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Research context

e Capacitated vehicle routing
problems (VRP)

» INPUT : n customers, with
locations and demand quantity.
All-pair distances. Homogeneous
fleet of m vehicles with capacity @
located at a central depot.

» OUTPUT : Least-cost delivery
routes (at most one route per
vehicle) to service all customers.

» NP-Hard problem

» recent breakthrough in exact methods enable to solve problems of
moderate size with up to 300-400 customers (Uchoa et al., 2013).

» A Scopus search “Vehicle Routing” for 2007-2011 returns 1258
publications, including 566 journal papers.

» Massive research on heuristics
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Research context

e Vehicle routing “attributes”: Supplementary decisions,
constraints and objectives which complement the classic VRP
formulation.

» modeling the specificities of application cases, customer requirements,
network and vehicle specificities, operators abilities...

» e.g., service time windows, multiple periods of planning, multiple depots
and facilities, heterogeneous fleet, 2D-3D loading, time-dependent travel
times...

e Multi-Attribute Vehicle Routing Problems (MAVRP)

» Challenges: VARIETY of attributes

» Challenges: COMBINATION of attributes

» Plethora of attribute-specific methods in the literature, but highly
problem specific

» More unified methods, which can be extended to new problems
without significant development, are necessary to answer the industrial
needs in a timely manner.
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Research Context

e General effort dedicated to better address rich vehicle routing problems
involving many side constraints and attributes

e Observation : Many rich VRPs are hard because of their time features, e.g.,
(single, soft, or multiple) time windows, (time-dependent, flexible or
stochastic) travel times, speed optimization, time-dependent costs, lunch
breaks, HOS regulations...

e Timing subproblems:

GIVEN A FIXED ROUTE, EVALUATE FEASIBILITY AND COST
W.R.T. TIME ATTRIBUTES

e Must be solved for all route and move evaluations
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Research Context

e Timing subproblems:

GIVEN A FIXED ROUTE, EVALUATE FEASIBILITY AND COST
W.R.T. TIME ATTRIBUTES

» Review of timing problems and algorithms in [Vidal et. al, 2015, Timing
problems and algorithms: Time decisions for sequences of activities.
Networks, 65(2), 102-128].

» More than 150 references, with efficient algorithms originally designed for
other problems such as scheduling, PERT, resource allocation, isotone
regression, telecommunications, machine learning...
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Research Context

e Case 1) VRP with soft time windows.
Optimizing service dates for a given sequence of visits, in the
presence of soft time windows [e;, [;]:

mln aZmax{e, —;,0} + ﬁZmax{t —1;,0} (1.1)

s.t. &+ (52 < tit1 1<i<n (12)

= Can be viewed as the optimization of a separable convex function
over the order simplex:

min f(x Zf’ z;) (1.3)

stz < mig 1€ {1,...,71—1} (14)
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Research Context

e Case 1) VRP with soft time windows.

= Can be viewed as the optimization of a separable convex function
over the order simplex:

min f(x) :Zf,-(a:i) (1.5)
s.t. Z; SIZ'+1 S {1,,77,71} (16)

e Interesting fact : 30 papers from various domains (routing,
scheduling, PERT), isotonic regression) have been focused on this
problem. All these papers can be reduced to three main algorithms
(one primal approach, one dual, otherwise dynamic programming
when for PL functions).
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Research Context

e Case 2) Vehicle speed optimization.
Optimizing speed v over a fixed sequence of legs, making sure that
service time-windows are respected, and f; are convex functions

min f t V Z(sz 1,2 Uz 1 1) (17)
62 1,2 .
st g+ —= <t ie{2,...,n} (1.8)
Vi—1,4
a; <t; < b ief{l,...,n} (1.9)
Umin < Vi—1,i < Umaz 1€ {2, ey n} (110)

e Direct applications related to:

» Ship speed optimization (Norstad et al., 2011; Hvattum et al., 2013)
» Vehicle routing with flexible travel time or pollution routing (Hashimoto
et al., 2006; Bektas and Laporte, 2011)

> Introduction Algorithms Methodology Experiments Conclusions References 11/67



e Case 2) Vehicle speed optimization.
After a quick reformulation:

» With the change of variables x; = t; — t;_1

n
_ Si 1
min £(x) =3 60100 (—) (1.11)
i=2 ’
i
st a; < Zxk < b; ie{l,...,n} (1.12)
k=1
di—1,i :
— < i€{2,...,n}, (1.13)
Umaz

(4 OPTY < OPT
with gi(v) — {fl(vz ) if v < v

fi(v) otherwise.



