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Abstract
This paper contains MIP representation for the fixed-route lateral transhipment problem with piecewise linear Profits
(FRLTP) and a related lot sizing problem, which is called the lotsizing problem with requalification costs (LScRC). You
can also find some details on benchmark instances and the corresponding file formats.
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3University of Vienna, Oskar-Morgenstern-Platz 1, 1090 Vienna, Austria

Contents

1 A priori route evaluation for the FRLTP 1

2 Lot sizing with requalification costs (LSwRC) 2

3 File formats for instances 2

3.1 FRLTP instances . . . . . . . . . . . . . . . . . . . . . . . . 2

3.2 LSwRC instances . . . . . . . . . . . . . . . . . . . . . . . . 3

References 5

1. A priori route evaluation for the FRLTP

This section presents a MIP formulation of the FRLTP
- it is a subproblem that arises in the context of the
lateral transhipment problem for a single route (SRLTP,
cf. [1, 2]). The SRLTP considers traveling costs and
profits, i.e. each node i ∈ {1,2, . . . ,n} is related to a
profit function pi that is piecewise linear and therefore
allows to model expected profits (cf. newsboy problem).
The problem is to find inventory changes yi, such that the
revenue minus the costs for the pickup and delivery route
is maximized. Suppose that Ii

0 is the initial inventory and
Ii
min, Ii

MAX are the bounds on the inventory level, then the
total revenue has the following form:

∑
i∈I

pi(Ii
0− yi) for Ii

0− yi ∈ [Ii
min, I

i
MAX ] (1)

To define the FRLTP, assume that the route τ is a pre-
defined sequence of locations for the SRLTP that starts
in location 1 and ends in location n; and without loss of
generality, this route is defined as τi = i (i = 1, . . .n). Now,
suppose that some of the locations in τ are skipped, form-
ing a subtour τ∗ = (τ1,τ2, . . . ,τm) and the corresponding
inventory changes are y∗i . Then according to (1) and

considering the routing costs, the total profit is equal to:

n

∑
i=1

pi(Ii
0 + y∗i )−

m−1

∑
l=1

cτi,τi+1

If the total revenue is larger than the initial revenue

∑
n
i=1 pi(Ii

0), then rebalancing the inventory is profitable.

In order to simplify the notation, the change in the
cost for location i is considered; it is defined as follows:

fi(yi) = pi(Ii
0)− pi(Ii

0− yi) for yi ∈ [ai,bi]

The limits for feasible inventory changes ai and bi are
defined by minimum and maximum inventory levels and
the initial inventory level:

ai = Ii
0− Ii

MAX

bi = Ii
0− Ii

min

The following formula is used to calculate the correspond-
ing optimal cost change:

m−1

∑
l=1

cτil ,τil+1
+

m

∑
l=1

fi(y∗τil
)

With the introduced notations, a MIP for the FRLTP
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with and without duration limit constraint is presented:

min
n−1

∑
i=1

n

∑
j=i+1

ci jxi j +
n

∑
i=1

fi(yi) (2)

s.t.
i−1

∑
j=1

x ji =
n

∑
j=i+1

xi j 2≤ i≤ n−1 (3)

n

∑
j=2

x1 j = 1 (4)

n−1

∑
j=1

x jn = 1 (5)

n−1

∑
i=1

n

∑
j=i+1

ti jxi j ≤ TMAX (6)

a1 ≤ y1 ≤ b1 an ≤ yn ≤ bn (7)

ai

n

∑
j=i+1

xi j ≤ yi ≤ bi

n

∑
j=i+1

xi j 1≤ i≤ n (8)

0≤
i

∑
j=1

y j ≤ QMAX 1≤ i≤ n (9)

xi j ∈ {0,1} 1≤ i < j ≤ n (10)

yi ∈ R 1≤ i≤ n (11)

The objective (2) is equivalent to maximizing the
total profit. The arc selection variables xi j are defined
for i < j, therefore it is sufficient to formulate the flow
balance (3) and the constraints for the source (4) and
the sink (5) to define a subsequence of τ.

According to (8), changing the inventory level at a
location i (yi 6= 0) implies that the location must also be
visited. The load of the truck when leaving i is ∑ j≤i y j,
therefore (9) enforces that QMAX is the corresponding
upper limit. The ARELTP is defined by (2-6) and the
limit on duration is formulated in (6). The MIP (2-11)
without duration limit constraint (6) is called the FRLTP
without duration limit.

