Linear-time Split algorithm and applications

Thibaut Vidal

Departamento de Informática, Pontifícia Universidade Católica do Rio de Janeiro Rua Marquês de São Vicente, 225 - Gávea, Rio de Janeiro - RJ, 22451-900, Brazil vidalt@inf.puc-rio.br

Seminar, University of Brescia September 21th, 2016

Contents

- Giant-tour representations and the VRP
- Bellman-based Split algorithm
- Linear-time Split algorithm
 - Properties of the shortest-path graph
 - Unlimited fleet
 - Limited fleet
 - Soft capacity constraints
 - Computational experiments
- 4 Application: VRP with intermediate facilities
 - Problem Statement
 - Methodology
 - Computational experiments
- 5 Perspectives and Conclusions

Contents

Giant-tour representations and the VRP

- 2 Bellman-based Split algorithm
- 3 Linear-time Split algorithm
 - Properties of the shortest-path graph
 - Unlimited fleet
 - Limited fleet
 - Soft capacity constraints
 - Computational experiments
- Application: VRP with intermediate facilities
 - Problem Statement
 - Methodology
 - Computational experiments
- 5 Perspectives and Conclusions

- Prins (2004) \Rightarrow Important milestone for the VRP, first HGA to outperform classical Tabu searches
- A key ingredient of success: the giant-tour solution representation, allowing to use much simpler crossovers

Giant tour representation with distances and demands :

Giant-tour representations and the VRP

- Ten years on \Rightarrow extensive growth of population-based methods.
- Efficient GAs with a complete solution representation and more advanced crossover operators now exist (Nagata and Bräysy, 2009)
- But the approach of Prins (2004) remains simple and generic
- Many generalizations (see the survey of Prins et al., 2014): capacity and duration limits, time windows, choices of depots, vehicle types, edges orientations in CARP, or profitable customers in each route...

Contents

Giant-tour representations and the VRP

Bellman-based Split algorithm

3 Linear-time Split algorithm

- Properties of the shortest-path graph
- Unlimited fleet
- Limited fleet
- Soft capacity constraints
- Computational experiments

4 Application: VRP with intermediate facilities

- Problem Statement
- Methodology
- Computational experiments

5 Perspectives and Conclusions

- The "Splitting" problem:
- INPUT:
 - ▶ A giant tour of *n* customers with demands q_1, \ldots, q_n
 - \blacktriangleright A vehicle capacity limit Q
 - ▶ $d_{i,i+1}$ be the distances between two successive customers
 - d_{0i} and d_{i0} the distances from and to the depot
- **FIND:** a best segmentation of the tour into feasible routes which originate and return to the depot, and contain consecutive visits from the giant tour

- Classical formulation as the search for a shortest path between 0 and n in an acyclic graph $\mathcal{G} = (\mathcal{V}, \mathcal{A})$:
 - $\blacktriangleright \mathcal{V} = (0, \dots, n)$
 - each arc $(i, j) \in \mathcal{A}$ for i < j corresponds to a feasible route starting at the depot, visiting customers i + 1 to j, and returning to the depot (Beasley, 1983; Prins, 2004).

Illustrative Example

Node	0	1	2	3	4	5	6	7	8	9	10	11	12
$d_{i-1,i}$	—	4	3	7	2	7	3	8	6	8	4	3	3
$d_{0,i}$	—	4	5	10	9	14	12	16	11	5	3	5	6
q_i		11	3	6	5	7	8	1	7	3	7	3	6
p[i]	0	8	12	24	25	43	44	56	67	69	75	80	84

with $\mathbf{Q} = \mathbf{30}$.

Illustrative Example

Node	0	1	2	3	4	5	6	7	8	9	10	11	12
$d_{i-1,i}$	—	4	3	7	2	7	3	8	6	8	4	3	3
$d_{0,i}$	—	4	5	10	9	14	12	16	11	5	3	5	6
q_i	—	11	3	6	5	7	8	1	7	3	7	3	6
p[i]	0	8	12	24	25	43	44	56	67	69	75	80	84

with $\mathbf{Q} = \mathbf{30}$.

