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Research contextMulti-attribute vehicle routing problems (MAVRPs)

• Capacitated vehicle routing
problems (VRP)

I INPUT : n customers, with
locations and demand quantity.
All-pair distances. Homogeneous
fleet of m vehicles with capacity Q
located at a central depot.

I OUTPUT : Least-cost delivery
routes (at most one route per
vehicle) to service all customers.

I NP-Hard problem
I recent breakthrough in exact methods enable to solve problems of

moderate size with up to 300-400 customers (Uchoa et al., 2013).
I A Scopus search “Vehicle Routing” for 2007-2011 returns 1258

publications, including 566 journal papers.
I Massive research on heuristics

> Problem Preliminaries Proposed methodology Computational Experiments Related Result Conclusions References6/59> Introduction Algorithms Methodology Experiments Conclusions References 5/67



Research context

• Vehicle routing “attributes”: Supplementary decisions,
constraints and objectives which complement the classic VRP
formulation.
I modeling the specificities of application cases, customer requirements,

network and vehicle specificities, operators abilities...
I e.g., service time windows, multiple periods of planning, multiple depots

and facilities, heterogeneous fleet, 2D-3D loading, time-dependent travel
times...

• Multi-Attribute Vehicle Routing Problems (MAVRP)
I Challenges: VARIETY of attributes
I Challenges: COMBINATION of attributes
I Plethora of attribute-specific methods in the literature, but highly

problem specific
I More unified methods, which can be extended to new problems

without significant development, are necessary to answer the industrial
needs in a timely manner.
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Research Context

• General effort dedicated to better address rich vehicle routing problems
involving many side constraints and attributes

• Observation : Many rich VRPs are hard because of their time features, e.g.,
(single, soft, or multiple) time windows, (time-dependent, flexible or
stochastic) travel times, speed optimization, time-dependent costs, lunch
breaks, HOS regulations...

• Timing subproblems:

Given a fixed route, evaluate feasibility and cost
w.r.t. time attributes

• Must be solved for all route and move evaluations
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Research Context

• Timing subproblems:

Given a fixed route, evaluate feasibility and cost
w.r.t. time attributes

I Review of timing problems and algorithms in [Vidal et. al, 2015, Timing
problems and algorithms: Time decisions for sequences of activities.
Networks, 65(2), 102–128].

I More than 150 references, with efficient algorithms originally designed for
other problems such as scheduling, PERT, resource allocation, isotone
regression, telecommunications, machine learning...
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Research Context

• Case 1) VRP with soft time windows.
Optimizing service dates for a given sequence of visits, in the
presence of soft time windows [ei , li ]:

min
t≥0

α

n∑

i=1

max{ei − ti , 0}+ β

n∑

i=1

max{ti − li , 0} (1.1)

s.t. ti + δi ≤ ti+1 1 ≤ i < n (1.2)

⇒ Can be viewed as the optimization of a separable convex function
over the order simplex:

min f (x) =

n∑

i=1

fi(xi) (1.3)

s.t. xi ≤ xi+1 i ∈ {1, . . . ,n − 1} (1.4)
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Research Context

• Case 1) VRP with soft time windows.

⇒ Can be viewed as the optimization of a separable convex function
over the order simplex:

min f (x) =

n∑

i=1

fi(xi) (1.5)

s.t. xi ≤ xi+1 i ∈ {1, . . . ,n − 1} (1.6)

• Interesting fact : 30 papers from various domains (routing,
scheduling, PERT, isotonic regression) have been focused on this
problem. All these papers can be reduced to three main algorithms
(one primal approach, one dual, otherwise dynamic programming
when for PL functions).
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Research Context

• Case 2) Vehicle speed optimization.
Optimizing speed v over a fixed sequence of legs, making sure that
service time-windows are respected, and fi are convex functions

min f (t,v) =

n∑

i=2

δi−1,i hi(vi−1,i) (1.7)

s.t. ti−1 +
δi−1,i
vi−1,i

≤ ti i ∈ {2, . . . ,n} (1.8)

ai ≤ ti ≤ bi i ∈ {1, . . . ,n} (1.9)

vmin ≤ vi−1,i ≤ vmax i ∈ {2, . . . ,n}. (1.10)

• Direct applications related to:
I Ship speed optimization (Norstad et al., 2011; Hvattum et al., 2013)
I Vehicle routing with flexible travel time or pollution routing (Hashimoto

et al., 2006; Bektas and Laporte, 2011)
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Research Context

• Case 2) Vehicle speed optimization.
After a quick reformulation:
I With the change of variables xi = ti − ti−1

min f (x) =

n∑

i=2

δi−1,igi

(
δi−1,i

xi

)
(1.11)

s.t. ai ≤
i∑

k=1

xk ≤ bi i ∈ {1, . . . ,n} (1.12)

δi−1,i
vmax

≤ xi i ∈ {2, . . . ,n}, (1.13)

with gi(v) =

{
fi(v

opt
i ) if v ≤ vopt

i

fi(v) otherwise.
(1.14)
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Research Context

• With simpler notations we obtain:.

min f (x) =

n∑

i=1

fi(xi) (1.15)

s.t. ai ≤
σ[i]∑

k=1

xk ≤ bi i ∈ {1, . . . ,m − 1} (1.16)

n∑

k=1

xk = B (1.17)

ci ≤ xi ≤ di i ∈ {1, . . . ,n}. (1.18)

• “Resource Allocation Problem with Nested Constraints” (RAP–NC)

I Special case where ai = −∞ called “NESTED”
I Scope of this work : fi convex & Lipschitz continuous but not necessarily

differentiable or strictly convex.
I For now, decision variables are continuous.
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Research Context

• Without Equation (1.16), reduces to a simple Resource Allocation
Problem:

min f (x) =

n∑

i=1

fi(xi) (1.19)

n∑

k=1

xk = B (1.20)

ci ≤ xi ≤ di i ∈ {1, . . . ,n}. (1.21)

• Solvable in O(n) for linear or quadratic objectives, with either
continuous or integer variables

• Solvable in O(n log B
n ) for integer variables and convex objective.

