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Title of the talk:

A Priori Route Evaluation for the Lateral Transhipment Problem
(ARELTP) with Piecewise Linear Profits and a Lotsizing
Application with Requalification Costs.

the presentation covers:
@ problem definition
@ lot sizing application
@ solution approaches (DP, B&B)
@ computational experiments and results
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ARELTP with PLWP - origin of the problem

@ origin of the problem: Single Route Lateral Transhipment
Problem (SRLTP)

@ SRLTP: redistribution of inventories using one vehicle.
@ extension to piecewise linear profits (PWLP).
@ ARELTP: evaluation of a-priori routes for this problem



lateral transhipment for a single route - SRLTP

initial inventory levels I; at the local warehouses.

@ I3 =10

©

Iy =30
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lateral transhipment for a single route - SRLTP

the PWLP function F; for different inventory levels.

profit

inventory level
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lateral transhipment for a single route - SRLTP

changes of the inventory level y; and the PWL profit function F;.
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lateral transhipment for a single route - SRLTP

What is a good redistribution?
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lateral transhipment for a single route - SRLTP

not considered: load capacity, tour length constraint, travel
costs.
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lateral transhipment for a single route - SRLTP

considering the load capacity constraint
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lateral transhipment for a single route - SRLTP

considering the load capacity constraint
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lateral transhipment for a single route - SRLTP

considering the distance constraint
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ARELTP: SRLTP for an a-priori route

feasible solution for the a-prioriroute 1 —2 -3 —-4—-5-6—-7
@ aroute that starts in 1 and returns to 7
@ indices of the visited customers are increasing
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ARELTP: SRLTP for an a-priori route

feasible route: 1 —2 -3 -4 -7
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A-priori route and a-priori route evaluation

motivation to use a-priori routes
@ robustness (simple to implement in practice)
@ consistency (improve the service quality)

performance issues may also be a motivation to use a-priori
routes.

This presentation is about evaluating a single a-priori route for
a single scenario (parameter setting) of the SRLTP with PLP.
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ARELTP: formulation

@ arc selection: x;

@ inventory change: y; (remove y;)

Remark: load when leaving iis >, ;

parameters

@ depots for the truck: 1,n
@ local warehouses: 2,...n — 1:
@ revenue change: f;

fi(yi) = Fi(Ii - )’i) - Fi(li) (a,- < Yi < b,‘ if i is visited)

@ costs: ¢
@ time consumption: ¢; and upper bound 7,4,
@ load limit: O,ux
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ARELTP: MIP formulation

min Z CijXij — Zfi(%‘) (1)

1<i<j<n 1<i<n

s.t. ij,-:z;c,j I1<i<n (2)
j<i j>i
lej =1 )
j>1
Z-xjn =1 (4)
j<n
aizxijSYiSbinij 1<i<n )

j>i J>i
0<Y 3 < Onar 1<i<n  (6)
j<i

x; € {0,1} 1<i<j<n (7)
yieR 1<i<n (8)
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ARELTP: MIP formulation
min Y cyxyg— Y fily) (1)

1<i<j<n 1<i<n
s.t. ij,-:z;c,j I1<i<n (2)

Jj<i J>i

lej =1 3)

j>1

Z-xjn =1 (4)

j<n

ai Y xg <yi<biy x I<i<n ()
J>i j>i

0<Y 3 < Onar 1<i<n  (6)

j<i

x; € {0,1} 1<i<j<n (7)

ieR 1<i<n (8)
Z tijxij S Tmax (9)

<i<j<
Isi<jsn 16/47



ARELTP: complexity

A polynomially solvable variant of the ARELTP is presented in
[Hartl and Romauch(2013)]; simplifications:

@ ¢;; is not considered
@ f;is linear
@ T,.ux IS NOt considered
ARELTP is NP hard if one of the following is true if:
@ ¢;; is considered ( linear f; and Ty = 00)
@ f; is piecewise linear (c; = 0 and T}, = 00)
® T4y is considered ( linear f; and ¢; =0)
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lot sizing application

lot sizing and tool qualifications

@ frequent use of a tool may lower the setup costs (renewals
for tool qualifications).

@ pharmaceutical, food and semiconductor industry.

violates the triangle inequality (frequent use of a tool may
stretch the duration of a qualification)
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lot sizing application - example

find the optimal production quantities

demand d; =1 for i = {2,3,4,5,6}
©) > ® U o @
fy2 Ty TYya Y | Ye

production: y; =7 for i = {2,3,4,5,6}
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lot sizing application - example

three solutions
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lot sizing application - example

three solutions
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lot sizing application - parameters

@ periods: i € {1,...n}
@ d;: demand
@ f;: production cost for a given quantity

@ [a;, b;] interval for feasible production quantities - a; may be
positive.

@ h; inventory holding cost per unit (storage between end of
period i to start of period i + 1)

@ ¢;; setup cost

@ 1; setup related resource consumption
@ Oy is the maximum inventory level

@ T, resource consumption limit
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lotsizing application - decision variables

Decision variables

@ x; = 1if i and j are periods with production and there is no
production in between.

