.S. DeArmon, E.K. Baker. 1983. Computational experiments with algorithms for a class of routing problems. *Computers & Operations Research* **10**(1) 47–59.
- Hachul, S., M. Jünger. 2005. Drawing large graphs with a potential-field-based multilevel algorithm. J. Pach, ed., Graph Drawing, LNCS, vol. 3383. Springer, 285–295.
- Hasle, G., O. Kloster, M. Smedsrud, K. Gaze. 2012. Experiments on the node, edge, and arc routing problem. Tech. rep., SINTEF, Oslo, Norway.
- Irnich, S. 2008. Solution of real-world postman problems. European Journal of Operational Research 190(1) 52–67.
- Lacomme, P., C. Prins, W. Ramdane-Chérif. 2001. A genetic algorithm for the capacitated arc routing problem and its extensions. Applications of Evolutionary Computing 473–483.
- Lacomme, P., C. Prins, W. Ramdane-Cherif. 2004. Competitive memetic algorithms for arc routing problems. Annals of Operations Research 131(1-4) 159–185.
- Li, L.Y.O., R.W. Eglese. 1996. An interactive algorithm for vehicle routeing for winter-gritting. Journal of the Operational Research Society 47(2) 217–228.
- Martinelli, R., M. Poggi, A. Subramanian. 2013. Improved bounds for large scale capacitated arc routing problem. Computers & Operations Research 40(8) 2145–2160.

Thank You IV

- Mei, Y., X. Li, X. Yao. 2014. Cooperative co-evolution with route distance grouping for large-scale capacitated arc routing problems. *IEEE Transactions on Evolutionary Computation* 18(3) 435–449.
- Mei, Y., K. Tang, X. Yao. 2009. A global repair operator for capacitated arc routing problem. *IEEE Transactions on Systems, Man, and Cybernetics*. Part B, Cybernetics **39**(3) 723–734.
- Muyldermans, L., P. Beullens, D. Cattrysse, D. Van Oudheusden. 2005. Exploring variants of 2-opt and 3-opt for the general routing problem. *Operations Research* 53(6) 982–995.
- Nielsen, O.A., R.D. Frederiksen, N. Simonsen. 1998. Using expert system rules to establish data for intersections and turns in road networks. *International Transactions* in Operational Research 5(6) 569–581.
- Polacek, M., K.F. Doerner, R.F. Hartl, V. Maniezzo. 2008. A variable neighborhood search for the capacitated arc routing problem with intermediate facilities. *Journal of Heuristics* 14(5) 405–423.
- Prins, C. 2009. A GRASP evolutionary local search hybrid for the vehicle routing problem. F.B. Pereira, J. Tavares, eds., Bio-inspired Algorithms for the Vehicle Routing Problem. Springer, 35–53.
- Prins, C., S. Bouchenoua. 2005. A memetic algorithm solving the VRP, the CARP, and more general routing problems with nodes, edges and arcs. W. Hart, N. Krasnogor, J. Smith, eds., *Recent advances in memetic algorithms*. Springer, 65–85.

Thank You V

- Ramdane-Cherif, W. 2002. Problèmes d'optimisation en tournées sur arcs. Ph.D. thesis, Université de Technologie de Troyes, France.
- Tang, K., Y. Mei, X. Yao. 2009. Memetic algorithm with extended neighborhood search for capacitated arc routing problems. *IEEE Transactions on Evolutionary Computation* 13(5) 1151–1166.
- Usberti, F.L., P.M. França, A.L.M. França. 2013. GRASP with evolutionary path-relinking for the capacitated arc routing problem. *Computers & Operations Research* 40(12) 3206–3217.
- Vidal, T., T.G. Crainic, M. Gendreau, N. Lahrichi, W. Rei. 2012. A hybrid genetic algorithm for multidepot and periodic vehicle routing problems. *Operations Research* 60(3) 611–624.
- Vidal, T., T.G. Crainic, M. Gendreau, C. Prins. 2014. A unified solution framework for multi-attribute vehicle routing problems. European Journal of Operational Research 234(3) 658–673.
- Vidal, Thibaut. 2016. Technical note: Split algorithm in O(n) for the capacitated vehicle routing problem. Computers & Operations Research 69 40–47.
- Wøhlk, S. 2003. Simulated annealing for the capacitated arc routing problem, using an online formulation. Tech. rep., University of Southern Denmark.
- Wøhlk, S. 2004. Combining dynamic programming and simulated annealing. Tech. rep., University of Southern Denmark.