• An ε-approximate solution of the continuous problem can be found
in O(n log B

ε ) operations (to be explained later)
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Research Context

• Ship speed optimization was our first motivation and application.
The RAP–NC, however, is recurrent in a large variety of fields:

• Lot Sizing for example, with time-dependent production costs and
inventory bounds:

min f (x, I) =
n∑

i=1

pi(xi) +

n∑

i=1

αiIi (1.22)

s.t. Ii = Ii−1 + xi − di i ∈ {2, . . . ,n} (1.23)

I0 = K (1.24)

0 ≤ Ii ≤ I max
i i ∈ {1, . . . ,n} (1.25)

0 ≤ xi ≤ xmax
i i ∈ {1, . . . ,n}. (1.26)
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Research Context

• Lot Sizing with time-dependent production costs and
inventory bounds:

• Expressing the inventory variables as a function of the
production quantities, using Ii = K +

∑i
k=1(xk − dk ), we get

min f (x) =
n∑

i=1

pi(xi) +

n∑

i=1

αi

[
K +

i∑

k=1

(xk − dk )

]

s.t.

i∑

k=1

dk −K ≤
i∑

k=1

xk ≤
i∑

k=1

dk + I max
i −K i ∈ {1, . . . ,n}

0 ≤ xi ≤ xmax
i i ∈ {1, . . . ,n}.
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Research Context

• Stratified Sampling: Population of N units divided into
subpopulations (strata) of N1, . . . ,Nn units s.t. N1 + · · ·+ Nn = N .

• Problem: determine the sample size xi ∈ [0,Ni ] for each stratum, in
order to estimate a characteristic of the population while ensuring a
maximum variance level V and minimizing the total sampling cost.

min

n∑

i=1

cixi (1.27)

s.t.

n∑

i=1

N 2
i σ

2
i

N 2

(
1

xi
− 1

Ni

)
≤ V (1.28)

0 ≤ xi ≤ Ni i ∈ {1, . . . ,n}. (1.29)

• In hierarchal sampling applications, may also need to bound the
variance for subsets of stratums, as follows:

∑

i∈Si

N 2
i σ

2
i

N 2

(
1

xi
− 1

Ni

)
≤ Vi , i ∈ {1, . . . ,m}, (1.30)
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Research Context

• Stratified Sampling: Population of N units divided into
subpopulations (strata) of N1, . . . ,Nn units s.t. N1 + · · ·+ Nn = N .

• Problem: determine the sample size xi ∈ [0,Ni ] for each stratum, in
order to estimate a characteristic of the population while ensuring a
maximum variance level V and minimizing the total sampling cost.

min

n∑

i=1

cixi (1.31)

s.t.

n∑

i=1

N 2
i σ

2
i

N 2

(
1

xi
− 1

Ni

)
≤ V (1.32)

0 ≤ xi ≤ Ni i ∈ {1, . . . ,n}. (1.33)

• In hierarchal sampling applications, may also need to bound the
variance for subsets of stratums, as follows:

∑

i∈Si

N 2
i σ

2
i

N 2

(
1

xi
− 1

Ni

)
≤ Vi , i ∈ {1, . . . ,m}, (1.34)
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Research Context

• Machine Learning: Support vector ordinal regression (SVOR)
aims to find r − 1 parallel hyperplanes so as to separate r ordered
classes of samples in a kernel space. A dual formulation of this
problem (Chu and Keerthi, 2007) can be formulated as follows:

max
α,α∗,µ

r∑

j=1

n j∑

i=1

(αj
i + α∗ji )− 1

2

r∑

j=1

n j∑

i=1

r∑

j ′=1

n j ′∑

i′=1

(α∗ji − αj
i )(α

∗j ′
i′ − αj ′

i′ )K(x j
i , x

j ′

i′ )

s.t. 0 ≤ αj
i ≤ C j ∈ {1, . . . , r}, i ∈ {1, . . . ,nj}

0 ≤ α∗ji ≤ C j ∈ {1, . . . , r − 1}, i ∈ {1, . . . ,nj}
j∑

k=1




nk∑

i=1

αk
i −

nk+1∑

i=1

α∗k+1
i


 ≥ 0 j ∈ {1, . . . , r − 2}

r−1∑

k=1




nk∑

i=1

αk
i −

nk+1∑

i=1

α∗k+1
i


 = 0.
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Research Context
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Research Context

• Portfolio Optimization: Mean-variance portfolio optimization
(MVO) model of Markowitz (1952).

