Linear-time Split algorithm and applications

Thibaut Vidal

Departamento de Informática, Pontifícia Universidade Católica do Rio de Janeiro Rua Marquês de São Vicente, 225 - Gávea, Rio de Janeiro - RJ, 22451-900, Brazil vidalt@inf.puc-rio.br

Seminar, University of Brescia
September $21^{\text {th }}, 2016$

Contents

(1) Giant-tour representations and the VRP
(2) Bellman-based Split algorithm
(3) Linear-time Split algorithm

- Properties of the shortest-path graph
- Unlimited fleet
- Limited fleet
- Soft capacity constraints
- Computational experiments

4 Application: VRP with intermediate facilities

- Problem Statement
- Methodology
- Computational experiments
(5) Perspectives and Conclusions

Contents

(1) Giant-tour representations and the VRP

(2) Bellman-based Split algorithm
(3) Linear-time Split algorithm

- Properties of the shortest-path graph
- Unlimited fleet
- Limited fleet
- Soft capacity constraints
- Computational experiments

4 Application: VRP with intermediate facilities

- Problem Statement
- Methodology
- Computational experiments
(5) Perspectives and Conclusions

Giant-tour representations and the VRP

- Prins $(2004) \Rightarrow$ Important milestone for the VRP, first HGA to outperform classical Tabu searches
- A key ingredient of success: the giant-tour solution representation, allowing to use much simpler crossovers

Giant tour representation
with distances and demands :

Graph H \& shortest path solution:

Giant-tour representations and the VRP

- Ten years on \Rightarrow extensive growth of population-based methods.
- Efficient GAs with a complete solution representation and more advanced crossover operators now exist (Nagata and Bräysy, 2009)
- But the approach of Prins (2004) remains simple and generic
- Many generalizations (see the survey of Prins et al., 2014): capacity and duration limits, time windows, choices of depots, vehicle types, edges orientations in CARP, or profitable customers in each route...

Contents

(1) Giant-tour representations and the VRP
(2) Bellman-based Split algorithm
(3) Linear-time Split algorithm

- Properties of the shortest-path graph
- Unlimited fleet
- Limited fleet
- Soft capacity constraints
- Computational experiments
(4) Application: VRP with intermediate facilities
- Problem Statement
- Methodology
- Computational experiments
(5) Perspectives and Conclusions

Problem and notations

- The "Splitting" problem:
- INPUT:
- A giant tour of n customers with demands q_{1}, \ldots, q_{n}
- A vehicle capacity limit Q
- $d_{i, i+1}$ be the distances between two successive customers
- $d_{0 i}$ and $d_{i 0}$ the distances from and to the depot
- FIND: a best segmentation of the tour into feasible routes which originate and return to the depot, and contain consecutive visits from the giant tour

Problem and notations

- Classical formulation as the search for a shortest path between 0 and n in an acyclic graph $\mathcal{G}=(\mathcal{V}, \mathcal{A})$:
- $\mathcal{V}=(0, \ldots, n)$
- each $\operatorname{arc}(i, j) \in \mathcal{A}$ for $i<j$ corresponds to a feasible route starting at the depot, visiting customers $i+1$ to j, and returning to the depot (Beasley, 1983; Prins, 2004).

Illustrative Example

Node	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$
$d_{i-1, i}$	-	4	3	7	2	7	3	8	6	8	4	3	3
$d_{0, i}$	-	4	5	10	9	14	12	16	11	5	3	5	6
q_{i}	-	11	3	6	5	7	8	1	7	3	7	3	6
$p[i]$	$\mathbf{0}$	$\mathbf{8}$	$\mathbf{1 2}$	$\mathbf{2 4}$	$\mathbf{2 5}$	$\mathbf{4 3}$	$\mathbf{4 4}$	56	67	69	75	80	84

with $\mathbf{Q}=\mathbf{3 0}$.

Illustrative Example

Node	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$
$d_{i-1, i}$	-	4	3	7	2	7	3	8	6	8	4	3	3
$d_{0, i}$	-	4	5	10	9	14	12	16	11	5	3	5	6
q_{i}	-	11	3	6	5	7	8	1	7	3	7	3	6
$p[i]$	$\mathbf{0}$	$\mathbf{8}$	$\mathbf{1 2}$	$\mathbf{2 4}$	$\mathbf{2 5}$	$\mathbf{4 3}$	$\mathbf{4 4}$	56	67	69	75	80	84

with $\mathbf{Q}=\mathbf{3 0}$.