Research Context

e With simpler notations we obtain:.

min f(x) = fi(z;)
=1

[i]
s.t. aiSZxkg b; ie{l,...,m—1}
k=1
Sa-s
k=1
¢ <z < d; ie{l,...,n}.

(1.15)

(1.16)

(1.17)

(1.18)

e “Resource Allocation Problem with Nested Constraints” (RAP-NC)

» Special case where a; = —oco called “NESTED”

» Scope of this work : f; convex & Lipschitz continuous but not necessarily

differentiable or strictly convex.
» For now, decision variables are continuous.

> Introduction Algorithms Methodology Experiments Conclusions References

13/67



Research Context

e Without Equation (1.16), reduces to a simple Resource Allocation
Problem:

min f(x) =) _ fi(z:) (1.19)
i=1

zn:xk =B (1.20)
k=1

¢ <z <d; 1€ {1, .. .,n}. (1.21)

Solvable in O(n) for linear or quadratic objectives, with either
continuous or integer variables

Solvable in O(nlog %) for integer variables and convex objective.

e An e-approximate solution of the continuous problem can be found
in O(nlog %) operations (to be explained later)
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Research Context

e Ship speed optimization was our first motivation and application.

The RAP-NC, however, is recurrent in a large variety of fields:

e Lot Sizing for example, with time-dependent production costs and

>

inventory bounds:

min f(x,I) sz%‘anl

s.t. Il-:IZ-,l—i—xZ-—dZ- i€q{2,...
I= K
0< I, < [ iefl,...
0 <z <o ie{l,...
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e Lot Sizing with time-dependent production costs and
inventory bounds:

e Expressing the inventory variables as a function of the
production quantities, using I; = K + Y, _, (2, — di), we get

K+ (- dk)]
k=1

st Y di—K <> o <> dg+ "™ —K ie{l,... n}
k=1 k=1 k=1

0 < <™ ie{l,...,n}.

minf(x) =Y piz) + Y
i=1 i=1



Research Context

e Stratified Sampling: Population of N units divided into
subpopulations (strata) of Ny,..., N, units s.t. Ny +---+ N, = N.

e Problem: determine the sample size z; € [0, N;] for each stratum, in
order to estimate a characteristic of the population while ensuring a
maximum variance level V' and minimizing the total sampling cost.

min Zcixi (1.27)
=1
" N?¢? (1 1
.t. t - — — <V 1.28
IR ( Ni)_ (1.28)
0<z <N, ie{l,....,n} (1.29)

e In hierarchal sampling applications, may also need to bound the
variance for subsets of stratums, as follows:

N2o? (1 1
3 N;’ (x - N) <V, ie{l,....m} (1.30)
1€ES; ¢ ¢
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Research Context

e Stratified Sampling: Population of N units divided into
subpopulations (strata) of Ny,..., N, units s.t. Ny +---+ N, = N.

e Problem: determine the sample size z; € [0, N;] for each stratum, in
order to estimate a characteristic of the population while ensuring a
maximum variance level V' and minimizing the total sampling cost.

min Zcixi (1.31)
=1
" N2 (1 1
.t. t - — — <V 1.32
IR ( Ni)_ (1.32)
0< <N, ie{l,...,n}. (1.33)

e In hierarchal sampling applications, may also need to bound the
variance for subsets of stratums, as follows:

N2o? (1 1
3 N;’ (x - N) <V, ie{l,....m} (1.34)
1€ES; ¢ ¢
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Research Context

e Machine Learning: Support vector ordinal regression (SVOR)
aims to find r — 1 parallel hyperplanes so as to separate r ordered
classes of samples in a kernel space. A dual formulation of this
problem (Chu and Keerthi, 2007) can be formulated as follows:

o 35 o - LS St e — et

7j=11:i=1
s.t. oga{fgo

0<al<cC

,nk nk+1

i Za Zaflﬁ'l >0
i=1

k=1 \ =1

<
—

_ k1
k=1 \i=1 i=1

>

nk
k *k—4+1
E Q= E a;