@ y; is the production quantity

auxiliary varible: ¢; = >_,;(y; — d;) is the inventory level after
period i
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lotsizing application - MIP

min Z cixij + Z fivi) + Z hig

1<i<j<n 1<i<n 1<i<n
s.t. qi:Z(yj—dj) 1<i<nm
J<i
ijizzxij I<i<n
j<i j>i
Z.X]j =1and ijn =1
j>1 j<n
Z tijxij S Tmax
1<i<j<n
@y xy <yi<biy x 1<i<n
J>i J>i
quiSQmax 1§l§n
xije{ovl} 1S1<j§n
yi;qi > 0 1<i<n
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DP - case without duration constraint

Vi(q) is the minimum cost for inventory level ¢ considering all
customersj=1,2,...,iand itis PWL.

recurrence formula

Vo: {0} — {0}, Vo(0)=0 (10)
envelope

Vi=min(  Vi+¢; Bf) (11)
J<i ——

shifted value function

-

superposition

(VES)(g) = min, {Vig—y) —r(»} (12)
q—yeD(V)
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superposition - example
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DP (case without duration constraint) - complexity

recurrence formula - complexity

Vo : {0} — {0}, Vo(0)=0 (13)
Vi= r]]_g?(vj + ¢ji) Bfi (14)

The complexity for calculating stage i is O(a(M;) log(i)M;),
where M; is the number of labels of all predecessor value
functions.
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Dynamic Programming - general case

considering the duration constraint 3, ;i ;X < Tinax

Ui(q) is the minimum cost for inventory level ¢ considering all
customersj = 1,2,...,i and a given duration budget .

recurrence formula

| \

Uop =0 (15)

U=, i (Ui + )1 (9

(UBf)(q) = gn?f {U(g—y) —f(»)} (17)
q—y€D(U)

\
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DP - general case - representation of the value
function
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DP - general case - linked lists
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DP example - complexity |

— H4.82843
T H3.16228 | — H4.57649
H4.47214
| 7 /
0 10 20 3‘0 4‘0 50 elo - . T . .
0 20 40 60 80
(a) second stage: 5 segments (b) third stage: 6 segments
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DP example - complexity I

— H7.9907
- — H7.73877
— H5.41421
— H5.16228
H 3.41421
H 3.16228

T T T T T T T
0 20 40 60 80 100 120

(c) forth stage: 26 segments

H 9.40492
H 9.15298
H 9.04863
H 6.82843
H 6.57649
H 4.82843
H 4.57649
H4

H 2.82843

FEETH
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(d) fifth stage: 40 segments
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Lagrangian Relaxation

€(x)

L\ = mm Z CijXij — Zﬁ(y,-)—i—)\( Z tii%ij — Tnax)

1<1<]<n 1<i<n 1<i<j<n

L(\Y) = r{lgg)(L(/\)

remarks

@ L(\*) is lower bound for the ARELTP

@ calculating L()\) is equivalent to ARELTP without duration
constraint.

@ L()\) is concave.

@ L(\*) is associated to a feasible solution of the ARELTP
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LR - example
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LR - example
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LR - example

A\
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LR - example
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branch & bound

solution branch

A branch is defined by mandatory customers and forbidden
customers.

branching

a new branch is generated by additionally excluding and
including a customer.

lower bounds

LR provides lower bounds for the branches of the branch &
bound tree.

upper bounds

Heuristic that locally optimizes the feasible dual optimal
solution.
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branch & bound - details

select active branch
select the branch with the largest lower bound

customer is randomly selected from a set where the heuristic
solution is locally optimal.
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design of experiments

instances

@ ARELTP

o Tisiligirides (size: 32 locations + PWLP 4 steps)
e Chao-Golden (size: 64/66 locations + PWLP 4 steps)
@ a-priori routes: 20 per instance.

@ lot sizing: new benchmark instances

http://homepage.univie.ac.at/martin.romauch/ARELTP/

@ number customers / periods (n)

@ duration limit / maximum resource consumtion (7.x)

@ load capacity / maximum inventory level (Qax)
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http://homepage.univie.ac.at/martin.romauch/ARELTP/
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Results: lot sizing (7, = 00)
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Results: Tsiligirides
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Results: Chao-Golden

E small Qmax E medium Qmax ‘ large Qmax

BBDP DP GUROBI

172 -
174 -
18- ' —
1/16 -
1/32 -

eteee
8 .

CPU time (sec)
——
L - e S

. ol oo

1/64 -

1/128 -

1/256 -
1/512- "% f '
1/1000 111N

L L L L L L R R L N L R
10 20 30 40 50 60 70 10 20 30 40 50 60 70 10 20 30 40 50 60 70
number of customers
44/47



Results: lot sizing
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conclusion and next steps

@ With respect to the computational experiments, the
presented B&B approach has in average the best
performance.

@ Very large load capacities Q... are beneficial for Gurobi

@ Very large duration limits 7,,,, are beneficial for the
proposed B&B

@ Very good results for the lot sizing instances

@ integration of the ARELTP solver into a framework to solve
lateral transhipment for PWLP.

@ application: stochastic demands
@ extension: more than one route/product, split deliveries ...
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[@ Richard F Hartl and Martin Romauch.
The influence of routing on lateral transhipment.
In Computer Aided Systems Theory-EUROCAST 2013,
pages 267-275. Springer, 2013.
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