Auxiliary Graph for Split:

with the cost of an $\operatorname{arc}(i, j)$:
$c(i, j)=d_{0, i+1}+\sum_{k=i+1, \ldots, j-1} d_{k, k+1}+d_{j, 0}$

Bellman-based Split algorithm

- $O\left(n^{2}\right)$ complexity \Rightarrow in practice $O(n B)$ if the average number of customers in a feasible route is bounded by a constant B.

Bellman-based Split algorithm

- Question 1: Can we do better?
- Question 2: If we have a better Split, what can we do with it?

Bellman-based Split algorithm

- Question 1: Can we do better?
- Question 2: If we have a better Split, what can we do with it?

Contents

(1) Giant-tour representations and the VRP
(2) Bellman-based Split algorithm
(3) Linear-time Split algorithm

- Properties of the shortest-path graph
- Unlimited fleet
- Limited fleet
- Soft capacity constraints
- Computational experiments
(4) Application: VRP with intermediate facilities
- Problem Statement
- Methodology
- Computational experiments
(5) Perspectives and Conclusions

Monge property

- Some $O(n)$ algorithms are, in fact, already known for this shortest path (see Burkard et al., 1996; Bein et al., 2005, and the references therein) since the graph \mathcal{G} satisfies the Monge property:

$$
\begin{array}{r}
c\left(i_{1}, j_{1}\right)+c\left(i_{2}, j_{2}\right) \leq c\left(i_{1}, j_{2}\right)+c\left(i_{2}, j_{1}\right) \\
\text { for all } 0 \leq i_{1}<i_{2}<j_{1}<j_{2} \leq n \tag{3.1}\\
\text { such that }\left(i_{1}, j_{2}\right) \in \mathcal{A}
\end{array}
$$

- But this was not used to this date in the VRP literature...

An Even Stronger Property

- The Split graph satisfies in fact an even stronger property:

$$
\begin{aligned}
& \text { for all } 0 \leq i_{1}<i_{2}<n \text {, there exists } K \in \mathbb{R} \text { such that } \\
& c\left(i_{1}, j\right)-c\left(i_{2}, j\right)=K \text { for all } j>i_{2} \text { such that }\left(i_{1}, j\right) \in \mathcal{A} \text {. }
\end{aligned}
$$

- This property will be used to eliminate dominated predecessors and retain only good candidates
- \Rightarrow leading to a very simple labeling algorithm in $\mathcal{O}(n)$ which can be efficiently used in practice.

An Even Stronger Property

- The Split graph satisfies in fact an even stronger property:

$$
\begin{aligned}
& \text { for all } 0 \leq i_{1}<i_{2}<n \text {, there exists } K \in \mathbb{R} \text { such that } \\
& c\left(i_{1}, j\right)-c\left(i_{2}, j\right)=K \text { for all } j>i_{2} \text { such that }\left(i_{1}, j\right) \in \mathcal{A} \text {. }
\end{aligned}
$$

- This property will be used to eliminate dominated predecessors and retain only good candidates
- \Rightarrow leading to a very simple labeling algorithm in $\mathcal{O}(n)$ which can be efficiently used in practice.

Towards a very simple algorithm

- Some notations: For $i \in\{1, \ldots, n\}$, define the cumulative distance $D[i]$ and cumulative load $Q[i]$:

$$
\begin{align*}
& D[i]=\sum_{k=1}^{i-1} d_{k, k+1} \tag{3.2}\\
& Q[i]=\sum_{k=1}^{i} q_{k} . \tag{3.3}
\end{align*}
$$

- Then, the cost can be accessed as:

$$
\begin{equation*}
c(i, j)=d_{0, i+1}+D[j]-D[i+1]+d_{j, 0}, \tag{3.4}
\end{equation*}
$$

- and the $\operatorname{arc}(i, j)$ exists if and only if the route is feasible, i.e., $Q[j]-Q[i] \leq Q$.

Towards a very simple algorithm

- We also rely on a double-ended queue Λ, which supports the following operations in $\mathcal{O}(1)$:
front - accesses the oldest element in the queue;
front2 - accesses the second-oldest element in the queue;
back - accesses the most recent element in the queue;
push_back - adds an element to the queue;
pop_front - removes the oldest element in the queue;
pop_back - removes the newest element in the queue.
We refer to the elements of the queue as $\left(\lambda_{1}, \ldots, \lambda_{|\Lambda|}\right)$, from the front λ_{1} to the back $\lambda_{|\Lambda|}$.