J=li=1j5'=14i'=1

je{l,...
jed{l,....,r
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e Class1l - Class2 « Class3 « Class4 ¢« Class5
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Research Context

¢ Portfolio Optimization: Mean-variance portfolio optimization
(MVO) model of Markowitz (1952).

e In a simple form, maximize expected return while minimizing a risk
measure such as the variance of the return. Can be formulated as:

{max E Tyl min E E IIJZ.Z'JO'ZJ}
=1 75=1
i=1

0< o4 iE{l,...,n},
» 1, variables model the investments in different assets

> u; is the expected return of asset 4
» 04 the covariance between asset ¢ and j.
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Research Context

e Portfolio Optimization: Mean-variance portfolio optimization
(MVO) model of Markowitz (1952).

e In a simple form, maximize expected return while minimizing a risk
measure such as the variance of the return. Can be formulated as:

{max E Zifhi 3 min E E xzxjazj}
=1 j=1
=1

0< = ie{l,...,n},

e But additional constraints can be considered
» Class constraints limit the investment amounts for certain classes of
assets or sector
» Fized transaction costs, minimum transaction levels, and cardinality
constraints...
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Existing algorithms — VRP or ship routing literature

e Recursive smoothing

algorithm (Norstad et al.,
2011; Hvattum et al., 2013)

>

Applicable only when

the cost/speed
functions do not
depend on the arc
This case is strongly
polynomial (which even

never needs to evaluate the

objective function)
Complexity : O(n?)

m

p

m

o

Ll

3

7
f1
I

[

p

Image from R. Kramer, A.

Subramanian, T. Vidal, and L. A. F.
Cabral. A matheuristic approach for

the Pollution-Routing Problem. 2014.
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Existing algorithms — VRP or ship routing literature

e This approach is closely related to the concept of string method
(Dantzig 1971 and other earlier contributions)
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Image from G. B. Dantzig. A control problem of Bellman. Management Science. 17(9),
pp- 542-546, 1971.
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Existing algorithms — VRP & Lot Sizing literature

e Dynamic programming approaches for the case of piecewise
linear functions (e.g., Hashimoto et al., 2006)

e Compute recursively the functions F;(b) which evaluate the
minimum cost to execute the i first activities (1, ..., ;) with a
resource consumption of b.
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Existing algorithms — Lot Sizing literature

e Flow algorithms for the linear case, model the RAP-NC as the
following min-cost flow problem:

» Ahuja, R. K., & Hochbaum, D. S. (2008). Technical note — Solving linear
cost dynamic lot-sizing problems in O(n log n) time. Operations

Research, 56(1), 255-261.

@ Ziend;

» Specialized dynamic tree structures allow to attain a complexity of
O(nlogn). But very complex to implement.
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Existing algorithms — NESTED

e Dual-inspired methods. Rely on the fact that the continuous
resource allocation problem (RAP) can be solved by finding the zero
of a single (Lagrangian) equation.

e Iteratively solving this equation and adjusting violated nested
constraints.

» Padakandla and Sundaresan (2009): complexity of O(n?®g,p(n, B))
» Wang (2015): complexity of O(n?logn + n®grap(n, B))
» where ®r,p(n, B) is the complexity of solving one RAP.
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Existing algorithms — NESTED

e A greedy method with scaling for NESTED with integer variables
(Hochbaum, 1994)

» Greedy algorithms iteratively consider all feasible increments of one
resource, and select the least-cost one.

» Convergence guarantee (Federgruen and Groenevelt, 1986) to the
optimum of the integer RAP

e Scaling.
» An initial problem is solved with large increments
» The increment size is iteratively divided by two to achieve higher
accuracy.
» At each iteration, and for each variable, only one increment from the
previous iteration may require to be corrected.
» Complexity of O(nlognlog£) for NESTED with integer variables
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Q: How can we solve efficiently the RAP-NC ?

A: If the objective is linear, apply the flow-based algorithm of Ahuja
and Hochbaum (2008) in O(nlogn).

