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Challenges

• Capacitated Vehicle Routing
Problem

• Consider:

I n customers, with demands qi
I Complete distance matrix cij
I Homogeneous fleet of m vehicles

with capacity Q , located at a
single depot

• Find:

I Least-distance delivery routes
I Servicing all customers
I Respecting capacity limits
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Challenges

• Arc routing for home delivery,
snow plowing, refuse collection,
postal services, among others.

• Lead to additional challenges:

⇒ Deciding on travel directions for
services on edges

⇒ Shortest path between services
are conditioned by service
orientations
(may also need to include some
additional aspects such as turn
penalties or delays at
intersections).
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Challenges

• Arc routing for home delivery,
snow plowing, refuse collection,
postal services, among others.

• Lead to additional challenges:

⇒ Deciding on travel directions for
services on edges

⇒ Shortest path between services
are conditioned by service
orientations
(may also need to include some
additional aspects such as turn
penalties or delays at
intersections).
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A question of neighborhood

• Most recent CARP
heuristics rely on
several enumerative
neighborhood classes to
optimize assignment,
sequencing and service
orientation decisions

I See, e.g. Brandão and
Eglese (2008); Usberti
et al. (2013); Dell’Amico
et al. (2016)...

I Shortest paths between
node extremities have
been pre-processed

I Three decision classes are
heuristically addressed
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paths are known 

 

⇒ This is, however, not the only option.
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A question of neighborhood

• In Beullens et al. (2003)
and Muyldermans et al.
(2005), O(n)
dynamic-programming
based optimization of
service orientations:

• Combined in Irnich
(2008) with the
neighborhood of Balas
and Simonetti (2001),
leading to promising
results on mail delivery
applications.
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A question of neighborhood

• Also the search space of
giant tours (Lacomme
et al., 2001, 2004;
Ramdane-Cherif, 2002)

• Evaluating a solution
takes O(n2) operations
(or O(n) with a faster
Split algorithm, see
Vidal 2016)

• Because of this higher
complexity, such
solution representation
is rarely used in a LS.
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A question of neighborhood

• Finally, the search
space used in Wøhlk
(2003, 2004), also
evoked in
Ramdane-Cherif
(2002):
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A question of neighborhood

• Transferring several decision classes into exact
dynamic-programming based components.

• This is a structural problem decomposition:

 

Decision set x2 

Decision  
set x1 

Difficult combinatorial 
optimization problem 
with several families 
of decisions 

Efficient exact methods, such as bi-
directional dynamic programming 
or integer programming on 
restricted formulations 
 used to derive other decisions 

Heuristic search, 
e.g., local search 
on a decision set 

> Introduction Neighborhoods Generalizations Larger Neighborhoods Experiments Conclusions References 8/54



A question of neighborhood

• Transferring several decision classes into exact
dynamic-programming based components.

• This is a structural problem decomposition:

 

Decision set x2 

Decision
set x1

Difficult combinatorial 
optimization problem 
with several families 
of decisions 

Efficient exact methods, such as bi-
directional dynamic programming 
or integer programming on 
restricted formulations 

 used to derive other decisions 

Heuristic search, 
e.g., local search 
on a decision set 

DECODING 

  in O(1)
SOLUTION AS  

PERMUTATIONS 

OF SERVICES

OPTIMAL EVALUATION OF 

SERVICE ORIENTATIONS AND 

                        INTERMEDIATE PATHS

> Introduction Neighborhoods Generalizations Larger Neighborhoods Experiments Conclusions References 9/54



Contents

1 Node and edge routing problems

2 Combined neighborhoods for arc routing problems
Methodology
Cutting off complexity: memories + bidirectional search
Cutting off complexity: moves filtering via LBs

3 Problem generalizations

4 Very large neighborhoods

5 Computational experiments
Integration into two state-of-the-art metaheuristics
Comparison with previous literature
CARP – To reduce or not to reduce
Problems with turn penalties and delays at intersections

6 Conclusions/Perspectives

> Introduction Neighborhoods Generalizations Larger Neighborhoods Experiments Conclusions References 9/54



Solution representation and decoding

• How to decode/evaluate a solution = deriving optimal
orientations for the services ?