Towards a very simple algorithm

We propose the following linear time Split algorithm:

```
1 p[0]\leftarrow0;
2 \Lambda\leftarrow(0);
3 for }t=1\mathrm{ to }n\mathrm{ do
4 pl p[t]\leftarrowp[front]+f(front,t);
5 pred[t] \leftarrow front;
6 if t<n then
7 If not dominates(back,t) then
8
                        while }|\Lambda|>0\mathrm{ and dominates (t,back) do
                        | popBack();
                        pushBack(t)
            while }Q[t+1]>Q+Q[front] d
                        popFront();
```

With the boolean function dominates $(i, j) \equiv$

$$
\begin{cases}p[i]+d_{0, i+1}-D[i+1] \leq p[j]+d_{0, j+1}-D[j+1] \text { and } Q[i]=Q[j] & \text { if } i \leq j \\ p[i]+d_{0, i+1}-D[i+1] \leq p[j]+d_{0, j+1}-D[j+1] & \text { if } i>j\end{cases}
$$

Towards a very simple algorithm

Correctness of the algorithm: Define $f(i, x)$ the cost when extending the label of a predecessor i to a node $x \in\{i+1, \ldots, n\}$:

$$
f(i, x)= \begin{cases}p[i]+c(i, x) & Q[x]-Q[i] \leq Q \\ \infty & \text { otherwise }\end{cases}
$$

...and the auxiliary function $g_{i}(x)=f(i, x)-D[x]-d_{x 0}$. This function of x takes a constant value as long as the label extension is feasible.

(if $Q[x]-Q[i] \leq Q$, then
$g_{i}(x)=p[i]+d_{0, i+1}+D[x]-D[i+1]+d_{x 0}-D(x)-d_{x 0}=p[i]+d_{0, i+1}-D[i+1]$

Illustrative Example

Node	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$
$d_{i-1, i}$	-	4	3	7	2	7	3	8	6	8	4	3	3
$d_{0, i}$	-	4	5	10	9	14	12	16	11	5	3	5	6
q_{i}	-	11	3	6	5	7	8	1	7	3	7	3	6
$p[i]$	$\mathbf{0}$	$\mathbf{8}$	$\mathbf{1 2}$	$\mathbf{2 4}$	$\mathbf{2 5}$	$\mathbf{4 3}$	$\mathbf{4 4}$	56	67	69	75	80	84

with $\mathbf{Q}=\mathbf{3 0}$.

Those were the arcs (in blue) explored in practice on the illustrative example:

Extension to limited fleets

- Split considering a limited fleet of m vehicles in $O(n m)$ (instead of $O(n B m)$)

```
for \(k=1\) to \(m\) do
    for \(t=0\) to \(n\) do
        \(p[k, t]=\infty ;\)
\(p[0,0] \leftarrow 0 ;\)
for \(k=0\) to \(m-1\) do
    clear \((\Lambda)\);
    \(\Lambda \leftarrow(k)\);
    for \(t=k+1\) to \(n\) s.t. \(|\Lambda|>0\) do
        \(p[k+1, t] \leftarrow p[k\), front \(]+f(\) front,\(t) ;\)
        \(\operatorname{pred}[k+1][t] \leftarrow\) front ;
        if \(t<n\) then
            if not dominates \((k\), back, \(t)\) then
                while \(|\Lambda|>0\) and dominates \((k, t\), back \()\) do
                    popBack() ;
                        pushBack(t)
                            while \(|\Lambda|>0\) and \(Q[t+1]>Q+Q[\) front \(]\) do
                        popFront() ;
```


Management of soft capacity constraints

- Soft capacity constraints can also be addressed via a change of the function dominates $(i, j) \equiv$

$$
\begin{cases}p[i]+d_{0, i+1}-D[i+1]+\alpha \times(Q[j]-Q[i]) \leq p[j]+d_{0, j+1}-D[j+1] & \text { if } i<j \\ p[i]+d_{0, i+1}-D[i+1] \leq p[j]+d_{0, j+1}-D[j+1] & \text { if } i>j .\end{cases}
$$

- The rule for eliminating the front label also requires a minor adaptation (see paper)
- The complexity remains $O(n)$.

Computational experiments

- 105 benchmark instances based on the TSPLib
- 29 to 71,009 nodes
- 10 vehicle capacities: $Q \in$ $\left\{10^{2}, 2 \times 10^{2}, 4 \times 10^{2}, 10^{3}, 2 \times 10^{3}, 4 \times 10^{3}, 10^{4}, 2 \times 10^{4}, 4 \times 10^{4}, 10^{5}\right\}$
- Comparing the speed of the classical Bellman-based Split algorithm with the linear Split for the three problem settings
- Xeon 3.07 GHz CPU, using a single thread.