Q: But what if I have a general convex objective 7

A: Apply general-purpose convex optimization solvers, such as
J S

MOSEK or CVX

Q: But what if my problem is large (n > 5,000) or a fast answer is
needed ?

A
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Wrap-up

>

Q: How can we solve efficiently the RAP-NC ?

A If the objective is linear, apply the flow-based algorithm of Ahuja
and Hochbaum (2008) in O(nlogn).

Q: But what if I have a general convex objective ?

A: Apply general-purpose convex optimization solvers, such as
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Wrap-up

>

Q: How can we solve efficiently the RAP-NC ?

A If the objective is linear, apply the flow-based algorithm of Ahuja
and Hochbaum (2008) in O(nlogn).

Q: But what if I have a general convex objective ?

A: Apply general-purpose convex optimization solvers, such as
MOSEK or CVX

Q: But what if my problem is large (n > 5,000) or a fast answer is
needed 7

A: L.
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Proposed Algorithm — on an example

Think of the problem as a physical system made of springs:

* * * *

4—>H4—>4—>

i
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Proposed Algorithm

e Divide the problem is easy. But how to exploit the information given
by the subproblems to solve each iteration ? The answer comes from
this:

Theorem (Monotonicity)

Consider three bounds RY < R < RT. If x* is an optimal solution of
RAP-NC, (L, RY) and x" is an optimal solution of
RAP-NC, (L, R") such that x* < x', then there exists an optimal
solution x* of RAP-NC, (L, R) such that x* < x* < x!.

Proof: Vidal, Gribel, & Jaillet, P. (2017). Separable convex optimization with

nested lower and upper constraints. ArXiv report:
https://arxiv.org/abs/1703.01484].
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e This theorem allows to generate valid bounds (optimality cuts) on
the variables, based on the information of the subproblems.



Proposed Algorithm

e This theorem allows to generate valid bounds (optimality cuts) on
the variables, based on the information of the subproblems.

e BUT, these new inequalities have an important property, they are
stronger than the nested constraints of the problem, i.e., if they are
satisfied, then the nested constraints are satisfied:

ot <ap < afttfor ke {olv—1]+1,...,0[u]} and i € {v,..., u}
oli] oli] oli]
S S e 3 a3
k=oc[v—1]+1 k=oc[v—1]+1 k=oc[v—1]+1
o[i]
= a < Z m < b
k=o[v—1]+1
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e Then, we can simply eliminate the nested constraints from the model
and keep these new bounds on the variables, reducing each RAP-NC
subproblem into a RAP.



e Then, we can simply eliminate the nested constraints from the model
and keep these new bounds on the variables, reducing each RAP-NC
subproblem into a RAP.

o With this transformation, each level of the recursion can be solved
with any classical RAP algorithm.



Proposed Algorithm — pseudo code

1 if v =w then

2 (:BZT’U711+17 e Ty ) < RAP,  (@y—1, @y, —00,00) ;

3 ('rr('lrlfvfl]#»l’ s ’x:'lrlfv ) — R’AP’U-,’U(G”U*M b’w7 —00, OO) ;

4 (:1;‘1()7”[‘1)71]#»17 e »xl:;fv ) < RAP, 4 (by—1, @y, —00,00) ;

5 (xl;l7[1;71]+1’ s ’xtlfrbv ) A R’AP’U-,’U(b’U*h b’w7 —00, OO) ;

6 else

T ue [

8 MDA (v,u) ;

9 MDA (u+1,w) ;
10 | for (L,R) € {(a:a), (a,0), (b,a), (b,b)} do
11 for i =ofv—1]+1 to ofu] do [¢;,d;] + [zl ] ;
12 for i=ofu] +1 to olw] do [&;,d;] + [x2F, x¢T] ;
13 (@ gias 20 fy) < RAP, (L, R,E,d) 5

37/67
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Q: Does-it resolve the general convex case ?