⇒ Simple dynamic programming subproblem (Beullens et al.,
2003; Wøhlk, 2003, 2004):
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• Each service represented by two nodes, one for each
orientation. Travel costs cklij between (i , j ) are conditioned
by the orientations (k , l) for departure and arrival.
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Seeking low complexity for solution evaluations

• Modern neighborhood-centered heuristics evaluate
millions/billions of neighbor solutions during one run.

• Key property of classical routing neighborhoods:

I Any local-search move involving a bounded number of node
relocations or arc exchanges can be assimilated to a
concatenation of a bounded number of sub-sequences.

I Same subsequences appear many times during different moves

I To decrease the computational complexity, compute auxiliary
data on subsequences by induction on concatenation (⊕).
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Seeking low complexity for solution evaluations

Auxiliary data structures = partial shortest paths

Partial shortest path C (σ)[k , l ] between the first and last service in
the sequence σ, for any (entry, exit) direction pair (k , l)

Initialization

For σ0 with a single visit vi , S (σ0)[k , l ] =

{
0 if k = l

+∞ if k 6= l

Evaluation

By induction on the concatenation operator:

C (σ1 ⊕ σ2)[k , l ] = min
x ,y

{
C (σ1)[k , x ] + cxyσ1(|σ1|)σ2(1) + C (σ2)[y , l ]

}
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Seeking low complexity for solution evaluations

• Pre-processing partial shortest paths in the incumbent
solution – in O(n2) before the neighborhood exploration –
dramatically simplifies the shortest paths:

Shortest path
problem:

Shortest path problem
on a reduced graph,
using pre-processed
labels:
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• Only a constant number of edges
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Lower bounds on moves

• Each move evaluation was still taking a bit more operations
(constant of 4×) than in the classic CVRP.

• Even this can be avoided...
⇒ by developing lower bounds on the cost of neighbors...
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Lower bounds on moves

• Let Z̄ (σ) be a lower bound on the cost of a route σ

• A move that modifies two routes: {σ1, σ2} ⇒ {σ′1, σ′2} has a
chance to be improving if and only if:

∆Π = Z̄ (σ′1) + Z̄ (σ′2)− Z (σ1)− Z (σ2) < 0.
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Lower bounds on moves

• Let Cmin(σ) = mink ,l {C (σ)[k , l ]} the shortest path for the
sequence σ between any pair of origin/end orientations.

• Let cminij = mink ,l{cklij } be the minimum cost of a shortest path
between services i and j , for any orientation.

• Lower bound on the cost of a route σ = σ1 ⊕ · · · ⊕ σX
composed of a concatenation of X sequences:

Z̄ (σ1 ⊕ · · · ⊕ σX ) =

X∑
j=1

Cmin(σj ) +

X−1∑
j=1

cminσj ,σj+1
.

• The bound helps to filter a lot of moves (≥ 90% even when
used with granular search)

I In practice : possible to evaluate a move with implicit service
orientations for the CARP, using roughly the same number of
elementary operations as the same move for a CVRP!
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Preliminary definitions

• Service: A visit to a client,
which cannot be split, but may
be operated in different
alternative ways

• Service Mode: Alternative way
to perform a service, may impact
travel or service cost.
⇒ The set of possible modes for a
service will be notated Mi
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Service 
Modes 

Shortest 
Paths 
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Generalizations via enriched mode definitions

• CARP – each service has two modes, one for each
possible orientation (curb direction during service).