Computational experiments

We compare the following algorithms:

Algorithm:
Bellman-Based Split algorithm
Bellman-Based Split algorithm with a fleet-size limit m
Bellman-Based Split algorithm with soft capacity constraints
Linear Split algorithm
Linear Split algorithm with a fleet-size limit m
Linear Split algorithm with soft capacity constraints

Complexity:
$\mathrm{O}(\mathrm{nB})$
$\mathrm{O}(\mathrm{nBm})$
$\mathrm{O}\left(\mathrm{n}^{2}\right)$
$\mathrm{O}(\mathrm{n})$
$\mathrm{O}(\mathrm{nm})$
$\mathrm{O}(\mathrm{n})$

Computational experiments

Figure : Speedups of the linear Split over the Bellman-based algorithm for all 105 instances. Hard capacity constraints, unlimited fleet.

Computational experiments

Figure: Speedup factors for the case with a limited fleet.

Computational experiments

- No load limit - Load limit set to 4 Q

Figure : Speedups for soft capacity constraints. Two sets of results: the speedups relative to the Bellman algorithm with no limit on the excess capacity (black dots), and those relative to the Bellman algorithm with a limit of $4 Q$ on the total demand of a route (gray dots).

Contents

(1) Giant-tour representations and the VRP
(2) Bellman-based Split algorithm
(3) Linear-time Split algorithm

- Properties of the shortest-path graph
- Unlimited fleet
- Limited fleet
- Soft capacity constraints
- Computational experiments

4 Application: VRP with intermediate facilities

- Problem Statement
- Methodology
- Computational experiments
(5) Perspectives and Conclusions

The VRP with intermediate facilities

- The VRP with intermediate facilities (see, e.g. Crevier et al., 2007; Tarantilis et al., 2008; Hemmelmayr et al., 2013; Schneider et al., 2015):
- Classical duration-constrained CVRP
- With the possibility to reload at a subset of intermediate facilities locations
- Generalizes the multi-trip VRP
- Close connections to green VRPs with choices of recharging stations

The VRP with intermediate facilities

- The VRP with intermediate facilities (see, e.g. Crevier et al., 2007; Tarantilis et al., 2008; Hemmelmayr et al., 2013; Schneider et al., 2015):
- Classical duration-constrained CVRP
- With the possibility to reload at a subset of intermediate facilities locations
- Docking time at the intermediate facilities
- Service time at the customers
- Duration constraint is global on the whole route
- Generalizes the multi-trip VRP
- Close connections to green VRPs with choices of recharging stations

The VRP with intermediate facilities

- The VRP with intermediate facilities (see, e.g. Crevier et al., 2007; Tarantilis et al., 2008; Hemmelmayr et al., 2013; Schneider et al., 2015):
- Classical duration-constrained CVRP
- With the possibility to reload at a subset of intermediate facilities locations
- Docking time at the intermediate facilities
- Service time at the customers
- Duration constraint is global on the whole route
- Generalizes the multi-trip VRP
- Close connections to green VRPs with choices of recharging stations

The VRP with intermediate facilities

- The VRP with intermediate facilities (see, e.g. Crevier et al., 2007; Tarantilis et al., 2008; Hemmelmayr et al., 2013; Schneider et al., 2015):
- Classical duration-constrained CVRP
- With the possibility to reload at a subset of intermediate facilities locations
- Docking time at the intermediate facilities
- Service time at the customers
- Duration constraint is global on the whole route
- Generalizes the multi-trip VRP
- Close connections to green VRPs with choices of recharging stations

A question of search space

Assignment

Sequencing

- 3-4 main decision sets
- and a classical way to deal with them:

Σ	
Reloading Decisions	HEURISTIC SEARCH
4	
\checkmark	DYNAMIC
Shortest	PROGRAMMING
Paths	Each solution evaluation in O (1)
	once the shortest paths are known

\Rightarrow This is, however, not a unique option.

