Phase Unwrapping and Operations Research

Thibaut Vidal

Departamento de Informática, Pontifícia Universidade Católica do Rio de Janeiro Rua Marquês de São Vicente, 225 - Gávea, Rio de Janeiro - RJ, 22451-900, Brazil vidalt@inf.puc-rio.br

> Seminar GERAD Montreal, February 4th, 2016

Joint work with Ian Herszterg and Marcus Poggi

・ ロ ト ・ 雪 ト ・ ヨ ト ・

Phase Unwrapping

2 2D Phase Unwrapping

- Residue theory
- Path-following methods
- Norm minimization

Proposed Methodology

- Main assumptions
- Mathematical Models and Complexity
- Exact Resolution

4 Computational Experiments

- Solution quality for the MSFBC
- Application to the 2DPU

Conclusions

Radar Interferometry

Figure : Radar interferometry

э

イロト イポト イヨト イヨト

• While the phase information can take any real value, it is wrapped to a 2π interval with a $] - \pi, \pi]$ domain by the \arctan operator.

3

イロト 不得下 イヨト イヨト

Figure : Wrapping effect on a 1D continuous phase signal

Ξ

・ 同 ト ・ ヨ ト ・ ヨ ト

Figure : Wrapping effect on a 2D phase image

・ 同・ ・ ヨ・・・

글 > 글

- Phase Unwrapping = reconstructing the continuous signal by removing the 2π -multiple ambiguity.
- ITOH, K., Analysis of the phase unwrapping algorithm, Applied Optics, v.21, n.14, p. 2470-2470, 1982

イロト イポト イヨト イヨト

Itoh's Unwrapping Method (for discretized phase values):

Input = Wrapped phase values, $\psi(n)$ Output = Unwrapped phase values $\phi(n)$

```
Initialization: \phi(1) = \psi(1);

For i \leftarrow 2 to N

\Delta_{\psi} \leftarrow \psi(i) - \psi(i-1);

IF \Delta_{\psi} \leq -\pi

\Delta_{\psi} \leftarrow \Delta_{\psi} + 2\pi

ELSEIF \Delta_{\psi} > \pi

\Delta_{\psi} \leftarrow \Delta_{\psi} - 2\pi;

\phi(i) \leftarrow \phi(i-1) + \Delta_{\psi};
```

Phase Unwrapping

Thibaut VIDAL (PUC-Rio)

かへで 9 / 77

E

Itoh's condition: For unambiguous phase unwrapping, the difference between any two adjacent samples in the continuous phase signal should not exceed a value of π

イロト イポト イヨト イヨト

- Phase unwrapping problems often comes from complex applications dealing with rich geometries and signal acquisition methods that are highly susceptible to noise.
- Itoh's condition is not fulfilled \Rightarrow Occurrence of "fake wraps".
- Errors are propagated through subsequent samples in the unwrapping process.

- 4 同 1 - 4 回 1 - 4 回 1

Phase Unwrapping

Figure : Unwrapping process over noisy data

3

イロト イポト イヨト イヨト

Phase Unwrapping

Figure : Unwrapping process over under-sampled data

Ξ

イロト イポト イヨト イヨト

Table of Contents

Phase Unwrapping

2D Phase Unwrapping

- Residue theory
- Path-following methods
- Norm minimization

Proposed Methodology

- Main assumptions
- Mathematical Models and Complexity
- Exact Resolution

Computational Experiments

- Solution quality for the MSFBC
- Application to the 2DPU

Conclusions

- In higher dimension: Itoh's algorithm can be applied to any continuous integration path
- \Rightarrow Every integration path P can constitute a discrete unwrapping path over any multidimensional space.
- \Rightarrow Paths could be selected to avoid damaged regions (noise, under-sampling)

イロト 不得下 イヨト イヨト

 How to detect singularities in two or more dimensions?
 GHIGLIA, D. C.; MASTIN, G. A.; ROMERO, L. A, Cellular automata method for phase unwrapping, v.4, n.1, p. 267-280, 1987