• In a simple form, maximize expected return while minimizing a risk
measure such as the variance of the return. Can be formulated as:

{
max

n∑

i=1

xiµi ; min

n∑

i=1

n∑

j=1

xixjσij

}

s.t.

n∑

i=1

xi = 1

0 ≤ xi i ∈ {1, . . . ,n},

I xi variables model the investments in different assets
I µi is the expected return of asset i
I σij the covariance between asset i and j .
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Research Context

• Portfolio Optimization: Mean-variance portfolio optimization
(MVO) model of Markowitz (1952).

• In a simple form, maximize expected return while minimizing a risk
measure such as the variance of the return. Can be formulated as:

{
max

n∑

i=1

xiµi ; min

n∑

i=1

n∑

j=1

xixjσij

}

s.t.

n∑

i=1

xi = 1

0 ≤ xi i ∈ {1, . . . ,n},

• But additional constraints can be considered

I Class constraints limit the investment amounts for certain classes of
assets or sector

I Fixed transaction costs, minimum transaction levels, and cardinality
constraints...
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Existing algorithms – VRP or ship routing literature

• Recursive smoothing
algorithm (Norstad et al.,
2011; Hvattum et al., 2013)
I Applicable only when

the cost/speed
functions do not
depend on the arc

I This case is strongly
polynomial (which even
never needs to evaluate the
objective function)

I Complexity : O(n2)

Image from R. Kramer, A.
Subramanian, T. Vidal, and L. A. F.
Cabral. A matheuristic approach for

the Pollution-Routing Problem. 2014.
arXiv: 1404.4895v1

A matheuristic approach for the Pollution-Routing Problem Kramer, R.; Subramanian, A.; Vidal, T.; Cabral, L.A.F.
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Figure 1: Computing arrival times with SOA

in Demir et al. (2012) have been used, that is:

w1 = 1.01763908× 10−3

w2 = 5.33605218× 10−5

w3 = 8.40323178× 10−9

w4 = 1.41223439× 10−7

ωfc = 1.4£/l

ωfd = 2.22222222× 10−3£/s.

However, these instances have a large time windows width, such that it is possible to visit

many customers within their respective time windows when traveling at optimal speed as further

discussed in Section 5.2. In view of this, we created two additional sets of instances with tighter

time windows by modifiying those of the PRPLIB. The time horizon of these new sets is 32400.

The time-window width of each customer in Set B is randomly selected between the interval

11
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Existing algorithms – VRP or ship routing literature

• This approach is closely related to the concept of string method
(Dantzig 1971 and other earlier contributions)

CONTROL PROBLEM OF BELLMAN 545 

(otherwise it2 = i3e,).' Moreover, the broken line curve having this property is unique. 
On the contrary, suppose now that there are two broken line curves joining Po to Pn 
with this property. Let Q be the first intersection of these curves to the right of P0 
(this may be the point P.), then all points of one of the curves between Po and Q are 
above those of the other curve, hence must only be in contact with upper bounds. This 
curve, then, is convex; that is, all contact points between P0 and Q lie below the line 
joining P0Q. Similarly for the second curve, its contact points must belong to set bound- 
ing from below; the curve is concave and all contact points are above P0Q. Thus a con- 
tradiction is reached because we have shown the contact points for the second curve are 
above those of the first whereas the reverse is true. This establishes the uniqueness of 
the optimizing curve. 

Construction: 

XAXn 

1x-I x 2,\-2 3- 

string tight 

XO A~~~~~~~ 
x-2~~~S=(2-) 

Stying Solution 

Place a "loose" string between the end points threading through the boundary points and 
draw tight. Analytically one first constructs the convex covering from above of the 
lower bounds. Then for all points for which it happens that the upper bounds lie below 
a broken line segment of this convex covering construct the convex cover from below 
of the end points of the segment and of the upper bound points below this segment. 
This process is repeated if any lower bounds lie above the curve thus constructed. Each 
step determines at least one ti ; in the worst case n steps are required. 

Example. Suppose b= b= *= bnl = b; a-=a2= ... = an_l=a; a < ao 
bo = xo < b. In terms of t = x)< and s = X 2t, the lower and upper bounds are given 
in parametric forms 

{s _ } or = a2s; {s or e = b 

I Follows by the same argument used to prove the necessary half of the theorem. 

This content downloaded from 132.204.3.57 on Wed, 21 Aug 2013 11:18:08 AM
All use subject to JSTOR Terms and Conditions

Image from G. B. Dantzig. A control problem of Bellman. Management Science. 17(9),
pp. 542–546, 1971.
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Existing algorithms – VRP & Lot Sizing literature

• Dynamic programming approaches for the case of piecewise
linear functions (e.g., Hashimoto et al., 2006)

• Compute recursively the functions Fi(b) which evaluate the
minimum cost to execute the i first activities (x1, . . . , xi) with a
resource consumption of b.
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Existing algorithms – Lot Sizing literature

• Flow algorithms for the linear case, model the RAP–NC as the
following min-cost flow problem:

I Ahuja, R. K., & Hochbaum, D. S. (2008). Technical note – Solving linear
cost dynamic lot-sizing problems in O(n log n) time. Operations
Research, 56(1), 255–261.

Ahuja and Hochbaum: Solving Linear Cost Dynamic Lot-Sizing Problems in O�n logn� Time
256 Operations Research 56(1), pp. 255–261, © 2008 INFORMS

Figure 1. Flow networks for lot-sizing problems.

0

1 2 3 n–1 n

n–1 n

(a)

0

1 2 3

(b)

–dn–1–d3–d2–d1 –dn

–dn–1–d3–d2–d1 –dn

∑i∈N di

∑i∈N di

Notes. (a) Lot sizing without backordering. (b) Lot sizing with
backordering.