A: No, optimal solutions can be irrational (e.g.,

N SN 2 . . o B o
min f(z) = z° — 6z, > 0). What means "solving a subproblem
when we cannot even represent a solution?

e : Then, we cannot even represent the final solution of our problem
in a bit-size computational model, it is ill defined...

e A: Indeed, this is why we do not require to solve to optimality a
general convex problem. Instead, search for an e-approximate
solution, guaranteed to be located in the solution space no further
than ¢ from an optimal solution.

e QQ: Then, how can we control the imprecision of the algorithm at
each layer of the recursion?

e A: This is not easy. We will give better ways than trying to
work-around with numerical imprecisions in the method.
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Proposed Algorithm — pseudo code

e Q: Does-it resolve the general convex case ?

e A: No, optimal solutions can be irrational (e.g.,
min f(z) = 23 — 6z, 2 > 0). What means “solving a subproblem”
when we cannot even represent a solution?

e Q: Then, we cannot even represent the final solution of our problem
in a bit-size computational model, it is ill defined...
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Proposed Algorithm — pseudo code

Q: Does-it resolve the general convex case 7

A No, optimal solutions can be irrational (e.g.,
min f(z) = 23 — 6z, 2 > 0). What means “solving a subproblem”
when we cannot even represent a solution?

e Q: Then, we cannot even represent the final solution of our problem
in a bit-size computational model, it is ill defined...

e A: Indeed, this is why we do not require to solve to optimality a
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solution, guaranteed to be located in the solution space no further
than € from an optimal solution.
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min f(z) = 23 — 6z, 2 > 0). What means “solving a subproblem”
when we cannot even represent a solution?

e Q: Then, we cannot even represent the final solution of our problem
in a bit-size computational model, it is ill defined...

e A: Indeed, this is why we do not require to solve to optimality a
general convex problem. Instead, search for an e-approximate
solution, guaranteed to be located in the solution space no further
than € from an optimal solution.

e Q: Then, how can we control the imprecision of the algorithm at
each layer of the recursion?

> Introduction Algorithms Methodology Experiments Conclusions References 38/67



Proposed Algorithm — pseudo code

Q: Does-it resolve the general convex case 7

A No, optimal solutions can be irrational (e.g.,

min f(z) = 23 — 6z, 2 > 0). What means “solving a subproblem”
when we cannot even represent a solution?

Q: Then, we cannot even represent the final solution of our problem
in a bit-size computational model, it is ill defined...

A Indeed, this is why we do not require to solve to optimality a
general convex problem. Instead, search for an e-approximate
solution, guaranteed to be located in the solution space no further
than € from an optimal solution.

Q: Then, how can we control the imprecision of the algorithm at
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A: This is not easy. We will give better ways than trying to
work-around with numerical imprecisions in the method.
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e-approximate solutions

e Computational complexity of algorithms for general non-linear
optimization problems = an infinite output size may be needed due
to real optimal solutions.

e To circumvent this issue

» Existence of an oracle which returns the value of f;(z) in O(1)
» Approximate notion of optimality (Hochbaum and Shanthikumar, 1990):

a continuous solution x() is e-accurate iff there exists an optimal
solution x* such that ||(x(9) —x*)|| < e.

» Accuracy is defined in the solution space, in contrast with some other

approximation approaches which considered objective space (Nemirovsky
and Yudin, 1983).
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Integer Variables and Proximity Theorem

e We will consider the integer problem, and use a proximity property
between optimal continuous and integer solutions.

Theorem (Proximity)

For any integer optimal solution x* of RAP-NC with n > 2 variables,
there is a continuous optimal solution x such that

|z, — x| <n—1, forie{l,...,n}. (3.1)
Special case of: Moriguchi, S., Shioura, A., & Tsuchimura, N. (2011).

M-convez function minimization by continuous relaxation approach: Prozimity
theorem and algorithm. STAM Journal on Optimization, 21(3), 633-668.
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e Q: This allows to solve problems with integer variables now, but how
this can help to find an e-approximate solution for continuous
problems ?



Integer Variables and Proximity Theorem

>

Q: This allows to solve problems with integer variables now, but how
this can help to find an e-approximate solution for continuous
problems ?

A: To solve a continuous problem, simply transform the continuous
problem into an integer problem where all parameters (a;, b;, ¢;, d;)
have been scaled by a factor [n/e], solve this problem (exactly, an
integer solution is always representable) and transform back the
solution. The proximity theorem guarantees that the solution is
within the required precision.
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o Convex objective. Using the algorithms of Frederickson and
Johnson (1982) or Hochbaum (1994) for the RAP subproblems =
complexity of O(nlogmlog B) for the RAP-NC with integer
variables, and O(nlogm log %) for an e—approximate solution of
the continuous problem.