3

イロト イポト イヨト イヨト

Wrapped phase example A – No singularity:

Unwrapped values from Example A:

Thibaut VIDAL (PUC-Rio) Phase Unwrapping and Operations Research

Wrapped phase example B – Singularity:

Unwrapped values from Example B:

Thibaut VIDAL (PUC-Rio) Phase Unwrappin

- \Rightarrow The location of all singularities can be identified by checking all 2x2 elementary loops (Ghiglia & Pritt, 1998). These specific points are called "residues"
 - Residues charges (polarity) are either positive (+1) or negative (-1)
 - In the presence of residues, an unambiguous phase unwrapping is possible if, and only if, every integration path encircles none or a *balanced* number of residues (as many positive as negative)

ヘロト ヘ戸ト ヘヨト ヘヨト

Residue theory

Figure : Residues detected over a wrapped phase image corrupted by noise

< 67 ▶

- Yet, not all residues come from noise
- Phase discontinuities are naturally present in many phase unwrapping applications.
- The topology of residues may suggest structural delimitations in the subject of study.

イロト 不得下 イヨト イヨト

Figure : Wrapped phase data and residues – high-fidelity InSAR simulator on a steep-relief mountainous region in Colorado

Figure : Wrapped phase data and residues – head MRI

• Path-following Methods:

- ⇒ Apply the path unwrapping method, but the solution is unique if and only if no integration path can encircle an unbalanced number of residues
- \Rightarrow For this purpose, create artificial barriers called *branch-cuts* to solve the path-dependency problem.
- \Rightarrow Branch-cuts can introduce a $\pm 2\pi$ discontinuity between samples in opposite sides of the barriers.

(4 個) トイヨト イヨト

Path-following Methods

Figure : Example of residues (blue, red) and possible branch-cuts configurations (green).

< 67 ▶

∃ >

Path-following Methods

Figure : Another example of residues (blue, red) and possible branch-cuts configurations (green).

- The placement of branch-cuts fully characterizes the unwrapped solution
- ⇒ Matching pairs of residues is possible (Buckland et al. 1995. Unwrapping noisy phase maps by use of a minimum-cost-matching algorithm. Applied Optics, 44(0))
- ⇒ Creating trees of residues is possible, as long as they include a balanced number of positive and negative residues (or are connected to the border of the image).
- \Rightarrow Using Steiner points is possible
 - Minimizing the length of the branch-cuts is a variant of geometrical Steiner problem with additional balance constraints ⇒ NP-hard (and quite "tough" in practice for heuristic and exact methods)

(日) (四) (三) (三) (三)

- Finally, from a "norm-minimization" perspective
- \Rightarrow Seeking a continuous solution whose gradients are "as close as possible" to those of the wrapped signal (norm minimization)

$$\arg\min_{\Phi} \sum_{m=1}^{M} \sum_{n=1}^{N-1} \left| \Delta^{h} \phi_{m,n} - \Delta^{h} \psi_{m,n} \right|^{p} + \sum_{m=1}^{M} \sum_{n=1}^{N-1} \left| \Delta^{v} \phi_{m,n} - \Delta^{v} \psi_{m,n} \right|^{p}$$

s.t. $\phi_{m,n} = \psi_{m,n} + 2\mathbf{k}_{m,n}\pi \ \forall (m,n)$
 $\mathbf{k} \in \mathbb{Z} \ \forall (m,n)$

 \Rightarrow Remark that the length of the branch cuts is an upper bound of the number of differences of gradient (L^0 -norm) between the wrapped signal and the continuous solution.

Table of Contents

Phase Unwrapping

2 2D Phase Unwrapping

- Residue theory
- Path-following methods
- Norm minimization

Proposed Methodology

- Main assumptions
- Mathematical Models and Complexity
- Exact Resolution

Computational Experiments

- Solution quality for the MSFBC
- Application to the 2DPU

Conclusions

Proposed methodology:

- We search for a minimum-cost balanced spanning forest (MCBSF)
- Spanning trees are allowed, as long as they contain a balanced number of residues, or are connected to the border of the image
- We do not include Steiner points in the solutions.