In the following a problem related to the FRLTP is
presented.

2. Lot sizing with requalification costs
(LSwRC)

Various lot sizing models are dealing with product depen-
dent setup times; a wide range of models that cover this
aspect can be found in [3] and [4]. In contrast to that,
the LScRC considers idle time dependent setups. This
model is motivated by applications in food and pharma-
ceutical industry where the qualification of processes and
tools have a given duration or expiration (cf 5.4 (j) in [5]
and revalidation in good manufacturing practice [6]). In
these applications a frequent use of a tool may stretch the
duration of its qualification. This characteristic can also
be found in semiconductor industry where the products

are permanently inspected; for instance steppers (lithog-
raphy) that are used very frequently need less activities
fpr regular process qualification, because the standard
checks of products can be used to certify the quality
standard of the equipment.

In the following, a mathematical model that reflects
this kind of costs (or resource consumption) is formulated.
Suppose that yi is the production quantity in period ithen
bi is the corresponding upper bound, the lower bound
ai may also be positive (yi ∈ [ai,bi]); that means that for
a given period i the production quantity is either zero
(yi = 0) or the lower bound ai is activated (ai ≤ yi).

The production cost for each period i is represented
by a piecewise linear functions fi(yi), therefore the total
production cost is ∑i fi(yi). The inventory level qi at
the end of period i and the unit holding cost hi for
holding one item in period i for one period defines the
inventory holding cost ∑i hiqi. The inventory level is zero
in the beginning (q0 = 0) and the balance equation qi =
qi−1 +(yi−di) states that the inventory level qi at the end
of period i is non-negative. In other words, the demand is
satisfied at all times, i.e. qi = ∑ j≤i(y j−d j)≥ 0. In order
to model time dependent setup costs, the setup variable
xi j for succeeding setups is introduced, i.e. if yi > 0 and
y j > 0 and if there is no production between period i and
period j then xi j = 1, else xi j = 0. The corresponding
setup costs ci j also cover the qualification costs and may
be larger for long idle times when considering expensive
re–qualifications and setups.

Furthermore, a resource consumption ti j associated
to xi j = 1 allows to set restrictions on the total setup
related expenditure TMAX . For instance if all setup times
(ti j) are equal to one, then TMAX is an upper bound on
the number of production periods. Or alternatively, set
ti j = ci j to place an upper bound on the total setup cost.

min
n−1

∑
i=1

n

∑
j=i+1

ci jxi j +
n

∑
i=1

fi(yi)+ ∑
1≤i≤n

hiqi (12)

s.t. qi =
i

∑
j=1

(y j−d j) 1≤ i≤ n (13)

ai

n

∑
j=i+1

xi j ≤ yi ≤ bi

n

∑
j=i+1

xi j 1≤ i≤ n (14)

0≤ qi ≤ QMAX 1≤ i≤ n (15)

xi j ∈ {0,1} 1≤ i < j ≤ n (16)

yi ∈ R 1≤ i≤ n (17)

including (3−6)

3. File formats for instances

3.1 FRLTP instances
An instances for the FRLTP is defined by:

� an a priori route τ.
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� the nodes 1,2, . . . ,n, including the depots 1 and n.

� the cost matrix ci j for i, j = 1 . . .n.

� a distance matrix ti j for i, j = 1 . . .n.

� revenue change functions fi

� values for QMAX and TMAX

The file names follow a convention, for instance the
file name set_64_1_15 3078.txt, tells that TMAX = 15
and that the random seed 3078 was used to generate the
a-priori route. The parameter QMAX is not given, since
the same instance is used for QMAX = 30, QMAX = 60
and QMAX = 120. In the instance file, the nodes are
labeled from 0 to n− 1 and the order is the following:
0,n−1,1,2,3 . . . ,n−2 (depots first). The first line in the
file represents the a-priori route, which is a list of indices.
The first index is always 0 and the last index is always 1.
If a listed index is larger than one then it corresponds
to a node that is not a depot. In the instance file the
a-priori route is followed by the cost matrix ci j. The first
line corresponds to costs from node i = 1 (index 0) and
the second line corresponds to cost i = n (index 1), and
row i (i > 2) corresponds to index i−1.