Computational Complexity

¢ Quadratic objectives. Using Ibaraki and Katoh (1988) in O(n)
for the quadratic integer RAP, or Brucker (1984) in O(n) for the
quadratic continuous RAP = RAP-NC can be solved in O(nlog m),
with either continuous or integer variables.

e This is the first strongly polynomial algorithm for the integer
quadratic problem, responding positively to an open research
question from Moriguchi et al. (2011): “It is an open question

whether there exist O(nlogn) algorithms for (Nest) with quadratic
objective functions”.
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Computational Complexity

>

Linear objective. Using a variant of median search in O(n) for the
RAP = RAP-NC can be solved in O(nlogm), with either
continuous or integer variables.

This is a slight improvement over the current network flow algorithm
of Ahuja and Hochbaum (2008) in O(nlogn). It has the advantage
of only using simple data structures, while the network flow
algorithm relies on a dynamic tree (Tarjan, 1997; Tarjan and
Werneck, 2009) or a segment tree (Bentley, 1977) with lazy
propagation to keep track of capacity constraints.

Introduction Algorithms Methodology Experiments Conclusions References 44/67



@ Introduction
@ Research Context
e Applications

© Previous Algorithms
© Methodology

@ Continuous Variables
@ Integer Variables and Proximity Theorem
e Computational Complexity

@ Computational experiments
o Linear Objective
e Convex Objective
@ Non-Separable Convex Objective

© Conclusions



Computational Experiments

e Three types of experiments:

e Linear objective. Comparison with the network flow algorithm of
Ahuja and Hochbaum (2008)

e Convex objective. Comparison with MOSEK, a state-of-the-art
convex optimization solver

e Non-separable convex objective. For the support vector ordinal
regression problem (SVOR), using the RAP-NC as a subproblem in
a projected gradient method.
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Computational Experiments

e Tests on randomly-generated instances of the RAP-NC with a
number of variables n € {10, 20,50,...,10°}, 10 instances per
problem size

e For fine-grained analyses with the linear objective, 13x10 additional
instances with m = 100 constraints and n € {100, 200, 500, . ..,105}
variables.

e Experiments with four classes of objectives: a linear objective
> piti, and three convex objectives defined as:

4

[F] filz) = % + iz,
(Crash]  fi(w) = ki + 2,
C; 3
and [Fuel] fi(z) = pi x ¢ x <;>
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Experiments — Linear Objective

Table : Detailed CPU times for experiments with a linear objective

Variable m CPU Time(s) Fixed m CPU Time(s)

n m FLOW MDA n m FLOW MDA
10 10 2.75%x1076 | 4.78x107° 100 100 | 5.09x107° | 5.95x107°
20 20 6.26x1076 | 1.02x10~° 200 100 | 1.36x10~* | 1.26x10~*
50 50 2.15x107° | 2.85x107° 500 100 | 3.94x10~* | 2.86x10~*
100 100 5.06x107° | 5.89x107° 1000 100 | 9.07x107* | 5.52x10~*
200 200 1.26x10~* | 1.26x10~* 2000 100 | 2.07x1073 | 1.14x1073
500 500 3.72x107* | 3.36x10~* 5000 100 | 6.16x1073 | 2.96x1073
1000 1000 8.43x10™* | 7.57x1074 10000 100 | 1.44x1072 | 6.26x1073
2000 2000 1.87x107% | 1.74x1073 20000 100 | 3.17x1072 | 1.57x1072
5000 5000 5.43x1073 | 5.20x1073 50000 100 | 9.27x1072 | 5.26x1072
10000 10000 1.23x1072 | 1.12x1072 100000 100 | 2.04x107! 1.08x10~!
20000 20000 2.62x1072 | 3.21x1072 200000 100 | 4.41x10~' | 2.36x10~!
50000 50000 7.94x1072 | 1.05x107! 500000 100 1.20 7.19%107!
100000 100000 1.52x1071 | 2.26x107! 1000000 100 2.56 1.60
200000 200000 3.67x107" | 4.86x107!
500000 500000 9.68x107! 1.37
1000000 1000000 1.99 2.98
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methods as n and m grow. Right figure: Boxplots of the ratio Trrow/TMDA-
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Experiments — Convex Objective