Figure : Using Steiner-trees to cluster groups of residues.

Main assumptions

- We do not include Steiner points in the solutions \Rightarrow Why?
- \Rightarrow Spanning trees better respect the natural boundaries of the image (cliffs, fractures...)
- \Rightarrow For most practical purposes, the optimal spanning tree solution is a high-quality approximation of the Steiner solution.
- \Rightarrow The model remains NP-hard, but efficient combinatorial optimization methods can be developed.

Figure : Using Steiner-trees or spanning trees to cluster groups of residues.

Let G = (V,E) be a graph with positive edge costs, where every vertex $v \in V$ has a weight $w_v \in \{-1,1\}$. Let d_e be the cost (distance) of edge $e \in E$ and x_e be the decision variable indicating whether edge e should be part of the solution.

ロト 不得下 不良下 不良下

$$\begin{split} \min \sum_{e \in E} d_e x_e \\ \text{s.t.} \sum_{a \in \delta^+(S)} x_a \geq 1 & \forall S \subset V \text{ such that } \sum_{v \in S} w_v > 0 \\ \sum_{a \in \delta^-(S)} x_a \geq 1 & \forall S \subset V \text{ such that } \sum_{v \in S} w_v < 0 \\ x_e + x_{e'} \leq 1 & \forall e = (i, j), e' = (j, i) \in E \\ x_e \in \{0, 1\} & \forall e \in E \end{split}$$

Mathematical formulation: Set Partitioning

- Set Partitioning formulation (SPF) for the MSFBC:
 - Let J be the set of all balanced subsets V_j of V
 - c_j is the cost of the MST connecting subset V_j

$$\begin{split} \min \sum_{j \in J} c_j x_j \\ \text{s.t.} \quad & \sum_{j \in J} a_{vj} x_j = 1 \\ & x_j \in \{0, 1\} \\ & a_{vj} = \begin{cases} 1 & \text{if } v \in S_j \\ 0 & \text{if } v \notin S_j \end{cases} \quad & \forall j \in J \end{split}$$

- 4 個 ト - 4 国 ト - 4 国 ト

- We developed mathematical programming approaches using the cut-based formulation, and metaheuristics
 - Primal Heuristics (metaheuristics)
 - $\bullet\,$ Dual Heuristic + Dual Ascent to discard non-promising arcs
 - Branch-and-cut algorithm

イロト 不得下 イヨト イヨト

Solving the linear program

• Because of the exponential number of constraints, unrealistic to solve even the linear program ⇒ cuts generation.

```
input : The instance of the problem
output: The optimal solution set
Initialization: Solve the initial LP considering only the cuts with single
vertices as constraints. Let \mathbf{x} be the solution set, \mathbf{lp} the current linear
program and balanced a boolean indicating if all trees are balanced.
x \leftarrow solve(lp)
balanced \leftarrow false;
while not balanced do
    Build \overline{G} = (\overline{V}, \overline{E}) from the solution set x;
    balanced \leftarrow true:
    foreach pair (i,j) of vertices in \overline{V} do
        \{S, maxFlow\} \leftarrow minCutMaxFlow(G, i, j);
        if S is unbalanced, maxFlow < 1 and S \notin Ip then
            lp \leftarrow lp + \{S\};
balanced \leftarrow false;
        end
    end
    if balanced is false then
        x \leftarrow solve(lp);
    end
end
return x;
                                                                ヘロト 人間ト ヘヨト ヘヨト
```

Thibaut VIDAL (PUC-Rio)
- Dual Heuristics: **Dual Ascent** (over the cut-based, directed, formulation)
 - $\Rightarrow\,$ Selects violated cuts and increase their dual variables until one arc becomes saturated
 - ⇒ Based on Wong's Dual Ascent procedure for the Steiner-tree problem with directed cuts formulation (Wong, R.T., 1984. A dual ascent approach for steiner tree problems on a directed graph. Mathematical Programming, 28(3), pp.271-287.)
 - \Rightarrow Selection: Greedy or Random