Auxiliary Graph for Split:

with the cost of an arc (i,j):

$$c(i,j) = d_{0,i+1} + \sum_{k=i+1,\dots,j-1} d_{k,k+1} + d_{j,0}$$

Bellman-based Split algorithm

```
1 p[0] \leftarrow 0;
 2 for t = 1 to n do
    p[t] \leftarrow \infty;
 3
 4 for t = 0 to n - 1 do
          load \leftarrow 0:
 5
          i \leftarrow t+1:
 6
          while i \leq n and load + q_i \leq Q do
 7
                load \leftarrow load + q_i;
 8
               if i = t + 1 then
 9
                     cost \leftarrow d_{0,i};
10
                else
11
                     cost \leftarrow cost + d_{i-1,i};
12
               if p[t] + cost + d_{i0} < p[i] then
13
                     p[i] = p[t] + cost + d_{i0} ;
14
                    pred[i] = t;
15
                i \leftarrow i + 1:
16
```

• $O(n^2)$ complexity \Rightarrow in practice O(nB) if the average number of customers in a feasible route is bounded by a constant B.

• Question 1: Can we do better?

• Question 2: If we have a better Split, what can we do with it?

- Question 1: Can we do better?
- Question 2: If we have a better Split, what can we do with it?

Contents

- Giant-tour representations and the VRP
- Bellman-based Split algorithm
- Linear-time Split algorithm
 - Properties of the shortest-path graph
 - Unlimited fleet
 - Limited fleet
 - Soft capacity constraints
 - Computational experiments

Application: VRP with intermediate facilities

- Problem Statement
- Methodology
- Computational experiments
- 5 Perspectives and Conclusions

• Some O(n) algorithms are, in fact, already known for this shortest path (see Burkard et al., 1996; Bein et al., 2005, and the references therein) since the graph \mathcal{G} satisfies the Monge property:

$$c(i_{1}, j_{1}) + c(i_{2}, j_{2}) \leq c(i_{1}, j_{2}) + c(i_{2}, j_{1})$$

for all $0 \leq i_{1} < i_{2} < j_{1} < j_{2} \leq n$ (3.1)
such that $(i_{1}, j_{2}) \in \mathcal{A}$,

• But this was not used to this date in the VRP literature...

(

• The Split graph satisfies in fact **an even stronger property**:

for all $0 \leq i_1 < i_2 < n$, there exists $K \in \mathbb{R}$ such that $c(i_1, j) - c(i_2, j) = K$ for all $j > i_2$ such that $(i_1, j) \in \mathcal{A}$.

- This property will be used to **eliminate dominated predecessors** and retain only good candidates
- \Rightarrow leading to a very simple labeling algorithm in $\mathcal{O}(n)$ which can be efficiently used in practice.

• The Split graph satisfies in fact **an even stronger property**:

for all $0 \leq i_1 < i_2 < n$, there exists $K \in \mathbb{R}$ such that $c(i_1, j) - c(i_2, j) = K$ for all $j > i_2$ such that $(i_1, j) \in \mathcal{A}$.

- This property will be used to **eliminate dominated predecessors** and retain only good candidates
- \Rightarrow leading to a very simple labeling algorithm in $\mathcal{O}(n)$ which can be efficiently used in practice.

Towards a very simple algorithm

• Some notations: For $i \in \{1, ..., n\}$, define the cumulative distance D[i] and cumulative load Q[i]:

$$D[i] = \sum_{k=1}^{i-1} d_{k,k+1}$$
(3.2)
$$Q[i] = \sum_{k=1}^{i} q_k.$$
(3.3)

• Then, the cost can be accessed as:

$$c(i,j) = d_{0,i+1} + D[j] - D[i+1] + d_{j,0}, \qquad (3.4)$$

• and the arc (i, j) exists if and only if the route is feasible, i.e., $Q[j] - Q[i] \le Q.$ • We also rely on a double-ended queue Λ , which supports the following operations in $\mathcal{O}(1)$:

front - accesses the oldest element in the queue; front2 - accesses the second-oldest element in the queue; back - accesses the most recent element in the queue; push_back - adds an element to the queue; pop_front - removes the oldest element in the queue; pop_back - removes the newest element in the queue.

We refer to the elements of the queue as $(\lambda_1, \ldots, \lambda_{|\Lambda|})$, from the front λ_1 to the back $\lambda_{|\Lambda|}$.