Table : Detailed CPU-time for experiments with a separable convex objective

CPU Time(s) - MDA CPU Time(s) - MOSEK

n m [F] [Crash] [Fuel] [F] [Crash] [Fuel]

10 10 5.28x107°  3.27x107°  6.11x107° | 7.69x10~% 7.83x107%  8.06x10~3
20 20 1.14x107%  7.32x107°  1.33x107* | 8.27x107% 8.60x1073 8.64x1073
50 50 3.80x107%  2.63x10™*  4.45x107* | 9.95x1073  1.03x1072  1.04x1072
100 100 8.04x10™*  5.39x10~*  9.30x10~* | 1.73x1072  1.75x1072  1.74x10~2
200 200 1.93x107%  1.23x107%  2.16x1073 | 6.31x1072  6.22x1072  6.30x1072
500 500 5.45x107%  3.55x107%  6.21x1073 | 7.79x107'  7.56x107'  7.86x10~!
1000 1000 1.27x1072  8.61x1073  1.43x1072 6.31 6.29 6.37

2000 2000 2.88x1072  1.87x1072  3.19x107% | 8.57x10! 9.38x10! 9.05x10!
5000 5000 9.27x1072  6.05x1072  9.86x1072 | 1.70x10° 1.61x10% 1.55x10%

10000 10000 2.01x107"  1.34x107!  2.13x107!
20000 20000 4.69x1071  3.04x107!  4.82x107! — — —

50000 50000 1.31 8.74x10~1 1.33 — — —
100000 100000 3.12 2.02 3.07
200000 200000 6.68 4.58 6.61 — — —

500000 500000 1.98x 10! 1.35x 10! 1.91x10! — — —
1000000 1000000 | 4.54x10* 3.10x10* 4.30x10*
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Experiments — Non-Separable Convex Objective

e Last experimental analysis is concerned with the SVOREX model

e A non-separable convex optimization problem over a special case of
the RAP-NC constraint polytope.

r o’ rond o ond
. . 1 . . v ., . ./
J *j *j I\ ( j J 0
a%a*{(uzz(ai +a)— B ZZ Z Z(ai —a)) (o)) —al, )K(z],2),)
j=11i=1 j=1li=14'=14i=1
st. 0<al <C je{l,...,rhie{l,...,n’}
0<af <C jef{l,...,r—1}ie{l,...,n'}
j nk 1
Z Zaf—Za?kH >0 jed{l,...,r—2}
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Experiments — Non-Separable Convex Objective

e Current state-of-the-art algorithm for this problem, proposed by Chu
and Keerthi (2007), based on a working-set decomposition.

o Iteratively, a set of variables is selected to be optimized over, while
the others remain fixed.

e This approach leads to a (non-separable) restricted problem with
fewer variables which can be solved to optimality.
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e Chu and Keerthi (2007) use a minimal working set containing the
two variables which most violates the KKT conditions



e Chu and Keerthi (2007) use a minimal working set containing the
two variables which most violates the KKT conditions
» Advantage: Availability of analytical solutions for the restricted
problems
» Drawback: Large number of iterations until convergence



Experiments — Non-Separable Convex Objective

e Chu and Keerthi (2007) use a minimal working set containing the
two variables which most violates the KKT conditions

» Advantage: Availability of analytical solutions for the restricted
problems
» Drawback: Large number of iterations until convergence

e Our RAP-NC algorithm can provide another meaningful option
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Experiments — Non-Separable Convex Objective

e Chu and Keerthi (2007) use a minimal working set containing the
two variables which most violates the KKT conditions
» Advantage: Availability of analytical solutions for the restricted
problems
» Drawback: Large number of iterations until convergence

e Our RAP-NC algorithm can provide another meaningful option
» Generating larger working sets, and solving the resulting reduced
problems with the help of the RAP-NC algorithm
» Warning: the reduced problems are non-separable = RAP-NC
algorithm is used for the projection steps within a projected gradient
descent procedure
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Experiments — Non-Separable Convex Objective