A question of search space

Move evaluations

- Evaluating any neighbor solution, defined as sequences of services without visits to intermediate facilities, requires to solve an optimization problem for the choice of visits to intermediate facilities.
- Can be transformed into an instance of Split problem (with some pre-processing prior to routing optimization: find for any customer pair (i, j) the facility which leads to the smallest detour).
- Now solved in $O(n)$

Move LBs

- This solution evaluation procedure is more time consuming than usual.
- To save some computational effort, rely on lower bounds on solution cost to filter non-promising moves:
- Let $\bar{Z}(\sigma)$ be a lower bound on the cost of a route σ
- A move that modifies two routes: $\left\{\sigma_{1}, \sigma_{2}\right\} \Rightarrow\left\{\sigma_{1}^{\prime}, \sigma_{2}^{\prime}\right\}$ has a chance to be improving if and only if:

$$
\Delta_{\Pi}=\bar{Z}\left(\sigma_{1}^{\prime}\right)+\bar{Z}\left(\sigma_{2}^{\prime}\right)-Z\left(\sigma_{1}\right)-Z\left(\sigma_{2}\right)<0
$$

Lower bounds on move evaluations

- In the VRP-IF, the cost of a route σ is always greater than
- the total travel distance (without recharging), plus
- the minimum number of necessary visits
\times shortest detour $S(\sigma)$ to a facility

$$
\bar{Z}(\sigma)=\sum_{i=1}^{|\sigma|-1} d_{\sigma_{i} \sigma_{i+1}}+\left\lfloor\frac{\sum_{i=1}^{|\sigma|} q_{\sigma_{i}}}{Q}\right\rfloor \times S(\sigma)
$$

- And this bound helps, in practice, to filter a significant subset of the moves
(Experiments of today)

Preprocessing and bidirectional search

- To improve further the move evaluations, it is even possible to avoid solving each SP subproblem independently in $O(n)$
\Rightarrow Rely instead on pre-processed shortest paths for partial routes.
- Key property of classical routing neighborhoods:
- Any local-search move involving a bounded number of node relocations or arc exchanges can be assimilated to a concatenation of a bounded number of sub-sequences.

Inter-route Relocate

- To decrease the computational complexity, compute auxiliary data on subsequences by induction on concatenation (\oplus).

Preprocessing and bidirectional search

- Now, consider an inter-route move, which inserts or replaces a bounded number of customers in a route.
\Rightarrow New route obtained by the concatenation of 3 services sequences
\Rightarrow Prior to move evaluations, we pre-process the shortest paths from the node 0 to the subsequent nodes, and from the end (backwards) to each node, in $O(n)$.

\Rightarrow Reusing the preprocessed information allows to evaluate each classical inter-route move in $O(B)$.
\Rightarrow We discuss later about intra-route moves...

Computational experiments

- Some Preliminary experiments with:
- The ILS variant of Prins (2009)
- Produces iteratively n_{C} offspring from the incumbent solution (via shaking and LS) and selects the best. Search is restarted n_{P} times until n_{I} consecutive generations without improvement. Shaking done by 1 or 2 random swaps, with equal probability.
- The unified hybrid genetic search (UHGS) of Vidal et al. (2012, 2014)

Computational experiments

- LS based on the classical routing neighborhoods (but applied on solutions represented without intermediate-facility visits): Relocate, Swap, CROSS, 2-opt and 2-opt*.
- Exploration in random order
- First improvement policy
- Restrictions of moves to the Γ^{TH} closest services
\Rightarrow Number of neighbors in $\mathcal{O}(n)$

Computational experiments

- Using a short termination criterion: $\left(n_{P}, n_{C}, n_{I}\right)=(5,10,50)$ for ILS, and $I t_{\mathrm{MAX}}=5,000$ for UHGS
- Single core: Xeon 3.07 GHz CPU with 16 GB of RAM
- Reporting the average and best solutions on 10 runs.
- All Gap(\%) values measured from the best known solutions (BKS)

Computational experiments

- Comparing with the previous methods for this problem:

CCL07: Hybrid TS with Adaptive Memory Programming and Integer Programming of Crevier et al. (2007)

TZK08: Hybrid guided local search of Tarantilis et al. (2008)

HDHR13: Variable neighborhood search of Hemmelmayr et al. (2013)
SSH15: Adaptive VNS of Schneider et al. (2015)