ヘロト ヘ戸ト ヘヨト ヘヨト

• The selection of violated cuts was tested with two different criteria:

- (minrc) by the minimum reduced cost arc in the graph (the cut that contains a minimum reduced cost-edge in its edge set)
- (random) by randomly selecting a non maximal dual variable and saturating at least one of its arcs

Dual Scaling

• Multiplying the dual solution by a constant factor $0<\alpha<1,$ and reapplying the dual ascent

《曰》 《聞》 《臣》 《臣》

Dual Heuristic

```
input : A dual initial solution \pi
output: A feasible dual solution \pi'
Initialization: Build G_{\pi} = (V, E) from the saturated arcs in \pi
\pi' \leftarrow \pi:
while exists a violated cut R \in G_{\pi} do
    W \leftarrow selectViolatedCut();
   if \sum p_v > 0 then
      v \in W
     Augment \pi'_W until at least one arc in \delta^-(W) becomes saturated;
    end
    else if \sum p_v < 0 then
            v \in W
      Augment \pi'_W until at least one arc in \delta^+(W) becomes saturated;
    end
    Add the newly saturated arcs in G_{\pi};
end
return \pi';
```

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Branch-and-Cut

- Based on the directed formulation
- Uses primal bounds and dual bound to fix arcs by reduced cost
- Uses the unbalanced cuts of the dual solution as initial constraints
- Solves the linear relaxed program at each node
- Branching: choose the most fractional variable
- Exploration: depth-first search

イロト 不得下 イヨト イヨト

• Iterated Local Search (ILS) metaheuristic

- Using an indirect solution representation: a solution is represented as a partition of the set of vertices into components P_1, \ldots, P_k such that $\bigcup P_i = V$
- The cost $c(P_i)$ of any component P_i can be efficiently derived by solving a minimum-cost spanning tree problem.
- Any unbalanced component P_i is not considered infeasible, but must be connected to a dummy node that represents the border of the image.

- Iterated Local Search (ILS) metaheuristic
 - Initial Solution obtained by computing a minimum-cost spanning tree over V and disconnecting edges that are longer than a threshold d_{MAX} .
 - Local Search based on a variety of neighborhoods.
 - Large neighborhood search using mathematical programming over a set partitioning formulation
 - Simple perturbation procedure

・ロン ・四 と ・ 回 と ・ 日 と

Algorithm 1 Hybrid Iterated Local Search

```
1: S \leftarrow \text{GenerateInitialSolution}:
 2: S^* \leftarrow S; It_{\text{SHAK}} \leftarrow 0;
 3: while It_{\text{SHAK}} < It_{\text{MAX}} do
 4: S \leftarrow \text{LocalSearch}(S);
 5: if \exists k \in \mathbb{N}^+ s.t. It_{\text{SHAK}} = k \times It_{\text{SP}} then
 6: S \leftarrow \text{SetPartitioning}();
     end if
 7:
 8: if c(S) < c(S^*) then
     S^* \leftarrow S:
 9:
         It_{\text{SHAK}} \leftarrow 0;
10:
         end if
11:
         S \leftarrow \operatorname{Perturb}(S) or \operatorname{Perturb}(S^*) with equal probability;
12:
13: end while
14: return S^*;
```

- 4 同下 4 国下 - 4 国下 - -

- Iterated Local Search (ILS) metaheuristic
 - Local Search based on a variety of neighborhoods.
 - Enumerating all component pairs (T_i, T_j) in random order to test the associated moves.
 - Each move evaluation requires to build the new spanning trees for the modified components
 - First-improvement policy

・ロト ・四ト ・ヨト ・ヨト

- Relocate single vertices +/- or pairs (+,-)
 - Relocates one or more vertices v_i from T_1 to T_2 , independently of its polarity, or any pair of opposite signed vertices v_i and v_j from T_1 to T_2 .