1993). The number of arcs in the network shown in Fig-
ure 1(a) is 2n−1 and in the network shown in Figure 1(b)
is 3n− 2; both are considerably fewer than the maximum
number of arcs possible, which is n2. These networks are
called sparse. For sparse minimum-cost flow problems with
n nodes and m arcs, the best strongly polynomial algorithm
currently known, due to Orlin (1993), takes O�m logn�m+
n logn�� time. Because for both the lot-sizing problems,
m=O�n�, this algorithm solves them in O�n2 log2 n� time.
Our main contribution in this paper is to show that the
minimum-cost flow problems in Figure 1 can be solved in
O�n logn� time, which obtains a speedup of a factor of
O�n logn� over the best currently available algorithm.
A special case of the problem studied by us in this paper

has been recently considered by Sedeño-Noda et al. (2004).
This paper considers the lot-sizing problem with the lin-
ear production cost problem where the inventory-carrying
capacity is bounded and suggests an O�n logn� algorithm.
Our paper generalizes this result on several fronts: We
allow backordering to satisfy demands, allow upper bounds
on production capacities as well as backordering quantities,
and solve the generalized problem without worsening the
running time.

2. Dynamic Lot Sizing Without
Backorders in O�n2�

The successive shortest-path algorithm for minimum-cost
network flow maintains a solution x that satisfies the non-
negativity and capacity constraints, but may violate the
mass balance constraints of the nodes; such a solution x
is known as a pseudoflow (Ahuja et al. 1993). For any
pseudoflow x, the imbalance of node i ∈ N is defined as

e�i� = b�i�+∑
�j� �j� i�∈A� xji −

∑
�j� �i� j�∈A� xij , where b�i� is

the supply of node i if b�i� is positive and demand of node i
otherwise. If e�i� > 0 for some node i, we refer to e�i� as
the excess of node i; and if e�i� < 0, we call −e�i� the
node’s deficit. The algorithm also maintains a residual net-
work G�x� corresponding to a pseudoflow x, where each
arc �i� j� ∈ A is replaced by two arcs (i� j) and (j� i). The
arc (i� j) has cost cij and residual capacity rij = uij − xij ,
and the arc (j� i) has cost cji = −cij and residual capac-
ity rji = xij . We refer to an arc �i� j� ∈ A as a regular arc
and its reversal (j� i) as a reverse arc. The residual network
consists only of arcs with positive residual capacities.

algorithm successive shortest-path;
begin

set x �= 0;
while x is not a flow do
begin
select an excess node s and a deficit node t;
identify a shortest path P from node s to node t
in G�x�;

augment maximum possible flow along P and
update G�x�;

end;
end;

We refer to the network in Figure 1(a) as G = �N �A�.
We start with x = 0, for which node 0 is the only excess
node and all other nodes are deficit nodes. Our algo-
rithm runs n iterations as follows. At iteration i, nodes
1� 	 	 	 � i− 1 have their demands satisfied and we send flow
along shortest paths from node 0 to node i until the demand
of node i is met. To identify shortest paths to deficit
nodes quickly, we maintain a set of all directed paths to
deficit nodes arranged in the increasing order of paths
costs. Each directed path in G from the source node 0
to any node i in G is of the form 0 − k − �k + 1� −
�k + 2� − · · · − i; we refer to this path as Pki. Let P�i�
denote the set of all directed paths in the residual network
G�x� from node 0 to node i with respect to the flow x.
For example, the set �P14� P24� P34� P44� gives all directed
paths in G from node 0 to node 4 in Figure 1(a). For
any path Pki, let c�Pki� denote the cost of the path, and
r�Pki� �=min�ukl − xkl� �k� l� ∈ Pui� be the residual capac-
ity of the path. For every Pki ∈ P�i�, we maintain the fol-
lowing invariants: (i) r�Pki� > 0, and (ii) paths in P�i� are
arranged in the nondecreasing order of the path costs. Our
implementation of the successive shortest-path algorithm is
given below.

algorithm dynamic lot sizing;
begin
set x �= 0;
compute node imbalances e�i�s;
for i �= 1 to n do
begin
compute P�i�;
while e�i� > 0 do

D
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I Specialized dynamic tree structures allow to attain a complexity of
O(n log n). But very complex to implement.
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Existing algorithms – NESTED

• Dual-inspired methods. Rely on the fact that the continuous
resource allocation problem (RAP) can be solved by finding the zero
of a single (Lagrangian) equation.

• Iteratively solving this equation and adjusting violated nested
constraints.
I Padakandla and Sundaresan (2009): complexity of O(n2ΦRap(n,B))
I Wang (2015): complexity of O(n2 log n + nΦRap(n,B))
I where ΦRap(n,B) is the complexity of solving one RAP.
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Existing algorithms – NESTED

• A greedy method with scaling for NESTED with integer variables
(Hochbaum, 1994)
I Greedy algorithms iteratively consider all feasible increments of one

resource, and select the least-cost one.
I Convergence guarantee (Federgruen and Groenevelt, 1986) to the

optimum of the integer RAP

• Scaling.
I An initial problem is solved with large increments
I The increment size is iteratively divided by two to achieve higher

accuracy.
I At each iteration, and for each variable, only one increment from the

previous iteration may require to be corrected.
I Complexity of O(n log n log B

n ) for NESTED with integer variables
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Wrap-up

Q: How can we solve efficiently the RAP–NC ?