Computational experiments

				CCL07		TZK08			HDHR13			SSH15			ILS			BKS
Inst	n	m	r	Avg-10	T	Avg-10	Best-10	T										
a1	48	6	3	1211.28	4.58	1189.70	1179.79	3.38	1180.57	1179.79	1.42	1184.57	1179.79	0.64	1179.79	1179.79	1.46	1179.79
b1	96	4	3	1232.67	9.17	1225.08	1217.07	7.80	1217.07	1217.07	6.39	1218.21	1217.07	4.19	1217.07	1217.07	5.20	1217.07
c1	192	5	3	1893.01	36.22	1898.92	1883.05	34.21	1867.96	1866.76	20.40	1925.41	1882.46	32.98	1869.20	1866.76	30.05	1866.76
d1	48	5	4	1076.31	8.55	1064.29	1059.43	5.87	1059.43	1059.43	1.57	1061.5	1059.43	0.55	1059.43	1059.43	1.34	1059.43
e1	96	5	4	1311.60	13.52	1309.12	1309.12	8.62	1309.12	1309.12	6.22	1312.75	1309.12	5.08	1309.12	1309.12	3.47	1309.12
f1	192	4	4	1601.54	41.41	1585.83	1572.17	38.81	1573.05	1570.41	25.60	1601.4	1577.63	34.99	1571.86	1570.41	30.04	1570.41
g1	72	5	5	1202.00	55.22	1190.21	1181.13	5.79	1183.32	1181.13	3.38	1183.75	1181.13	1.69	1181.13	1181.13	5.84	1181.13
h1	144	4	5	1598.51	32.07	1577.54	1547.25	11.06	1548.61	1545.50	14.61	1567.22	1553.75	14.08	1547.23	1545.50	22.54	1545.50
i1	216	4	5	1976.11	51.01	1956.17	1925.99	42.50	1923.52	1922.18	33.58	1974.97	1934.08	35.11	1925.72	1922.18	30.07	1922.18
j1	72	4	6	1161.77	58.90	1128.86	1117.20	5.52	1115.78	1115.78	2.78	1116.82	1115.78	2.02	1115.78	1115.78	2.35	1115.78
k1	144	4	6	1618.45	64.61	1591.74	1580.39	12.07	1577.96	1576.36	14.56	1600.42	1577.98	10.74	1577.89	1573.21	20.93	1576.36
11	216	4	6	1917.08	104.27	1904.39	1880.60	51.39	1869.70	1863.28	35.48	1916.07	1894.69	40.59	1873.37	1868.70	30.08	1863.28
a2	48	4	5	1005.16	6.39	-	-	-	997.94	997.94	1.23	997.94	997.94	0.72	997.94	997.94	0.70	997.94
b2	96	4	5	1333.20	14.72	-	-	-	1291.19	1291.19	6.41	1300.42	1291.19	4.83	1292.95	1292.95	5.51	1291.19
c2	144	4	5	1792.46	61.68	-	-	-	1715.84	1715.600	15.01	1741.55	1715.60	18.32	1716.40	1716.40	18.56	1715.60
d2	192	3	5	1898.21	40.54	-	-	-	1860.92	1856.84	30.14	1903.15	1874.12	30.64	1862.19	1858.81	30.06	1856.84
e2	240	3	5	1995.75	73.78	-	-	-	1922.81	1919.38	49.31	1957.8	1937.84	41.6	1930.04	1919.23	30.14	1919.38
f2	288	3	5	2312.15	162.22	-	-	-	2233.43	2230.32	71.24	2313.08	2268.54	42.8	2255.59	2238.26	30.21	2230.32
g2	72	4	7	1185.93	29.51	-	-	-	1153.17	1152.92	3.71	1158.21	1152.92	2.2	1152.92	1152.92	2.76	1152.92
h2	144	4	7	1611.75	160.79	-	-	-	1575.28	1575.28	15.66	1586.24	1576.86	21.2	1575.67	1575.28	16.85	1575.28
i2	216	3	7	1998.20	322.41	-	-	-	1922.24	1919.74	41.92	1971.27	1944.74	41.1	1928.80	1920.75	30.08	1919.74
j2	288	3	7	2325.18	256.85	-	-	-	2250.21	2247.70	73.38	2303.67	2281.86	41.93	2262.16	2249.79	30.19	2247.70
Gap(\%)				2.63\%		1.14\%	0.22\%		0.09\%	0.00\%		1.44\%	0.49\%		0.20\%	0.04\%		
$\mathrm{T}(\mathrm{min})$					73.11			18.92			21.55			19.46			17.20	
CPU				Prosys	2 GHz	PIV 2.4 GHz			2.4 GHz			I5 2.67 GHz			Xe 3.07G			