ILS - Neighbourhoods

- Swap single vertices +/- or pairs (+,-)
 - Swaps one or more vertices v_i from T_1 with v_j from T_2 , both with same polarity, or a pair of vertices v_i and v_j from T_1 and a pair v_k and v_l from T_2 with opposite signed polarities.

ILS - Neighbourhoods

Merge

• Merges two components T_1 and T_2 , into a single component

- 4 同 1 - 4 回 1 - 4 回 1

- Break
 - Breaks the longest edge in a given tree T_2 , generating two new components

Break1-Insert1

• Merges two given trees, T_1 and T_2 , into a single component, compute the spanning tree and disconnect the longest edge, forming two new components.

< 🗇 🕨 < 🖻 🕨

- **Speed-up** procedures:
 - **Memory structures** to avoid testing again moves that are known to be non-improving.
 - **Pruning**: avoids moves on trees that are very distant from each other by computing a maximum distance radius for each vertex.

イロト イポト イヨト イヨト

- Perturbation procedure is applied to escape from local minima.
- \bullet Applied with equal probability to either S or S^{\ast}
- From the spanning-tree representation of the solution, with T, components, the perturbation removes $k \in \{1, \lceil 0.15T \rceil\}$ edges, creating disjoint components which are randomly recombined to resume the search with T components.

・ロト ・ 同ト ・ ヨト ・ ヨト

- Regularly solving the set partitioning formulation, using a pool of columns collected from local minimums of the ILS.
- The size of the pool is limited to 2000 columns.
- Executed every $It_{\rm SP}$ iterations.

イロト 不得下 イヨト イヨト

Table of Contents

Phase Unwrapping

2 2D Phase Unwrapping

- Residue theory
- Path-following methods
- Norm minimization

3 Proposed Methodology

- Main assumptions
- Mathematical Models and Complexity
- Exact Resolution

Computational Experiments

- Solution quality for the MSFBC
- Application to the 2DPU

Conclusions

- Computational experiments designed to address two main objectives:
 - Validade and investigate the performance of the proposed methods.
 - Evaluate the performance of the MSFBC approach in the two-dimensional phase unwrapping domain, when compared to other path-following methods.
- Instances designed to test and identify the limitations and the scalability factor of the proposed methods.

ヘロト ヘ戸ト ヘヨト ヘヨト

- Generated by randomly spreading p positive and n negative vertices on a $4p\times 4n$ Euclidean space.
- Complete graph: edge costs defined by the 2D Euclidean distance between vertices
- Every vertex is also connected to its closest border point
- 21 sets of 5 instances each: 8 to 1024 nodes
- We have collected the best solutions ever found during the heuristics and exact methods in order to evaluate the quality of each proposed algorithm.

- 4 同 1 - 4 回 1 - 4 回 1

- Executed for 10 times with two termination criterion per run, whichever came first:
 - 100 iterations ($It_{MAX} = 100$) without improving the best solution found
 - A time bound of 3600 seconds
- The set covering routine is executed at every $(1/3)It_{MAX}$ iterations, with a time bound of 300 seconds
- The maximum distance radius for every vertex v is limited to 25% of the shortest distances between v and the set of vertices V-{v}