A: If the objective is linear, apply the flow-based algorithm of Ahuja
and Hochbaum (2008) in O(n log n).

Q: But what if I have a general convex objective ?

A: Apply general-purpose convex optimization solvers, such as
MOSEK or CVX

Q: But what if my problem is large (n ≥ 5, 000) or a fast answer is
needed ?

A: ...
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Proposed Algorithm – on an example
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Proposed Algorithm – on an example

Think of the problem as a physical system made of springs:
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Proposed Algorithm

• Divide the problem is easy. But how to exploit the information given
by the subproblems to solve each iteration ? The answer comes from
this:

Theorem (Monotonicity)

Consider three bounds R↓ ≤ R ≤ R↑. If x↓ is an optimal solution of
RAP–NCv ,w (L,R↓) and x↑ is an optimal solution of
RAP–NCv ,w (L,R↑) such that x↓ ≤ x↑, then there exists an optimal
solution x∗ of RAP–NCv ,w (L,R) such that x↓ ≤ x∗ ≤ x↑.

Proof: Vidal, Gribel, & Jaillet, P. (2017). Separable convex optimization with

nested lower and upper constraints. ArXiv report:

https://arxiv.org/abs/1703.01484].
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Proposed Algorithm

• This theorem allows to generate valid bounds (optimality cuts) on
the variables, based on the information of the subproblems.

• BUT, these new inequalities have an important property, they are
stronger than the nested constraints of the problem, i.e., if they are
satisfied, then the nested constraints are satisfied:

xLa
k ≤ xk ≤ xLb

k for k ∈ {σ[v − 1] + 1, . . . , σ[u]} and i ∈ {v , . . . , u}

⇒
σ[i]∑

k=σ[v−1]+1

xLa
k ≤

σ[i]∑

k=σ[v−1]+1

xk ≤
σ[i]∑

k=σ[v−1]+1

xLb
k

⇒ āi ≤
σ[i]∑

k=σ[v−1]+1

xk ≤ b̄i
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Proposed Algorithm

• Then, we can simply eliminate the nested constraints from the model
and keep these new bounds on the variables, reducing each RAP–NC
subproblem into a RAP.

• With this transformation, each level of the recursion can be solved
with any classical RAP algorithm.
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Proposed Algorithm – pseudo code
Vidal, Gribel, and Jaillet: Separable Convex Optimization with Nested Lower and Upper Constraints
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 19

Algorithm 2: MDA(v,w)

1 if v=w then

2 (xaaσ[v−1]+1, . . . , x
aa
σ[v])←Rapv,v(av−1, aw,−∞,∞) ;

3 (xabσ[v−1]+1, . . . , x
ab
σ[v])←Rapv,v(av−1, bw,−∞,∞) ;

4 (xbaσ[v−1]+1, . . . , x
ba
σ[v])←Rapv,v(bv−1, aw,−∞,∞) ;

5 (xbbσ[v−1]+1, . . . , x
bb
σ[v])←Rapv,v(bv−1, bw,−∞,∞) ;

6 else

7 u←b v+w
2
c ;

8 MDA(v,u) ;

9 MDA(u+ 1,w) ;

10 for (L,R)∈ {(a,a), (a, b), (b, a), (b, b)} do

11 for i= σ[v− 1] + 1 to σ[u] do [c̄i, d̄i]← [xLai , xLbi ] ;

12 for i= σ[u] + 1 to σ[w] do [c̄i, d̄i]← [xbRi , x
aR
i ] ;

13 (xLRσ[v−1]+1, . . . , x
LR
σ[w])←Rapv,w(L,R, c̄, d̄) ;

Two final remarks follow.

• First, observe the occurrence of Algorithm 1 (Adjust function, introduced in the proof of

Theorem 2) before setting the RAP bounds. This O(n) time function can only occur when the

functions fi are not strictly convex; in these cases, the solutions of the subproblems may not

directly satisfy xLa ≤ xLb and xbR ≤ xaR because of possible ties between resource-allocation

choices. Alternatively, one could also use a stable RAP solver that guarantees that the solution

variables increase monotonically with the resource bound.

• Second, note the occurrence of the L1 penalty function associated to the original variables

bounds ci and di in f̄i(xi) while c̄i and d̄i are maintained as hard constraints. Indeed, some

subproblems (e.g., RAP–NCv,v+1(bv, av+1) when bv ≥ av+1 and c = 0) may not have a solution

respecting the bounds ci and di. On the other hand, the c̄i and d̄i constraints can always be

fulfilled, otherwise the original problem would be infeasible, and their validity is essential to

guarantee the correctness of the algorithm.

Nevertheless, since efficient RAP algorithms exist for some specific forms of the objective func-

tion, e.g., quadratic (Brucker 1984, Ibaraki and Katoh 1988), we wish to avoid explicit penalty
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Proposed Algorithm – pseudo code

• Q: Does-it resolve the general convex case ?

• A: No, optimal solutions can be irrational (e.g.,
min f (x ) = x 3 − 6x , x ≥ 0). What means ”solving a subproblem”
when we cannot even represent a solution?

• Q: Then, we cannot even represent the final solution of our problem
in a bit-size computational model, it is ill defined...

• A: Indeed, this is why we do not require to solve to optimality a
general convex problem. Instead, search for an ε-approximate
solution, guaranteed to be located in the solution space no further
than ε from an optimal solution.