• Many other mode choices in problem variants:

I choice of sidewalk and impact on intersection time
(postal delivery, refuse collection)

I lane (snow plowing)

I parking spot

I choice of visit location
(GVRP and arc routing equivalents)

I orders of visit clusters, e.g., in a city district
(CluVRP and arc routing equivalents)

I entry-exit of a facility...
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Generalizations via enriched mode definitions

• To address the mixed capacitated general routing
problem (also called node, edge and arc routing problem):

Node |Mi | = 1 One mode for service;
Arc |Mi | = 1 One mode for the only feasible service orientation;
Edge |Mi | = 2 Two modes, one for each service orientation.

• Route-evaluation subproblem are even more efficient since
the auxiliary graph contains some single nodes
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Generalizations via enriched mode definitions

• Problems with turn penalties and delays at
intersections:

• In previous literature – feasibility issues:
I Solution of MCGRP with turn penalties represented as

sequences of services + SPs with turn restrictions between
services did not necessarily lead to viable solutions:
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I Because of a lack of characterization of the arrival
edge when servicing a node
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Generalizations via enriched mode definitions

• The needed information can be included in the definition
of the mode:

Node |Mi| = pi pi modes to specify the arrival direction, where pi
is the in-degree of vi ;

Arc |Mi | = 1 One mode for the only feasible service orientation;
Edge |Mi | = 2 Two modes, one for each service orientation.

• Then, turn penalties can easily be included in arc costs, in
the auxiliary graph

⇒ turn penalties are now optimally addressed (for any fixed
sequence of services) without any further change
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Generalizations via enriched mode definitions

• Problems with service clusters...

Vidal: Node, edge routing and turn restrictions
8 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

The cause of this problem is a lack of knowledge of the initial condition on the current traversal
direction at j. A simple extension of the proposed method enables to address this issue, using the
following modes for services:

Node |Mi|= 2 Two modes since the curb direction during service must be specified.
Arc |Mi|= 1 One mode for the only feasible traversal direction
Edge |Mi|= 2 Two modes, one for each traversal direction

With this definition of modes, the service direction on an edge is known, even for service con-
sidered as “punctual”. Travel times are computed prior to optimization, between any couple of
(service,mode) pairs, using an appropriate shortest path procedure with turn restrictions and using
the initial and final conditions given by the mode. Such shortest paths can be computed as in
Gutiérrez and Medaglia (2007). Running this updated algorithm on the previous example, in the
presence of two turn restrictions, can lead to the solution depicted on the rightmost part of Fig-
ure 4. This method assumes that customers are delivered on one side of a route, which is the most
common case. Hence, there are only two ways to arrive or depart from services. In some more
complex situations, with several options for entry points and exit points – e.g., a customer with
several entries or exits or located at an intersection, snow plowing on complex intersections, mail
delivery dependent on sidewalk side – the methodology can still be applied with as many modes
as distinct options for arrival and departure. One such problem is discussed in the next Section.

4.3. Service clusters

Problem aggregation is a natural way to deal with large-scale applications that contain multiple
drop points. A natural aggregation occurs in the CARP, when assimilating drops on the same
street to a single edge service. This aggregation implies that all drops are done consecutively, hence
forbidding split deliveries. Further aggregations may also be relevant. One option is to consider
a group of drops in a small area or within a ZipCode as a non-dissociable cluster of services,
leading to a clustered (node or arc) routing problem in which, given several clusters of services,
a best-possible routing solution is sought such that all services within the same cluster are done
consecutively (Corberán et al. 2011, Battarra et al. 2014, Vidal et al. 2014a).
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Figure 5 On the left, example of a street network with two clusters of deliveries. On the right, associated shortest
path problem for mode selection, i.e., selection of the order of visits or each group.

This setting can be efficiently addressed with the proposed methodology and a broader definition
of service mode. A service now represents a cluster of drops, and the service mode for a cluster
corresponds to one relevant (entry,exit) direction pair with mentions of traversal directions, as
illustrated in Figure 5. The service cost of a cluster, for a given (entry,exit) pair is the solution
of a Rural Postman Problem starting and ending with the prescribed edges and orientations, and

• Problems with choices of service location (Generalized
routing problems – GVRP)...