Towards a very simple algorithm

We propose the following linear time Split algorithm:

With the boolean function $dominates(i, j) \equiv$

/

$$\begin{cases} p[i] + d_{0,i+1} - D[i+1] \le p[j] + d_{0,j+1} - D[j+1] \text{ and } Q[i] = Q[j] & \text{if } i \le j \\ p[i] + d_{0,i+1} - D[i+1] \le p[j] + d_{0,j+1} - D[j+1] & \text{if } i > j \end{cases}$$

Towards a very simple algorithm

Correctness of the algorithm: Define f(i, x) the cost when extending the label of a predecessor i to a node $x \in \{i + 1, ..., n\}$:

$$f(i,x) = \begin{cases} p[i] + c(i,x) & Q[x] - Q[i] \le Q\\ \infty & otherwise \end{cases}$$

...and the auxiliary function $g_i(x) = f(i, x) - D[x] - d_{x0}$. This function of x takes a constant value as long as the label extension is feasible.

(if $Q[x] - Q[i] \le Q$, then $g_i(x) = p[i] + d_{0,i+1} + D[x] - D[i+1] + d_{x0} - D(x) - d_{x0} = p[i] + d_{0,i+1} - D[i+1]$

Illustrative Example

Node	0	1	2	3	4	5	6	7	8	9	10	11	12
$d_{i-1,i}$	—	4	3	7	2	7	3	8	6	8	4	3	3
$d_{0,i}$	—	4	5	10	9	14	12	16	11	5	3	5	6
q_i		11	3	6	5	7	8	1	7	3	7	3	6
p[i]	0	8	12	24	25	43	44	$\overline{56}$	67	69	75	80	84

with $\mathbf{Q} = \mathbf{30}$.

Those were the arcs (in blue) explored in practice on the illustrative example:

Extension to limited fleets

• Split considering a limited fleet of *m* vehicles in *O(nm)* (instead of *O(nBm)*)

```
for k = 1 to m do
         for t = 0 to n do
 2
        p[k,t] = \infty;
 3
 4 p[0,0] \leftarrow 0;
   for k = 0 to m - 1 do
         clear(\Lambda):
 6
 7
        \Lambda \leftarrow (k);
         for t = k + 1 to n s.t. |\Lambda| > 0 do
 8
              p[k+1,t] \leftarrow p[k, front] + f(front,t);
 9
              pred[k+1][t] \leftarrow front:
10
              if t < n then
11
                   if not dominates(k, back, t) then
12
                        while |\Lambda| > 0 and dominates(k, t, back) do
13
                             popBack();
14
                        pushBack(t)
15
                   while |\Lambda| > 0 and Q[t+1] > Q + Q[front] do
16
                        popFront();
17
```

Management of soft capacity constraints

• Soft capacity constraints can also be addressed via a change of the function $dominates(i, j) \equiv$

 $\begin{cases} p[i] + d_{0,i+1} - D[i+1] + \alpha \times (Q[j] - Q[i]) \le p[j] + d_{0,j+1} - D[j+1] & \text{if } i < j \\ p[i] + d_{0,i+1} - D[i+1] \le p[j] + d_{0,j+1} - D[j+1] & \text{if } i > j. \end{cases}$

- The rule for eliminating the front label also requires a minor adaptation (see paper)
- The complexity remains O(n).

- 105 benchmark instances based on the TSPLib
- 29 to 71,009 nodes
- 10 vehicle capacities: $Q \in \{10^2, 2 \times 10^2, 4 \times 10^2, 10^3, 2 \times 10^3, 4 \times 10^3, 10^4, 2 \times 10^4, 4 \times 10^4, 10^5\}$
- Comparing the speed of the classical Bellman-based Split algorithm with the linear Split for the three problem settings
- Xeon 3.07 GHz CPU, using a single thread.

We compare the following algorithms:

Algorithm:	Complexity:
Bellman-Based Split algorithm	O(nB)
Bellman-Based Split algorithm with a fleet-size limit m	O(nBm)
Bellman-Based Split algorithm with soft capacity constraints	O(n²)
Linear Split algorithm	O(n)
Linear Split algorithm with a fleet-size limit m	O(nm)
Linear Split algorithm with soft capacity constraints	O(n)

Computational experiments

Figure : Speedups of the linear Split over the Bellman-based algorithm for all 105 instances. Hard capacity constraints, unlimited fleet.