1a=a"=0; // Initial Solution set to O
2 while there exists samples that violate the KKT conditions do
3 Select a working set W of maximum size nys
4 for ngg.p iterations do

// Take a step
5 for je{l,...,rtand ie{1,...,n'} do
. o m a’+'y% if (i,7) e W . ario af’:+vai’%, if (i,5) e W

o otherwise oy’ otherwise

7 // Solve the projection subproblem as a RAP-NC

min Yy, ((a{ — )2+ () — d:j)z)
e (i j)ew

(@) =9 g4, Equations (30)—(33)

od =4} and o) =& if (4,5) ¢ W
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e Experiments with working sets of size nys € {2,4,6, 10}, a step size
of v =0.2 and ngrap = 20 iterations for the projected gradient
descent.

e Fight data sets from Chu and Keerthi (2007)



Experiments — Non-Separable Convex Objective

>

Table : SVOREX resolution — impact of the working-set size

Solution Variables s.t.

Instance N D w=0 w=C a e, c] Ny Lws T(s)
2 118233 13.46
N 4 96673 21.51

P 200 U‘ 0;
Abalone 1000 8 39% 32% 29% 6 78433 26.34
10 60605 35.46
2 139468 68.41
4 52073 63.02

) =0 1 =0
Bank 3000 32 25% 0% 5% 6 31452 45.22
10 21310 47.66
2 7207 0.43
. . 4 3697 0.40
« < 410 0, =007 = o020 ==
Boston 300 13 41% 0% 59% 6 2840 0.46
10 2076 0.54
2 250720 124.46
4 189289 185.79

- o . .

California 5000 8 51% 43% 6% 6 166879 245.08
10 146170 360.52
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Experiments — Non-Separable Convex Objective

>

Table : SVOREX resolution — impact of the working-set size
Solution Variables s.t.
Instance N D a=0 a=C a e, ¢ Nys Lws T(s)
2 349894 242.11
4 206951 301.74
s o7 o A
Census 6000 16 38% 4% 59% 6 180608 303.98
10 155731 574.28
2 290207 168.94
4 140270 161.45
. / A o, 0
Computer 4000 21 64% 32% 4% 6 08948 153.56
10 68616 193.10
2 28856 1.24
4 11534 0.86
Tachi 0 0 0 b 11904 0.86
Machine CPU 150 6 49% 9% 41% p 8144 0.91
10 6363 1.24
2 935 0.035
4 367 0.021
e o
Pyrimidines 50 27 21% 0% 79% 6 218 0.018
10 144 0.023
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Conclusions and Perspectives

¢ RAP-NC: wide range of applications in production and
transportation optimization, portfolio management, sampling
optimization, telecommunications and machine learning.

e A new type of decomposition method, based on monotonicity
principles coupled with divide-and-conquer

e Complexity breakthroughs, and first known strongly polynomial
algorithm for the quadratic integer RAP-NC

e Good practical performance, and applications to ordinal
regression problems for machine learning
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Conclusions and Perspectives

e Very different principles: not based on classical greedy steps and
scaling, or on flow propagation techniques.

e Key research questions = How far this type of decomposition can be
generalized
» Other convex resource allocation problems where, e.g., the constraints
follow a TREE of lower and upper constraints (Hochbaum, 1994)
» Extended formulations involving the intersection of two or more
RAP-NC type of constraint polytopes
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Thank you

THANK YOU FOR YOUR ATTENTION !

v

T. Vidal, T. G. Crainic, M. Gendreau, and C. Prins. A unifying view
on timing problems and algorithms. Networks, 65(2), 102-128.

» T. Vidal, P. Jaillet, and N. Maculan, A decomposition algorithm for
nested resource allocation problems. STAM Journal on
Optimization, 26(2), 1322-1340.

» T. Vidal, D. Gribel, and P. Jaillet, (2017). Separable convex
optimization with nested lower and upper constraints.
Submitted to Operations Research. Technical report PUC-Rio and
MIT-LIDS. https://arxiv.org/abs/1703.01484.

» http://wl.cirrelt.ca/~vidalt/
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