• But also, inserting a lunch break, going to an intermediate
facility, recharging electric vehicles... are many ways of
choosing a mode when servicing a customer.

I Keep in mind that in these cases, other resources than cost
may be involved ⇒ RCSPs...

> Introduction Neighborhoods Generalizations Larger Neighborhoods Experiments Conclusions References 22/54



Contents

1 Node and edge routing problems

2 Combined neighborhoods for arc routing problems
Methodology
Cutting off complexity: memories + bidirectional search
Cutting off complexity: moves filtering via LBs

3 Problem generalizations

4 Very large neighborhoods

5 Computational experiments
Integration into two state-of-the-art metaheuristics
Comparison with previous literature
CARP – To reduce or not to reduce
Problems with turn penalties and delays at intersections

6 Conclusions/Perspectives

> Introduction Neighborhoods Generalizations Larger Neighborhoods Experiments Conclusions References 22/54



Very large neighborhoods

• The concept can even be integrated into ejection chains-type
neighborhoods to search an exponential set of solutions
(obtained via combined chained service relocations & mode
changes) in polynomial time via a shortest-path formulation:
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Very large neighborhoods
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• The cost cij of an arc (i , j ) corresponds to the difference of cost
of R(j ) when removing service j and inserting service i with
minimum cost in the route.
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Metaheuristics

• Integration into two state-of-the-art metaheuristics:

• The iterated local search variant (ILS) of Prins (2009)
I Produces nC offspring from the incumbent solution and

selects the best
I Search is restarted nP times, each run terminates after nI

consecutive iterations
I Added the possibility to use penalized infeasible solutions

(not in the original version of the algorithm).

• The unified hybrid genetic search (UHGS) of Vidal et al.
(2012, 2014)
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Metaheuristics

UHGS

Classic genetic algorithm components:
population, selection, crossover, and

1 Efficient local-improvement
procedure. Replaces random mutation

2 Management of penalized infeasible
solutions

3 Individual evaluation: solution
quality and contribution to
population diversity

25 

 Hybrid genetic search with Advanced Diversity Control (HGA): 

 Hybrid genetic Algorithm 

 Well-designed selection and crossover operators 

 High-performance local-improvement procedure (“education”) 

 Management of penalized infeasible solutions in two subpopulations 

 Diversity & Cost objective for individuals evaluations 

Unified Hybrid Genetic Search 

 

General HGA Methodology : Evolving a 
population of solutions with genetic operators, 
selection, crossover and mutation. The latter is 
replaced by a local search procedure. 
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Metaheuristics

Local improvement procedure used in both methods:
Very standard neighborhoods:

• Relocate, Swap, CROSS, 2-opt and 2-opt*.
I Exploration in random order
I First improvement policy
I Restrictions of moves to the Γth closest services

⇒ Number of neighbors in O(n)
I + one attempt of ejection chain on any local minimum.

Penalized infeasible solutions:

• Simple linear combination of the excess of load, distance
or other resource constraints on routes.

I Penalty coefficients are adapted during the search.
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Metaheuristics

UHGS – Biased fitness: combining ranks in terms of solution cost
C (I ) and contribution to the population diversity D(I ), measured as
a distance to other individuals :

BF (I ) = C (I ) +

(
1− nbElite

popSize − 1

)
D(I )

• Used for parents selection

⇒ Balancing quality with innovation
to promote a more thorough
exploration of the search space.

• Used during selection of survivors

⇒ Removing individuals with worst
BF (I ) still guarantees elitism

31 

 5. Biased Fitness is a tradeoff between ranks in terms of  
penalized cost fit(I), and contribution to the diversity dc(I), 
measured as a distance to others individuals. 

 

 

 

 
 

 Used during selection of the parents  

 Balancing strength with innovation  
during reproduction, and thus favoring  
exploration of the search space.  
 

 and during selection of survivors:  

 Removing the individual I with worst  
BF(I) also guarantees some elitism  
in terms of solution quality. 