Computational experiments

Figure : Speedup factors for the case with a limited fleet.

Computational experiments

No load limit
 Load limit set to 4Q

Figure : Speedups for soft capacity constraints. Two sets of results: the speedups relative to the Bellman algorithm with no limit on the excess capacity (black dots), and those relative to the Bellman algorithm with a limit of 4Q on the total demand of a route (gray dots).

Contents

- Giant-tour representations and the VRP
- 2 Bellman-based Split algorithm
- 3 Linear-time Split algorithm
 - Properties of the shortest-path graph
 - Unlimited fleet
 - Limited fleet
 - Soft capacity constraints
 - Computational experiments

4 Application: VRP with intermediate facilities

- Problem Statement
- Methodology
- Computational experiments

5 Perspectives and Conclusions

- The VRP with intermediate facilities (see, e.g. Crevier et al., 2007; Tarantilis et al., 2008; Hemmelmayr et al., 2013; Schneider et al., 2015):
- Classical duration-constrained CVRP
- With the possibility to reload at a subset of intermediate facilities locations
 - Docking time at the intermediate facilities
 - Service time at the customers
 - Duration constraint is global on the whole route
- Generalizes the multi-trip VRP
- Close connections to green VRPs with choices of recharging stations

- The VRP with intermediate facilities (see, e.g. Crevier et al., 2007; Tarantilis et al., 2008; Hemmelmayr et al., 2013; Schneider et al., 2015):
- Classical duration-constrained CVRP
- With the possibility to reload at a subset of intermediate facilities locations
 - Docking time at the intermediate facilities
 - ▶ Service time at the customers
 - ▶ Duration constraint is global on the whole route
- Generalizes the multi-trip VRP
- Close connections to green VRPs with choices of recharging stations

- The VRP with intermediate facilities (see, e.g. Crevier et al., 2007; Tarantilis et al., 2008; Hemmelmayr et al., 2013; Schneider et al., 2015):
- Classical duration-constrained CVRP
- With the possibility to reload at a subset of intermediate facilities locations
 - ▶ Docking time at the intermediate facilities
 - ▶ Service time at the customers
 - ▶ Duration constraint is global on the whole route
- Generalizes the multi-trip VRP
- Close connections to green VRPs with choices of recharging stations

- The VRP with intermediate facilities (see, e.g. Crevier et al., 2007; Tarantilis et al., 2008; Hemmelmayr et al., 2013; Schneider et al., 2015):
- Classical duration-constrained CVRP
- With the possibility to reload at a subset of intermediate facilities locations
 - Docking time at the intermediate facilities
 - Service time at the customers
 - Duration constraint is global on the whole route
- Generalizes the multi-trip VRP
- Close connections to green VRPs with choices of recharging stations

A question of search space

\Rightarrow This is, however, not a unique option.

A question of search space

- Evaluating any neighbor solution, defined as sequences of services without visits to intermediate facilities, requires to solve an optimization problem for the choice of visits to intermediate facilities.
- Can be transformed into an instance of Split problem (with some pre-processing prior to routing optimization: find for any customer pair (i, j) the facility which leads to the smallest detour).
- Now solved in O(n)

- This solution evaluation procedure is more time consuming than usual.
- To save some computational effort, rely on lower bounds on solution cost to filter non-promising moves:
 - Let $\overline{Z}(\sigma)$ be a lower bound on the cost of a route σ
 - A move that modifies two routes: {σ₁, σ₂} ⇒ {σ'₁, σ'₂} has a chance to be improving if and only if:

$$\Delta_{\Pi} = \overline{Z}(\sigma_1') + \overline{Z}(\sigma_2') - Z(\sigma_1) - Z(\sigma_2) < 0.$$

Lower bounds on move evaluations

- In the VRP-IF, the cost of a route σ is always greater than
 - ▶ the total travel distance (without recharging), plus
 - ▶ the minimum number of necessary visits

× shortest detour $S(\sigma)$ to a facility

$$\bar{Z}(\sigma) = \sum_{i=1}^{|\sigma|-1} d_{\sigma_i \sigma_{i+1}} + \left\lfloor \frac{\sum_{i=1}^{|\sigma|} q_{\sigma_i}}{Q} \right\rfloor \times S(\sigma)$$

• And this bound helps, in practice, to filter a significant subset of the moves

(**Experiments of today**)

Preprocessing and bidirectional search

- To improve further the move evaluations, it is even possible to avoid solving each SP subproblem independently in O(n)
 ⇒ Rely instead on pre-processed shortest paths for partial routes.
- Key property of classical routing neighborhoods:
 - Any local-search move involving a bounded number of node relocations or arc exchanges can be assimilated to a concatenation of a bounded number of sub-sequences.