• Q: Then, how can we control the imprecision of the algorithm at
each layer of the recursion?

• A: This is not easy. We will give better ways than trying to
work-around with numerical imprecisions in the method.
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ε-approximate solutions

• Computational complexity of algorithms for general non-linear
optimization problems ⇒ an infinite output size may be needed due
to real optimal solutions.

• To circumvent this issue
I Existence of an oracle which returns the value of fi(x ) in O(1)
I Approximate notion of optimality (Hochbaum and Shanthikumar, 1990):

a continuous solution x(ε) is ε-accurate iff there exists an optimal
solution x∗ such that ||(x(ε) − x∗)||∞ ≤ ε.

I Accuracy is defined in the solution space, in contrast with some other
approximation approaches which considered objective space (Nemirovsky
and Yudin, 1983).
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Integer Variables and Proximity Theorem

• We will consider the integer problem, and use a proximity property
between optimal continuous and integer solutions.

Theorem (Proximity)

For any integer optimal solution x∗ of RAP–NC with n ≥ 2 variables,
there is a continuous optimal solution x such that

|xi − x ∗i | < n − 1, for i ∈ {1, . . . ,n}. (3.1)

Special case of: Moriguchi, S., Shioura, A., & Tsuchimura, N. (2011).

M-convex function minimization by continuous relaxation approach: Proximity

theorem and algorithm. SIAM Journal on Optimization, 21(3), 633–668.
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Integer Variables and Proximity Theorem

• Q: This allows to solve problems with integer variables now, but how
this can help to find an ε-approximate solution for continuous
problems ?

• A: To solve a continuous problem, simply transform the continuous
problem into an integer problem where all parameters (ai , bi , ci , di)
have been scaled by a factor dn/εe, solve this problem (exactly, an
integer solution is always representable) and transform back the
solution. The proximity theorem guarantees that the solution is
within the required precision.
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Computational Complexity

• Convex objective. Using the algorithms of Frederickson and
Johnson (1982) or Hochbaum (1994) for the RAP subproblems ⇒
complexity of O(n log m log B) for the RAP–NC with integer
variables, and O(n log m log nB

ε ) for an ε−approximate solution of
the continuous problem.
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Computational Complexity

• Quadratic objectives. Using Ibaraki and Katoh (1988) in O(n)
for the quadratic integer RAP, or Brucker (1984) in O(n) for the
quadratic continuous RAP ⇒ RAP–NC can be solved in O(n log m),
with either continuous or integer variables.

• This is the first strongly polynomial algorithm for the integer
quadratic problem, responding positively to an open research
question from Moriguchi et al. (2011): “It is an open question
whether there exist O(n log n) algorithms for (Nest) with quadratic
objective functions”.
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Computational Complexity

• Linear objective. Using a variant of median search in O(n) for the
RAP ⇒ RAP–NC can be solved in O(n log m), with either
continuous or integer variables.

• This is a slight improvement over the current network flow algorithm
of Ahuja and Hochbaum (2008) in O(n log n). It has the advantage
of only using simple data structures, while the network flow
algorithm relies on a dynamic tree (Tarjan, 1997; Tarjan and
Werneck, 2009) or a segment tree (Bentley, 1977) with lazy
propagation to keep track of capacity constraints.
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Computational Experiments

• Three types of experiments:

• Linear objective. Comparison with the network flow algorithm of
Ahuja and Hochbaum (2008)

• Convex objective. Comparison with MOSEK, a state-of-the-art
convex optimization solver

• Non-separable convex objective. For the support vector ordinal
regression problem (SVOR), using the RAP–NC as a subproblem in
a projected gradient method.
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Computational Experiments

• Tests on randomly-generated instances of the RAP–NC with a
number of variables n ∈ {10, 20, 50, . . . , 106}, 10 instances per
problem size

• For fine-grained analyses with the linear objective, 13×10 additional
instances with m = 100 constraints and n ∈ {100, 200, 500, . . . , 106}
variables.

• Experiments with four classes of objectives: a linear objective∑n
i=1 pi xi , and three convex objectives defined as:

[F] fi(x ) =
x4

4
+ pix ,

[Crash] fi(x ) = ki +
pi

x
,

and [Fuel] fi(x ) = pi × ci ×
(ci

x

)3
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Experiments – Linear Objective

Table : Detailed CPU times for experiments with a linear objective

Variable m CPU Time(s) Fixed m CPU Time(s)