The matrix ci j is followed by the matrix (ti j) which is
identical (ti j = ci j). At the end of the file a representation
of the piecewise linear cost change functions fi can be
found. To describe the used format, a definition for fi is
given:

fi(y) =


d fi

1 + k fi
1 y y ∈ I fi

1

d fi
2 + k fi

2 y y ∈ I fi
2

. . .

d fi
l

fi
MAX

+ k fi
l

fi
MAX

y y ∈ I fi
l

fi
MAX

where a fi
l−1 and a fi

l are the borders of the interval

I fi
l . In Table 1 a tabular representation of the necessary

parameters for three piecewise linear functions (with
four steps) can be found. Piecewise linear functions
are also used for the LSwRC instances and a graphical
representation can be found in Figure 1.

3.2 LSwRC instances
An instances for the ARELTP are defined by:

� a setup cost matrix ci j for i, j = 1 . . .n.

� setup related resource consumption: for the exper-
iments ti j = ci j.

� start in period 0 and finish in period n.

� an a priori route τ.

� values for the maximum inventory QMAX and the
maximum setup cost TMAX

Figure 1. Example: Definition of the segments

Table 1. Format for piecewise linear functions

i l−1 a fi
l−1 a fi

l d fi
l k fi

l
0 3 -20 20 0 -76
1 3 -20 20 0 -76
2 0 -50 -40 1710 -19
2 1 -40 -30 950 -38
2 2 -30 -20 380 -57
2 3 -20 20 0 -76
3 0 -50 -40 1350 -21
3 1 -40 -30 750 -36
3 2 -30 -20 300 -51
3 3 -20 20 0 -66
4 0 -20 20 0 -11
4 1 20 26 620 -42
4 2 26 32 1426 -73
4 3 32 38 2418 -104
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� production costs fi

� holding costs hi per unit.

The following R-code illustrates how to generate in-
stances for the lot sizing application. In Figure 2 the cor-
responding piecewise linear functions is displayed. The
instance generator is configured with a set of parameters,
for instance the ranges for the holding costs, for the
demand and for production costs are defined.

> source("instances.R")

> parameters$seed = 123

> parameters$periods=4

> parameters

$demand

[1] 50 100

$periods

[1] 4

$HC

[1] 1 2

$PC

[1] 30 90

$PCsubintervals

[1] 3

$PCsubintervallength

[1] 1 60

$recalificationcost

[1] 100

$SC

[1] 1 5

$idlemax

[1] 4

$inventorycapacity

[1] 100

$maxsetupinvest

[1] 21

$seed

[1] 123

$type

[1] "convex"

> instance = generateinstance(parameters)

> instance

$periods

[1] 4

$inventorycapacity

[1] 100

$maxsetupinvest

[1] 21

$demand

[1] 64 90 70 95

$HC

[1] 2 1 2 2

$PCd

[,1] [,2] [,3]

[1,] 0 -34 -2284

[2,] 0 -84 -1164

[3,] 0 -216 -1720

[4,] 0 -297 -2026

$PCdemandbounds

[,1] [,2] [,3] [,4]

[1,] 0 34 75 110

[2,] 0 7 27 90

[3,] 0 54 94 137

[4,] 0 33 91 146

$PCk

[,1] [,2] [,3]

kvec 56 57 87

kvec 32 44 84

kvec 68 72 88

kvec 38 47 66

$SC

[,1] [,2] [,3] [,4]

[1,] 0 4 4 1

[2,] 0 0 3 4

[3,] 0 0 0 2

[4,] 0 0 0 0

$SCstart

[,1] [,2] [,3] [,4]

[1,] 2 1 3 1

$SCend

[,1] [,2] [,3] [,4]

[1,] 2 3 2 1

There is also a function included that exports the
instance into a text file. The corresponding text file is
also displayed.

> exportinstance(instance,"instance.txt");
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Figure 2. Example: piecewise linear function for the lot sizing instance; the demand is represented by black points.

[1] 1

> cat(readLines("instance.txt"),sep='\n')

4

100

21

64 90 70 95

2 1 2 2

0 4 4 1

0 0 3 4

0 0 0 2

0 0 0 0

56 57 87

32 44 84

68 72 88

38 47 66

0 -34 -2284

0 -84 -1164

0 -216 -1720

0 -297 -2026

0 34 75 110

0 7 27 90

0 54 94 137

0 33 91 146

2 1 3 1

2 3 2 1
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