▶ To decrease the computational complexity, compute auxiliary data on subsequences by induction on concatenation (\oplus) .

Preprocessing and bidirectional search

- Now, consider an inter-route move, which inserts or replaces a bounded number of customers in a route.
 - $\Rightarrow\,$ New route obtained by the concatenation of 3 services sequences
 - ⇒ Prior to move evaluations, we pre-process the shortest paths from the node 0 to the subsequent nodes, and from the end (backwards) to each node, in O(n).

- \Rightarrow Reusing the preprocessed information allows to evaluate each classical inter-route move in O(B).
- \Rightarrow We discuss later about intra-route moves...

• Some Preliminary experiments with:

- The ILS variant of Prins (2009)
 - Produces iteratively n_C offspring from the incumbent solution (via shaking and LS) and selects the best. Search is restarted n_P times until n_I consecutive generations without improvement. Shaking done by 1 or 2 random swaps, with equal probability.
- The unified hybrid genetic search (UHGS) of Vidal et al. (2012, 2014)

- LS based on the classical routing neighborhoods (but applied on solutions represented without intermediate-facility visits): RELOCATE, SWAP, CROSS, 2-OPT and 2-OPT*.
 - Exploration in random order
 - ▶ First improvement policy
 - Restrictions of moves to the Γ^{TH} closest services
 - \Rightarrow Number of neighbors in $\mathcal{O}(n)$

- Using a short termination criterion: $(n_P, n_C, n_I) = (5, 10, 50)$ for ILS, and $It_{MAX} = 5,000$ for UHGS
- Single core: Xeon 3.07 GHz CPU with 16 GB of RAM
- Reporting the average and best solutions on 10 runs.
- All Gap(%) values measured from the best known solutions (BKS)

- Comparing with the previous methods for this problem:
 - CCL07: Hybrid TS with Adaptive Memory Programming and Integer Programming of Crevier et al. (2007)
 - TZK08: Hybrid guided local search of Tarantilis et al. (2008)
 - HDHR13: Variable neighborhood search of Hemmelmayr et al. (2013)
 - SSH15: Adaptive VNS of Schneider et al. (2015)