n m FLOW MDA n m FLOW MDA

10 10 2.75×10−6 4.78×10−6 100 100 5.09×10−5 5.95×10−5

20 20 6.26×10−6 1.02×10−5 200 100 1.36×10−4 1.26×10−4

50 50 2.15×10−5 2.85×10−5 500 100 3.94×10−4 2.86×10−4

100 100 5.06×10−5 5.89×10−5 1000 100 9.07×10−4 5.52×10−4

200 200 1.26×10−4 1.26×10−4 2000 100 2.07×10−3 1.14×10−3

500 500 3.72×10−4 3.36×10−4 5000 100 6.16×10−3 2.96×10−3

1000 1000 8.43×10−4 7.57×10−4 10000 100 1.44×10−2 6.26×10−3

2000 2000 1.87×10−3 1.74×10−3 20000 100 3.17×10−2 1.57×10−2

5000 5000 5.43×10−3 5.20×10−3 50000 100 9.27×10−2 5.26×10−2

10000 10000 1.23×10−2 1.12×10−2 100000 100 2.04×10−1 1.08×10−1

20000 20000 2.62×10−2 3.21×10−2 200000 100 4.41×10−1 2.36×10−1

50000 50000 7.94×10−2 1.05×10−1 500000 100 1.20 7.19×10−1

100000 100000 1.52×10−1 2.26×10−1 1000000 100 2.56 1.60

200000 200000 3.67×10−1 4.86×10−1

500000 500000 9.68×10−1 1.37

1000000 1000000 1.99 2.98
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Experiments – Linear Objective
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Figure : Varying n ∈ {10, . . . , 106} and m = n. Left figure: CPU time of both
methods as n and m grow. Right figure: Boxplots of the ratio TFLOW/TMDA.
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Figure : Linear Objective. Varying n ∈ {10, . . . , 106} and fixed m = 100. Left
figure: CPU time of both methods as n grows. Right figure: Boxplots of the
ratio TFLOW/TMDA.
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Experiments – Convex Objective

Table : Detailed CPU-time for experiments with a separable convex objective

CPU Time(s) – MDA CPU Time(s) – MOSEK

n m [F] [Crash] [Fuel] [F] [Crash] [Fuel]

10 10 5.28×10−5 3.27×10−5 6.11×10−5 7.69×10−3 7.83×10−3 8.06×10−3

20 20 1.14×10−4 7.32×10−5 1.33×10−4 8.27×10−3 8.60×10−3 8.64×10−3

50 50 3.80×10−4 2.63×10−4 4.45×10−4 9.95×10−3 1.03×10−2 1.04×10−2

100 100 8.04×10−4 5.39×10−4 9.30×10−4 1.73×10−2 1.75×10−2 1.74×10−2

200 200 1.93×10−3 1.23×10−3 2.16×10−3 6.31×10−2 6.22×10−2 6.30×10−2

500 500 5.45×10−3 3.55×10−3 6.21×10−3 7.79×10−1 7.56×10−1 7.86×10−1

1000 1000 1.27×10−2 8.61×10−3 1.43×10−2 6.31 6.29 6.37

2000 2000 2.88×10−2 1.87×10−2 3.19×10−2 8.57×101 9.38×101 9.05×101

5000 5000 9.27×10−2 6.05×10−2 9.86×10−2 1.70×103 1.61×103 1.55×103

10000 10000 2.01×10−1 1.34×10−1 2.13×10−1 — — —

20000 20000 4.69×10−1 3.04×10−1 4.82×10−1 — — —

50000 50000 1.31 8.74×10−1 1.33 — — —

100000 100000 3.12 2.02 3.07 — — —

200000 200000 6.68 4.58 6.61 — — —

500000 500000 1.98×101 1.35×101 1.91×101 — — —

1000000 1000000 4.54×101 3.10×101 4.30×101 — — —
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Experiments – Convex Objective
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Figure : CPU time of MDA and MOSEK as n grows and m = n for the
objectives [F] and [Crash].
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Experiments – Convex Objective
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Figure : Left Figure: CPU time of MDA and MOSEK as n grows and m = n
for objective [Fuel]. Right Figure: Boxplots of the ratio TMosek/TMDA.
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Experiments – Non-Separable Convex Objective

• Last experimental analysis is concerned with the SVOREX model

• A non-separable convex optimization problem over a special case of
the RAP–NC constraint polytope.

max
α,α∗,µ

r∑

j=1

n j∑

i=1

(αj
i + α∗ji )− 1

2

r∑

j=1

n j∑

i=1

r∑

j ′=1

n j ′∑

i′=1

(α∗ji − αj
i )(α

∗j ′
i′ − αj ′

i′ )K(x j
i , x

j ′

i′ )

s.t. 0 ≤ αj
i ≤ C j ∈ {1, . . . , r}, i ∈ {1, . . . ,nj}

0 ≤ α∗ji ≤ C j ∈ {1, . . . , r − 1}, i ∈ {1, . . . ,nj}
j∑

k=1




nk∑

i=1

αk
i −

nk+1∑

i=1

α∗k+1
i


 ≥ 0 j ∈ {1, . . . , r − 2}

r−1∑

k=1




nk∑

i=1

αk
i −

nk+1∑

i=1

α∗k+1
i


 = 0.

> Introduction Algorithms Methodology Experiments Conclusions References 54/67



Experiments – Non-Separable Convex Objective

• Current state-of-the-art algorithm for this problem, proposed by Chu
and Keerthi (2007), based on a working-set decomposition.

• Iteratively, a set of variables is selected to be optimized over, while
the others remain fixed.