コート 人間 ト 人 ヨ ト 人 ヨ ト 二 ヨ

Experiments – Hybrid ILS

Group	V	$GAP_B(\%)$	OPT	$GAP_{AVG}(\%)$	Avg_T
PUC-8	8	0.00	5/5	2.49	0.27
PUC-12	12	0.00	5/5	0.00	0.77
PUC-16	16	0.00	5/5	0.52	1.60
PUC-20	20	0.00	5/5	0.21	3.60
PUC-24	24	0.00	5/5	0.64	5.46
PUC-28	28	0.00	5/5	1.06	10.50
PUC-32	32	0.00	5/5	0.76	14.88
PUC-36	36	0.00	5/5	0.94	19.91
PUC-40	40	0.00	5/5	0.63	32.49
PUC-44	44	0.14	4/5	1.44	44.50
PUC-48	48	0.00	5/5	0.73	48.91
PUC-52	52	0.00	5/5	1.33	70.03
PUC-56	56	0.00	5/5	1.35	82.76
PUC-60	60	0.00	5/5	1.15	97.13
PUC-64	64	0.35	4/5	3.02	134.45
PUC-80	80	0.40	3/5	3.26	304.64
PUC-96	96	0.10	2/2	4.81	650.05
PUC-128	128	1.05	2/2	5.45	2091.65
PUC-256	256	0.00	0/0	5.78	3600.00
PUC-512	512	0.00	0/0	6.31	3600.00
PUC-1024	1024	4.00	0/0	4.85	3600.00

E

・ロト ・聞 ト ・ヨト ・ヨト

Experiments – Hybrid ILS

• Growth of the CPU time appears to be cubic as a function of instance size.

.∃ . ⊳

Dual Ascent + Dual Scaling

Group	$GAP_{minrc}(\%)$	$GAP_{random}(\%)$	$T_{minrc}(s)$	$T_{random}(s)$
PUC-8	2.09	0.00	< 0.01	< 0.01
PUC-12	7.33	0.00	< 0.01	< 0.01
PUC-16	2.75	3.55	< 0.01	< 0.01
PUC-20	6.46	1.45	< 0.01	< 0.01
PUC-24	3.78	3.78	< 0.01	< 0.01
PUC-28	8.92	3.34	0.01	< 0.01
PUC-32	9.19	3.71	0.01	< 0.01
PUC-36	14.63	7.61	0.01	< 0.01
PUC-40	13.05	2.96	0.02	0.01
PUC-44	13.82	3.74	0.02	0.01
PUC-48	4.78	3.22	0.02	0.01
PUC-52	11.93	4.21	0.03	0.02
PUC-56	10.80	3.29	0.03	0.02
PUC-60	10.32	3.99	0.07	0.03
PUC-64	11.14	4.15	0.08	0.03
PUC-80	15.94	6.87	0.13	0.07
PUC-96	18.69	9.19	0.11	0.12
PUC-128	16.37	10.28	0.36	0.30
PUC-256	34.81	16.48	10.48	2.64
PUC-512	33.87	18.18	53.37	20.02
PUC-1024	40.44	26.15	1312.55	169.29

・ 日 ト ・ 御 ト ・ 臣 ト ・ 臣 ト

Thibaut VIDAL (PUC-Rio)

E

- Executed with a time bound of 3600 seconds
- 80 out of 105 primal solutions obtained by the ILS method proved to be optimal
- 20 out of 105 instances were not solved to optimality, with an average gap of 17% between the best lower and upper bounds
- As expected, the separation of cuts by the min-cut/max-flow procedure took more than 50% of the running time in many instances

- 4 伺 ト 4 ヨ ト 4 ヨ ト

Group	V	Reduction (%)	$GAP_{root}(\%)$	$GAP_{LB-UB}(\%)$	OPT	Avg-T (s)	PtPS(%)
PUC-8	8	85.28	0.00	0.00	5	< 0.01	4.47
PUC-12	12	92.05	0.00	0.00	5	< 0.01	0.79
PUC-16	16	91.47	0.07	0.00	5	< 0.01	9.64
PUC-20	20	93.95	0.42	0.00	5	0.01	8.98
PUC-24	24	85.63	0.04	0.00	5	0.01	9.05
PUC-28	28	86.95	1.36	0.00	5	0.03	11.98
PUC-32	32	85.93	1.54	0.00	5	1.13	14.52
PUC-36	36	66.95	2.32	0.00	5	2.27	32.37
PUC-40	40	79.10	1.33	0.00	5	1.15	52.03
PUC-44	44	84.56	1.75	0.00	5	9.43	43.30
PUC-48	48	88.39	0.82	0.00	5	0.39	35.11
PUC-52	52	85.93	1.34	0.00	5	1.76	32.35
PUC-56	56	74.77	1.17	0.00	5	30.61	37.13
PUC-60	60	72.58	1.45	0.00	5	4.37	39.82
PUC-64	64	74.62	1.46	0.00	5	128.94	55.28
PUC-80	80	48.02	2.05	0.00	5	1057.56	38.61
PUC-96	96	48.01	1.96	0.60	3	2182.13	54.17
PUC-128	128	55.32	2.95	2.62	2	2302.03	45.18
PUC-256	256	2.69	9.87	2.13	0	3600.00	34.03
PUC-512	512	0.00	17.47	15.34	0	3600.00	19.04
PUC-1024	1024	0.00	18.62	18.54	0	3600.00	15.56