				CCI	207	TZK08			HDHR13				SSH15		ILS			BKS
Inst	n	\mathbf{m}	r	Avg-10	Т	Avg-10	Best-10	Т	Avg-10	Best-10	Т	Avg-10	Best-10	Т	Avg-10	Best-10	Т	
a1	48	6	3	1211.28	4.58	1189.70	1179.79	3.38	1180.57	1179.79	1.42	1184.57	1179.79	0.64	1179.79	1179.79	1.46	1179.79
b1	96	4	3	1232.67	9.17	1225.08	1217.07	7.80	1217.07	1217.07	6.39	1218.21	1217.07	4.19	1217.07	1217.07	5.20	1217.07
c1	192	5	3	1893.01	36.22	1898.92	1883.05	34.21	1867.96	1866.76	20.40	1925.41	1882.46	32.98	1869.20	1866.76	30.05	1866.76
d1	48	5	4	1076.31	8.55	1064.29	1059.43	5.87	1059.43	1059.43	1.57	1061.5	1059.43	0.55	1059.43	1059.43	1.34	1059.43
e1	96	5	4	1311.60	13.52	1309.12	1309.12	8.62	1309.12	1309.12	6.22	1312.75	1309.12	5.08	1309.12	1309.12	3.47	1309.12
f1	192	4	4	1601.54	41.41	1585.83	1572.17	38.81	1573.05	1570.41	25.60	1601.4	1577.63	34.99	1571.86	1570.41	30.04	1570.41
g1	72	5	5	1202.00	55.22	1190.21	1181.13	5.79	1183.32	1181.13	3.38	1183.75	1181.13	1.69	1181.13	1181.13	5.84	1181.13
h1	144	4	5	1598.51	32.07	1577.54	1547.25	11.06	1548.61	1545.50	14.61	1567.22	1553.75	14.08	1547.23	1545.50	22.54	1545.50
i1	216	4	5	1976.11	51.01	1956.17	1925.99	42.50	1923.52	1922.18	33.58	1974.97	1934.08	35.11	1925.72	1922.18	30.07	1922.18
j1	72	4	6	1161.77	58.90	1128.86	1117.20	5.52	1115.78	1115.78	2.78	1116.82	1115.78	2.02	1115.78	1115.78	2.35	1115.78
k1	144	4	6	1618.45	64.61	1591.74	1580.39	12.07	1577.96	1576.36	14.56	1600.42	1577.98	10.74	1577.89	1573.21	20.93	1576.36
11	216	4	6	1917.08	104.27	1904.39	1880.60	51.39	1869.70	1863.28	35.48	1916.07	1894.69	40.59	1873.37	1868.70	30.08	1863.28
a2	48	4	5	1005.16	6.39	-	-	-	997.94	997.94	1.23	997.94	997.94	0.72	997.94	997.94	0.70	997.94
b2	96	4	5	1333.20	14.72	-	-	-	1291.19	1291.19	6.41	1300.42	1291.19	4.83	1292.95	1292.95	5.51	1291.19
c2	144	4	5	1792.46	61.68	-	-	-	1715.84	1715.600	15.01	1741.55	1715.60	18.32	1716.40	1716.40	18.56	1715.60
d2	192	3	5	1898.21	40.54	-	-	-	1860.92	1856.84	30.14	1903.15	1874.12	30.64	1862.19	1858.81	30.06	1856.84
e2	240	3	5	1995.75	73.78	-	-	-	1922.81	1919.38	49.31	1957.8	1937.84	41.6	1930.04	1919.23	30.14	1919.38
f2	288	3	5	2312.15	162.22	-	-	-	2233.43	2230.32	71.24	2313.08	2268.54	42.8	2255.59	2238.26	30.21	2230.32
g^2	72	4	7	1185.93	29.51	-	-	-	1153.17	1152.92	3.71	1158.21	1152.92	2.2	1152.92	1152.92	2.76	1152.92
h2	144	4	7	1611.75	160.79	-	-	-	1575.28	1575.28	15.66	1586.24	1576.86	21.2	1575.67	1575.28	16.85	1575.28
i2	216	3	7	1998.20	322.41	-	-	-	1922.24	1919.74	41.92	1971.27	1944.74	41.1	1928.80	1920.75	30.08	1919.74
j2	288	3	7	2325.18	256.85	-	-	-	2250.21	2247.70	73.38	2303.67	2281.86	41.93	2262.16	2249.79	30.19	2247.70
	Gap(%	6)		2.63%		1.14% 0.22%		0.09%	0.00%		1.44%	0.49%		0.20%	0.04%			
	T(min	1)			73.11	18.92				21.55			19.46			17.20		
CPU		Prosys 2GHz		PI	V 2.4 GHz			2.4 GHz		15	$5.2.67~\mathrm{GHz}$		Xe 3.07G					