 

Unified Hybrid Genetic Search 
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Experimental setting

• Initial experiments on CARP and MCGRP

• Literature on CARP and MCGRP built around several sets of
well-known benchmark instances:

# Reference |NR| |ER| |AR| n Specificities

CARP:

GDB (23) Golden et al. (1983) 0 [11,55] 0 [11,55] Random graphs; Only required edges

VAL (34) Benavent et al. (1992) 0 [39,97] 0 [39,97] Random graphs; Only required edges

BMCV (100) Beullens et al. (2003) 0 [28,121] 0 [28,121] Intercity road network in Flanders

EGL (24) Li and Eglese (1996) 0 [51,190] 0 [51,190] Winter-gritting application in Lancashire

EGL-L (10) Brandão and E. (2008) 0 [347,375] 0 [347,375] Larger winter-gritting application

MCGRP:

MGGDB (138) Bosco et al. (2012) [3,16] [1,9] [4,31] [8,48] From CARP instances GBD

MGVAL (210) Bosco et al. (2012) [7,46] [6,33] [12,79] [36,129] From CARP instances VAL

CBMix (23) Prins and B. (2005) [0,93] [0,94] [0,149] [20,212] Randomly generated planar networks

BHW (20) Bach et al. (2013) [4,50] [0,51] [7,380] [20,410] From CARP instances GDB, VAL, & EGL

DI-NEARP (24) Bach et al. (2013) [120,347] [120,486] 0 [240,833] Newspaper and media product distribution
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Experimental setting

• To prevent any possible over-tuning
⇒ using the original parameters of the metaheuristics

• Single core: Xeon 3.07 GHz CPU with 16 GB of RAM

• Single termination criterion on all instances
⇒ scaled to reach a similar CPU time as previous

competitive algorithms.
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Experimental setting

• For each benchmark set, we collected the best three
solution methods in the literature (some are heavily
tailored for specific benchmark sets).

BE08 Brandão and Eglese (2008) HKSG12 Hasle et al. (2012) MTY09 Mei et al. (2009)

BLMV14 Bosco et al. (2014) LPR01 Lacomme et al. (2001) PDHM08 Polacek et al. (2008)

BMCV03 Beullens et al. (2003) MLY14 Mei et al. (2014) TMY09 Tang et al. (2009)

DHDI14 Dell’Amico et al. (2016) MPS13 Martinelli et al. (2013) UFF13 Usberti et al. (2013)

• Comparison with the proposed metaheuristics, which are
searching the space of service permutations (our methods
are not fine-tuned for any of these instance sets).
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Experimental setting

• Reporting the average and best solution on 10 runs.

• All Gap(%) values measured from the current best known
solutions (BKS)

• Warning – time measures for some previous algorithms:
using known optimal solutions to trigger termination, or
reporting the time to reach the best solution

I Dependent on exogenous information
I Not the complete search time

• Hence, two columns for time measures:
⇒ “T” for total CPU time when available,
⇒ “T*” for time to reach final solution.
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Comparison with previous literature

Variant Bench. n Author Runs Avg. Best T T* CPU

CARP

GDB [11,55]

TMY09 30 0.009% 0.000% 0.11 — Xe 2.0G

BMCV03 1 0.000% — — 0.03 P-II 500M

MTY09 1 0.000% — — 0.01 Xe 2.0G

ILS 10 0.002% 0.000% 0.16 0.03 Xe 3.07G

UHGS 10 0.000% 0.000% 0.22 0.01 Xe 3.07G

VAL [39,97]

MTY09 1 0.142% — — 0.11 Xe 2.0G

LPR01 1 0.126% — 2.00 — P-III 500M

BMCV03 1 0.060% — — 1.36 P-II 500M

ILS 10 0.054% 0.024% 0.68 0.16 Xe 3.07G

UHGS 10 0.048% 0.021% 0.82 0.08 Xe 3.07G

BMCV [28,121]