• This approach leads to a (non-separable) restricted problem with
fewer variables which can be solved to optimality.
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Experiments – Non-Separable Convex Objective

• Chu and Keerthi (2007) use a minimal working set containing the
two variables which most violates the KKT conditions
I Advantage: Availability of analytical solutions for the restricted

problems
I Drawback: Large number of iterations until convergence

• Our RAP–NC algorithm can provide another meaningful option
I Generating larger working sets, and solving the resulting reduced

problems with the help of the RAP–NC algorithm
I Warning: the reduced problems are non-separable ⇒ RAP–NC

algorithm is used for the projection steps within a projected gradient
descent procedure
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Experiments – Non-Separable Convex ObjectiveVidal, Gribel, and Jaillet: Separable Convex Optimization with Nested Lower and Upper Constraints
32 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

Algorithm 3: Solving SVOREX via RAP-NC subproblems

1 α=α∗ = 0 ; // Initial Solution set to 0

2 while there exists samples that violate the KKT conditions do

3 Select a working set W of maximum size nws

4 for ngrad iterations do

// Take a step

5 for j ∈ {1, . . . , r} and i∈ {1, . . . , nj} do

6 α̂ji =




αji + γ ∂z

∂α
j
i

if (i, j)∈W

αji otherwise
; α̂∗ji =




α∗ji + γ ∂z

∂α
∗j
i

if (i, j)∈W

α∗ji otherwise

// Solve the projection subproblem as a RAP-NC7

(α,α∗)←





min
α,α∗

∑
(i,j)∈W

(
(αji − α̂ji )2 + (α∗ji − α̂∗ji )2

)

s.t. Equations (30)–(33)

αji = α̂ji and α∗ji = α̂∗ji if (i, j) /∈W

gradient descent. We use the eight problem instances introduced in Chu and Keerthi (2007), with

the same Gaussian kernel, penalty parameter, and guidelines for data preparation (normalizing the

input vectors to zero mean and unit variance, and using equal-frequency binning to discretize the

target values into five ordinal scales).

Table 3 gives the results of these experiments. The columns report, in turn, the problem instance

name, its number of samples N , the dimension D of its feature space, as well as some characteristics

of the optimal solutions: the number of variables set to 0 (correct classification), to C (misclassified),

and to intermediate values (support vectors). For each working-set size nws, the total number of

working set selections Iws done by the algorithm is also presented, as well as the CPU time in

seconds. The fastest algorithm version is underlined for each instance.

As measured in these experiments, the CPU time of the algorithms ranges between 0.018 seconds

for the smallest problem instances (with 50 samples and 27 dimensions) and 574.28 seconds for

the largest case (6000 samples and 16 dimensions). The size of the working set has a significant

impact on the number of iterations of the method and its CPU time. In all cases, the number of

iterations decreases significantly when the size of the working set grows. In terms of CPU time,
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Experiments – Non-Separable Convex Objective

• Experiments with working sets of size nws ∈ {2, 4, 6, 10}, a step size
of γ = 0.2 and ngrad = 20 iterations for the projected gradient
descent.

• Eight data sets from Chu and Keerthi (2007)
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Experiments – Non-Separable Convex Objective

Table : SVOREX resolution – impact of the working-set size

Instance N D
Solution Variables s.t.

nws Iws T(s)
α = 0 α = C α ∈]0,C [

Abalone 1000 8 39% 32% 29%

2 118233 13.46

4 96673 21.51

6 78433 26.34

10 60605 35.46

Bank 3000 32 25% 0% 75%

2 139468 68.41

4 52073 63.02

6 31452 45.22

10 21310 47.66

Boston 300 13 41% 0% 59%

2 7207 0.43

4 3697 0.40

6 2840 0.46

10 2076 0.54

California 5000 8 51% 43% 6%

2 250720 124.46

4 189289 185.79

6 166879 245.08

10 146170 360.52
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Experiments – Non-Separable Convex Objective

Table : SVOREX resolution – impact of the working-set size

Instance N D
Solution Variables s.t.

nws Iws T(s)
α = 0 α = C α ∈]0,C [

Census 6000 16 38% 4% 59%

2 349894 242.11

4 206951 301.74

6 180608 393.28

10 155731 574.28

Computer 4000 21 64% 32% 4%

2 290207 168.94

4 140270 161.45

6 98948 153.56

10 68616 193.10

Machine CPU 150 6 49% 9% 41%

2 28856 1.24

4 11534 0.86

6 8144 0.91

10 6363 1.24

Pyrimidines 50 27 21% 0% 79%

2 935 0.035

4 367 0.021

6 218 0.018

10 144 0.023
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Conclusions and Perspectives

• RAP–NC: wide range of applications in production and
transportation optimization, portfolio management, sampling
optimization, telecommunications and machine learning.

• A new type of decomposition method, based on monotonicity
principles coupled with divide-and-conquer

• Complexity breakthroughs, and first known strongly polynomial
algorithm for the quadratic integer RAP–NC

• Good practical performance, and applications to ordinal
regression problems for machine learning
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Conclusions and Perspectives

• Very different principles: not based on classical greedy steps and
scaling, or on flow propagation techniques.

• Key research questions ⇒ How far this type of decomposition can be
generalized
I Other convex resource allocation problems where, e.g., the constraints

follow a TREE of lower and upper constraints (Hochbaum, 1994)
I Extended formulations involving the intersection of two or more

RAP–NC type of constraint polytopes
I ...
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Thank you

THANK YOU FOR YOUR ATTENTION !

I T. Vidal, T. G. Crainic, M. Gendreau, and C. Prins. A unifying view
on timing problems and algorithms. Networks, 65(2), 102–128.

I T. Vidal, P. Jaillet, and N. Maculan, A decomposition algorithm for
nested resource allocation problems. SIAM Journal on
Optimization, 26(2), 1322–1340.

I T. Vidal, D. Gribel, and P. Jaillet, (2017). Separable convex
optimization with nested lower and upper constraints.
Submitted to Operations Research. Technical report PUC–Rio and
MIT–LIDS. https://arxiv.org/abs/1703.01484.

I http://w1.cirrelt.ca/∼vidalt/
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