				CCI	207	TZK08			HDHR13			SSH15			UHGS			BKS
Inst	n	\mathbf{m}	r	Avg-10	Т	Avg-10	Best-10	Т	Avg-10	Best-10	Т	Avg-10	Best-10	Т	Avg-10	Best-10	Т	
a1	48	6	3	1211.28	4.58	1189.70	1179.79	3.38	1180.57	1179.79	1.42	1184.57	1179.79	0.64	1179.79	1179.79	2.80	1179.79
b1	96	4	3	1232.67	9.17	1225.08	1217.07	7.80	1217.07	1217.07	6.39	1218.21	1217.07	4.19	1217.07	1217.07	10.13	1217.07
c1	192	5	3	1893.01	36.22	1898.92	1883.05	34.21	1867.96	1866.76	20.40	1925.41	1882.46	32.98	1866.62	1863.49	30.01	1866.76
d1	48	5	4	1076.31	8.55	1064.29	1059.43	5.87	1059.43	1059.43	1.57	1061.5	1059.43	0.55	1059.43	1059.43	2.64	1059.43
e1	96	5	4	1311.60	13.52	1309.12	1309.12	8.62	1309.12	1309.12	6.22	1312.75	1309.12	5.08	1309.12	1309.12	8.36	1309.12
f1	192	4	4	1601.54	41.41	1585.83	1572.17	38.81	1573.05	1570.41	25.60	1601.4	1577.63	34.99	1572.19	1570.41	30.02	1570.41
g1	72	5	5	1202.00	55.22	1190.21	1181.13	5.79	1183.32	1181.13	3.38	1183.75	1181.13	1.69	1181.13	1181.13	12.31	1181.13
h1	144	4	5	1598.51	32.07	1577.54	1547.25	11.06	1548.61	1545.50	14.61	1567.22	1553.75	14.08	1545.56	1545.50	30.01	1545.50
i1	216	4	5	1976.11	51.01	1956.17	1925.99	42.50	1923.52	1922.18	33.58	1974.97	1934.08	35.11	1924.51	1923.62	30.02	1922.18
j1	72	4	6	1161.77	58.90	1128.86	1117.20	5.52	1115.78	1115.78	2.78	1116.82	1115.78	2.02	1115.78	1115.78	5.13	1115.78
k1	144	4	6	1618.45	64.61	1591.74	1580.39	12.07	1577.96	1576.36	14.56	1600.42	1577.98	10.74	1576.30	1573.21	30.01	1576.36
11	216	4	6	1917.08	104.27	1904.39	1880.60	51.39	1869.70	1863.28	35.48	1916.07	1894.69	40.59	1871.83	1865.27	30.02	1863.28
a2	48	4	5	1005.16	6.39	-	-	-	997.94	997.94	1.23	997.94	997.94	0.72	997.94	997.94	1.50	997.94
b2	96	4	5	1333.20	14.72	-	-	-	1291.19	1291.19	6.41	1300.42	1291.19	4.83	1292.95	1292.95	10.35	1291.19
c2	144	4	5	1792.46	61.68	-	-	-	1715.84	1715.600	15.01	1741.55	1715.60	18.32	1716.40	1716.40	30.01	1715.60
d2	192	3	5	1898.21	40.54	-	-	-	1860.92	1856.84	30.14	1903.15	1874.12	30.64	1858.87	1853.86	30.01	1856.84
e2	240	3	5	1995.75	73.78	-	-	-	1922.81	1919.38	49.31	1957.8	1937.84	41.6	1923.74	1919.23	30.02	1919.38
f2	288	3	5	2312.15	162.22	-	-	-	2233.43	2230.32	71.24	2313.08	2268.54	42.8	2248.85	2230.95	30.04	2230.32
g2	72	4	7	1185.93	29.51	-	-	-	1153.17	1152.92	3.71	1158.21	1152.92	2.2	1152.92	1152.92	5.01	1152.92
h2	144	4	7	1611.75	160.79	-	-	-	1575.28	1575.28	15.66	1586.24	1576.86	21.2	1575.60	1575.28	29.75	1575.28
i2	216	3	7	1998.20	322.41	-	-	-	1922.24	1919.74	41.92	1971.27	1944.74	41.1	1926.76	1920.75	30.03	1919.74
j2	288	3	7	2325.18	256.85	-	-	-	2250.21	2247.70	73.38	2303.67	2281.86	41.93	2263.89	2253.18	30.05	2247.70
	Gap(%	6)		2.63%		1.14% 0.22%		0.09%	0.00%		1.44%	0.49%		0.14%	0.01%			
	T(min	1)			73.11	18.92			21.55		19.46			20.37				
CPU		Prosys	2GHz	PI	V 2.4 GHz			2.4 GHz		15	5.2.67 GHz		Xe 3.07G					

Contents

- Giant-tour representations and the VRP
- 2 Bellman-based Split algorithm
- 3 Linear-time Split algorithm
 - Properties of the shortest-path graph
 - Unlimited fleet
 - Limited fleet
 - Soft capacity constraints
 - Computational experiments
- 4 Application: VRP with intermediate facilities
 - Problem Statement
 - Methodology
 - Computational experiments

5 Perspectives and Conclusions

- Introduced a simple linear-time Split algorithm
 - ▶ Simple to implement, efficient in practice
 - ▶ Large speedups when run on problem instances with long routes
 - ▶ Possible limited fleet, soft capacity constraints, etc...
- Opportunity of applications to problem classes with intermediate facilities, multiple trips, or recharging stations
 - ► Allows to deal with the decision subset related to intermediate-facilities visits via tailored solution evaluation procedures rather than tailored moves
 - ▶ Preliminary results on the VRP-IF (with a short termination criterion) look OK.