BE08 1 0.156% — — 1.08 P-M 1.4G

MTY09 1 0.073% — — 0.35 Xe 2.0G

BMCV03 1 0.036% — 2.57 — P-II 450M

ILS 10 0.027% 0.000% 0.82 0.22 Xe 3.07G

UHGS 10 0.007% 0.000% 0.87 0.11 Xe 3.07G

EGL [51,190]

PDHM08 10 0.624% — 30.0 8.39 P-IV 3.6G

UFF13 15 0.560% 0.206% 13.3 — I4 3.0G

MTY09 1 0.553% — — 2.10 Xe 2.0G

ILS 10 0.236% 0.106% 2.35 1.33 Xe 3.07G

UHGS 10 0.153% 0.058% 4.76 3.14 Xe 3.07G

EGL-L [347,375]

BE08 1 4.679% — — 17.0 P-M 1.4G

MPS13 10 2.950% 2.523% 20.7 — I5 3.2G

MLY14 30 1.603% 0.895% 33.4 — I7 3.4G

ILS 10 0.880% 0.598% 23.6 15.4 Xe 3.07G

UHGS 10 0.645% 0.237% 36.5 27.5 Xe 3.07G
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Comparison with previous literature

Variant Bench. n Author Runs Avg. Best T T* CPU

MCGRP

MGGDB [8,48]

BLMV14 1 1.342% — 0.31 — Xe 3.0G

DHDI14 1 0.018% — 60.0 0.86 CPU 3G

ILS 10 0.010% 0.000% 0.13 0.03 Xe 3.07G

UHGS 10 0.015% 0.000% 0.16 0.01 Xe 3.07G

MGVAL [36,129]

BLMV14 1 2.620% — 16.7 — Xe 3.0G

DHDI14 1 0.071% — 60.0 3.69 CPU 3G

ILS 10 0.067% 0.019% 1.18 0.32 Xe 3.07G

UHGS 10 0.045% 0.011% 1.20 0.17 Xe 3.07G

CBMix [20,212]

HKSG12 2 — 3.076% 120 56.9 CPU 3G

BLMV14 1 2.697% — 44.7 — Xe 3.0G

DHDI14 1 0.884% — 60.0 19.6 CPU 3G

ILS 10 0.733% 0.363% 2.46 1.48 Xe 3.07G

UHGS 10 0.381% 0.109% 4.56 3.08 Xe 3.07G

BHW [20,410]

HKSG12 2 — 1.949% 120 60.1 CPU 3G

DHDI14 1 0.555% — 60.0 21.4 CPU 3G

ILS 10 0.440% 0.196% 5.22 2.90 Xe 3.07G

UHGS 10 0.208% 0.077% 7.95 5.87 Xe 3.07G

DI-NEARP [240,833]

HKSG12 2 — 1.639% 120 93.0 CPU 3G

DHDI14 1 0.536% — 60.0 36.3 CPU 3G

ILS 10 0.199% 0.084% 30.0 21.3 Xe 3.07G

UHGS 10 0.139% 0.055% 29.6 16.7 Xe 3.07G
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Comparison with previous literature

• New neighborhoods lead to much better solutions.

• ILS already produces better solutions than previous literature,
and UHGS goes further in performance ⇒ 0.503% and 0.958%
improvement on the large instance sets

• Average standard deviation in [0.000%, 0.292%]

• On the CARP benchmark sets, 187/191 BKS have been
matched or improved. 153/155 known optimal solutions were
found

• For the MCGRP, 408/409 BKS have been matched or
improved. All 217 known optimal solutions found.
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Comparison with previous literature

• Boxplot visualizations of Gap(%) of various methods on
large-scale instances:

• Gray colors indicate a significant difference of performance, as
highlighted by pairwise Wilcoxon tests with adequate correction
for multiplicity

Set EGL
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PDHM08 x UHGS, P.value = 9e−05    
MTY09 x UHGS, P.value = 0.00053    
UPP13 x UHGS, P.value = 6e−05    
ILS x UHGS, P.value = 0.00044    

Set EGL-L
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0
1

2
3

4
5

6

BE08 x UHGS, P.value = 0.00195    
MPS13 x UHGS, P.value = 0.00195    
MLY14 x UHGS, P.value = 0.00195    
ILS x UHGS, P.value = 0.00195    
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Comparison with previous literature

Set CBMix
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Set DI-NEARP

●
● ●

HKSG12 DHDI14 ILS UHGS

0
1

2
3

4
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Scalability

• Growth of the CPU time of UHGS as a function of the number
of services, for the CARP instances (left figure) and MCGRP
instances (right figure). Log-log scale.