- Methods tested with three well-known benchmark instances and compared against two classic 2DPU algorithms
- Four metrics in order to evaluate and compare the quality of each solution :
 - $\bullet~(N)$ the total number of absolute phase gradients that differ from their wrapped counterparts
 - (L) The total length of the branch-cuts
 - (\mathbf{T}) The number of trees produced by the branch-cuts.
 - $\bullet~(I)$ The number of isolated regions produced by the branch-cuts

ヘロト 人間ト ヘヨト ヘヨト

E

◆ロト ◆聞ト ◆ヨト ◆ヨト

- Radar interferometry example
- 846 residues (422 positives and 426 negatives) distributed over a 152x458-pixel image
- Greatest challenge: Efficiently cluster the sparse group of residues and respect the structural delimitations

イロト イポト イヨト イヨト

Long's Peak: Goldstein

イロト イポト イヨト イヨト

Long's Peak: Minimum-cost matching algorithm

Long's Peak: MSFBC

표 문 표

▲□▶ ▲圖▶ ▲圖▶ ▲

Table : Results for Long's Peak data set

Method	N	L	Т	I
Goldstein	1437	10647.96	49	110
MCM	1075	1545.38	429	47
MSFBCP	975	1264.31	68	25

E

・ロト ・ 一下・ ・ ヨト・

Head Magnetic Resonance Image (MRI)

- Magnetic Resonance Image example
- 1926 residues (963 positives and 963 negatives) defined on a 256x256-pixel grid
- Greatest challenge: Considered to pose a difficult problem to the unwrapping procedure since various regions are delimited by residues and appear to be completely isolated from one another.

(4 個)ト イヨト イヨト

Head MRI: Goldstein

E

イロト イヨト イヨト イヨト

Head MRI: Minimum-cost matching algorithm

Head MRI: MSFBC

E

イロト イヨト イヨト イヨト
Table : Results for Head MRI data set

Method	N	L	Т	I
Goldstein	2570	11696.44	153	257
MCM	1789	1588.72	963	16
MSFBCP	1810	1722.56	57	19

E

◆ロト ◆聞ト ◆ヨト ◆ヨト

Table of Contents

Phase Unwrapping

2 2D Phase Unwrapping

- Residue theory
- Path-following methods
- Norm minimization

Proposed Methodology

- Main assumptions
- Mathematical Models and Complexity
- Exact Resolution

Computational Experiments

- Solution quality for the MSFBC
- Application to the 2DPU

Conclusions

- We have proposed a new model for the 2D Phase Unwrapping problem, along with a new set of mathematical formulations and methods
- We developed efficient methods known from the field of optimization and operations research to address the minimization of the branch-cuts
- The proposed methods constituted a better approximation of the "L⁰-norm" problem in the field of phase unwrapping

ロト 不得下 不良下 不良下

- Solutions obtained by heuristic methods, with no guarantee on optimality
- In fact, the optimal solution for the MSFBC approach would be theoretically better than any path-following method
- Steiner \times MSFBC?
- Devise a column generation approach and general improvements over the heuristic methods

(4 個)ト イヨト イヨト

Thanks!

E

イロト イヨト イヨト イヨト