Conclusions

- Many other opportunities related to Split in the VRP:
 - ▶ More intensive search in the space of giant tours
 - ► Improvements for other forms of split algorithms, e.g., HVRP, LRP, etc...
 - ► Many results that we know on Split have connections with results on other enumerative neighborhoods in local searches...
- Aiming for a paradigm shift we assume too fast that the classical neighborhoods and their complexities are established
 - ▶ When an improvement occurs, large potential gains
 - ▶ Wide scope of application
 - ► Average case O(n log n) exploration procedures are also known for several other problems and neighborhoods... (Bentley and Friedman, 1978; Bentley, 1992)

THANK YOU FOR YOUR ATTENTION !

... AND A HAPPY OPTIMIZED BIRTHDAY !!

Thank You II

- Beasley, J.E. 1983. Route first-cluster second methods for vehicle routing. Omega 11(4) 403–408.
- Bein, W., P. Brucker, L.L. Larmore, J.K. Park. 2005. The algebraic Monge property and path problems. *Discrete Applied Mathematics* **145**(3) 455–464.
- Bentley, J.J. 1992. Fast algorithms for geometric traveling salesman problems. ORSA Journal on Computing 4(4) 387–411.
- Bentley, J.L., J.H. Friedman. 1978. Fast Algorithms for Constructing Minimal Spanning Trees in Coordinate Spaces. *IEEE Transactions on Computers* C-27(2).
- Burkard, R.E., B. Klinz, R. Rudolf. 1996. Perspectives of Monge properties in optimization. Discrete Applied Mathematics 70(2) 95–161.
- Crevier, B., J.-F. Cordeau, G. Laporte. 2007. The multi-depot vehicle routing problem with inter-depot routes. *European Journal of Operational Research* **176**(2) 756–773.
- Hemmelmayr, V, K F Doerner, R F Hartl, S Rath. 2013. A heuristic solution method for node routing based solid waste collection problems. *Journal of Heuristics* 19 129–156.
- Nagata, Y., O. Bräysy. 2009. Edge assembly-based memetic algorithm for the capacitated vehicle routing problem. *Networks* 54(4) 205–215.
- Prins, C. 2004. A simple and effective evolutionary algorithm for the vehicle routing problem. Computers & Operations Research **31**(12) 1985–2002.

- Prins, C. 2009. A GRASP evolutionary local search hybrid for the vehicle routing problem. F.B. Pereira, J. Tavares, eds., *Bio-inspired Algorithms for the Vehicle Routing Problem*. Springer, 35–53.
- Prins, C., P. Lacomme, C. Prodhon. 2014. Order-first split-second methods for vehicle routing problems: A review. Transportation Research Part C: Emerging Technologies 40 179–200.
- Schneider, Michael, Andreas Stenger, Julian Hof. 2015. An Adaptive VNS Algorithm for Vehicle Routing Problems with Intermediate Stops. OR Spectrum 37 353–387.
- Tarantilis, Christos D., Emmanouil E. Zachariadis, Chris T. Kiranoudis. 2008. A hybrid guided local search for the vehicle-routing problem with intermediate replenishment facilities. *INFORMS Journal on Computing* **20**(1) 154–168.
- Vidal, T., T.G. Crainic, M. Gendreau, N. Lahrichi, W. Rei. 2012. A hybrid genetic algorithm for multidepot and periodic vehicle routing problems. *Operations Research* 60(3) 611–624.
- Vidal, T., T.G. Crainic, M. Gendreau, C. Prins. 2014. A unified solution framework for multi-attribute vehicle routing problems. *European Journal of Operational Research* 234(3) 658–673.