Computational experiments

			CCL07		TZK08			HDHR13			SSH15			UHGS			BKS
Inst	n m	r	Avg-10	T	Avg-10	Best-10	T										
a1	486	3	1211.28	4.58	1189.70	1179.79	3.38	1180.57	1179.79	1.42	1184.57	1179.79	0.64	1179.79	1179.79	2.80	1179.79
b1	964	3	1232.67	9.17	1225.08	1217.07	7.80	1217.07	1217.07	6.39	1218.21	1217.07	4.19	1217.07	1217.07	10.13	1217.07
c1	1925	3	1893.01	36.22	1898.92	1883.05	34.21	1867.96	1866.76	20.40	1925.41	1882.46	32.98	1866.62	1863.49	30.01	1866.76
d1	$48 \quad 5$	4	1076.31	8.55	1064.29	1059.43	5.87	1059.43	1059.43	1.57	1061.5	1059.43	0.55	1059.43	1059.43	2.64	1059.43
e1	$96 \quad 5$	4	1311.60	13.52	1309.12	1309.12	8.62	1309.12	1309.12	6.22	1312.75	1309.12	5.08	1309.12	1309.12	8.36	1309.12
f1	1924	4	1601.54	41.41	1585.83	1572.17	38.81	1573.05	1570.41	25.60	1601.4	1577.63	34.99	1572.19	1570.41	30.02	1570.41
g1	$72 \quad 5$	5	1202.00	55.22	1190.21	1181.13	5.79	1183.32	1181.13	3.38	1183.75	1181.13	1.69	1181.13	1181.13	12.31	1181.13
h1	1444	5	1598.51	32.07	1577.54	1547.25	11.06	1548.61	1545.50	14.61	1567.22	1553.75	14.08	1545.56	1545.50	30.01	1545.50
i1	2164	5	1976.11	51.01	1956.17	1925.99	42.50	1923.52	1922.18	33.58	1974.97	1934.08	35.11	1924.51	1923.62	30.02	1922.18
j1	$72 \quad 4$	6	1161.77	58.90	1128.86	1117.20	5.52	1115.78	1115.78	2.78	1116.82	1115.78	2.02	1115.78	1115.78	5.13	1115.78
k1	144	6	1618.45	64.61	1591.74	1580.39	12.07	1577.96	1576.36	14.56	1600.42	1577.98	10.74	1576.30	$\underline{1573.21}$	30.01	1576.36
11	2164	6	1917.08	104.27	1904.39	1880.60	51.39	1869.70	1863.28	35.48	1916.07	1894.69	40.59	1871.83	1865.27	30.02	1863.28
a2	$48 \quad 4$	5	1005.16	6.39	-	-	-	997.94	997.94	1.23	997.94	997.94	0.72	997.94	997.94	1.50	997.94
b2	964	5	1333.20	14.72	-	-	-	1291.19	1291.19	6.41	1300.42	1291.19	4.83	1292.95	1292.95	10.35	1291.19
c2	144	5	1792.46	61.68	-	-	-	1715.84	1715.600	15.01	1741.55	1715.60	18.32	1716.40	1716.40	30.01	1715.60
d2	1923	5	1898.21	40.54	-	-	-	1860.92	1856.84	30.14	1903.15	1874.12	30.64	1858.87	$\underline{1853.86}$	30.01	1856.84
e2	2403	5	1995.75	73.78	-	-	-	1922.81	1919.38	49.31	1957.8	1937.84	41.6	1923.74	$\underline{1919.23}$	30.02	1919.38
f2	2883	5	2312.15	162.22	-	-	-	2233.43	2230.32	71.24	2313.08	2268.54	42.8	2248.85	2230.95	30.04	2230.32
g2	$72 \quad 4$	7	1185.93	29.51	-	-	-	1153.17	1152.92	3.71	1158.21	1152.92	2.2	1152.92	1152.92	5.01	1152.92
h2	1444	7	1611.75	160.79	-	-	-	1575.28	1575.28	15.66	1586.24	1576.86	21.2	1575.60	1575.28	29.75	1575.28
i2	2163	7	1998.20	322.41	-	-	-	1922.24	1919.74	41.92	1971.27	1944.74	41.1	1926.76	1920.75	30.03	1919.74
j2	2883	7	2325.18	256.85	-	-	-	2250.21	2247.70	73.38	2303.67	2281.86	41.93	2263.89	2253.18	30.05	2247.70
Gap(\%)			2.63\%		1.14\%	0.22\%		0.09\%	0.00\%		1.44\%	0.49\%		0.14\%	0.01\%		
$\mathrm{T}(\mathrm{min})$				73.11			18.92			21.55			19.46			20.37	
CPU			Prosys	2 GHz	PIV 2.4 GHz			2.4 GHz			I5 2.67 GHz			Xe 3.07G			

Contents

(1) Giant-tour representations and the VRP
(2) Bellman-based Split algorithm
(3) Linear-time Split algorithm

- Properties of the shortest-path graph
- Unlimited fleet
- Limited fleet
- Soft capacity constraints
- Computational experiments

4 Application: VRP with intermediate facilities

- Problem Statement
- Methodology
- Computational experiments
(5) Perspectives and Conclusions

Conclusions

- Introduced a simple linear-time Split algorithm
- Simple to implement, efficient in practice
- Large speedups when run on problem instances with long routes
- Possible limited fleet, soft capacity constraints, etc...
- Opportunity of applications to problem classes with intermediate facilities, multiple trips, or recharging stations
- Allows to deal with the decision subset related to intermediate-facilities visits via tailored solution evaluation procedures rather than tailored moves
- Preliminary results on the VRP-IF (with a short termination criterion) look OK.

Conclusions

- Many other opportunities related to Split in the VRP:
- More intensive search in the space of giant tours
- Improvements for other forms of split algorithms, e.g., HVRP, LRP, etc...
- Many results that we know on Split have connections with results on other enumerative neighborhoods in local searches...
- Aiming for a paradigm shift - we assume too fast that the classical neighborhoods and their complexities are established
- When an improvement occurs, large potential gains
- Wide scope of application
- Average case $O(n \log n)$ exploration procedures are also known for several other problems and neighborhoods... (Bentley and Friedman, 1978; Bentley, 1992)

Thank You I

Thank you for your attention!

... AND A HAPPY OPTIMIZED BIRTHDAY !!

Thank You II

Beasley, J.E. 1983. Route first-cluster second methods for vehicle routing. Omega 11(4) 403-408.

Bein, W., P. Brucker, L.L. Larmore, J.K. Park. 2005. The algebraic Monge property and path problems. Discrete Applied Mathematics 145(3) 455-464.
Bentley, J.J. 1992. Fast algorithms for geometric traveling salesman problems. ORSA Journal on Computing 4(4) 387-411.
Bentley, J.L., J.H. Friedman. 1978. Fast Algorithms for Constructing Minimal Spanning Trees in Coordinate Spaces. IEEE Transactions on Computers C-27(2).
Burkard, R.E., B. Klinz, R. Rudolf. 1996. Perspectives of Monge properties in optimization. Discrete Applied Mathematics 70(2) 95-161.
Crevier, B., J.-F. Cordeau, G. Laporte. 2007. The multi-depot vehicle routing problem with inter-depot routes. European Journal of Operational Research 176(2) 756-773.
Hemmelmayr, V, K F Doerner, R F Hartl, S Rath. 2013. A heuristic solution method for node routing based solid waste collection problems. Journal of Heuristics 19 129-156.
Nagata, Y., O. Bräysy. 2009. Edge assembly-based memetic algorithm for the capacitated vehicle routing problem. Networks 54(4) 205-215.
Prins, C. 2004. A simple and effective evolutionary algorithm for the vehicle routing problem. Computers \& Operations Research 31(12) 1985-2002.

Thank You III

Prins, C. 2009. A GRASP - evolutionary local search hybrid for the vehicle routing problem. F.B. Pereira, J. Tavares, eds., Bio-inspired Algorithms for the Vehicle Routing Problem. Springer, 35-53.
Prins, C., P. Lacomme, C. Prodhon. 2014. Order-first split-second methods for vehicle routing problems: A review. Transportation Research Part C: Emerging Technologies 40 179-200.
Schneider, Michael, Andreas Stenger, Julian Hof. 2015. An Adaptive VNS Algorithm for Vehicle Routing Problems with Intermediate Stops. OR Spectrum 37 353-387.
Tarantilis, Christos D., Emmanouil E. Zachariadis, Chris T. Kiranoudis. 2008. A hybrid guided local search for the vehicle-routing problem with intermediate replenishment facilities. INFORMS Journal on Computing 20(1) 154-168.

Vidal, T., T.G. Crainic, M. Gendreau, N. Lahrichi, W. Rei. 2012. A hybrid genetic algorithm for multidepot and periodic vehicle routing problems. Operations Research 60(3) 611-624.
Vidal, T., T.G. Crainic, M. Gendreau, C. Prins. 2014. A unified solution framework for multi-attribute vehicle routing problems. European Journal of Operational Research 234(3) 658-673.