 0.01
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• A linear fit, with a least square regression, has been performed
on the sample after logarithmic transformation:
⇒ CPU time appears to grow in O(n2)
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To reduce or not to reduce

• Previous slides: investigated whether methods using
combined neighborhoods – with optimal choices of service
orientations – can outperform methods based on more
traditional neighborhoods

• Now analyzing whether relying on a problem reduction
from CARP to CVRP (Martinelli et al., 2013) with a
classical routing metaheuristic can be profitable.

• The reduction increases the number of services by ×2.
I Half of the edges of a CVRP solution, with a large fixed

negative cost, directly determine the service orientations in
the associated CARP solution.
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To reduce or not to reduce

• Applied the same ILS and UHGS on the transformed instances,
now using a classical move evaluation for the CVRP.

Gap(%) T(min) Gap(%) T(min)

ILS ILScvrp ILS ILScvrp UHGS UHGScvrp UHGS UHGScvrp

GDB 0.002% 0.000% 0.16 0.59 GDB 0.000% 0.000% 0.22 0.72

VAL 0.054% 0.061% 0.68 2.39 VAL 0.048% 0.048% 0.82 2.98

BMCV 0.027% 0.044% 0.82 2.79 BMCV 0.007% 0.014% 0.87 3.02

EGL 0.236% 0.345% 2.35 8.50 EGL 0.153% 0.200% 4.76 12.65

EGL-L 0.880% 1.411% 23.6 60.0 EGL-L 0.645% 1.001% 36.5 59.7
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Addressing problems with turn penalties

• Final experiment about CARP and MCGRP with turn penalties
I A must-have in various sectors of application, but more scarcely

studied in the routing community.

• Lack of reasonable benchmark sets, previous instances based on
random graphs:
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Addressing problems with turn penalties

• Hence, also generating new benchmark instances to investigate
the problem

• Extension of DI-NEARP (Bach et al., 2013), adding turn
penalties ⇒ 28 instances with 240–833 services.

I Application of media products distribution in Nordic countries
I Edge distances are available but no node coordinates

• How to produce realistic turn penalties?
I Reconstructing a plausible planar layout for each instance, with

the FM3 algorithm of Hachul and Jünger (2005)
⇒ efficiently evaluates a force equilibrium, based on desired
distances to obtain 2D node coordinates

I 5γ for U-turns, 3γ for left turns, γ for intersection crossing

I γ calibrated for turn penalties to scale to 30% of solution cost,
(realistic according to analyses of Nielsen et al. 1998)
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Addressing problems with turn penalties

• Sample solution with small turn penalties:
I γ = 0.25, distance = 4286:
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Addressing problems with turn penalties

• Sample solution with slightly larger turn penalties:
I γ = 0.5, distance of 4336:
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Addressing problems with turn penalties

γ Gap (%) T Cost Distance
Nb Turns

U-turns Left Right All

0 0.141% 50.68 25076.61 25076.61 126.24 170.85 172.35 469.44

0.25 0.280% 51.32 27500.70 25164.44 119.40 91.72 241.98 453.10

0.5 0.281% 51.65 29806.22 25250.74 116.79 82.77 250.17 449.73

1 0.373% 51.74 34339.29 25451.40 113.87 73.91 261.63 449.41

2 0.511% 51.77 43103.49 25986.19 109.84 62.54 282.69 455.06

5 0.607% 51.90 68258.91 27243.48 106.31 48.52 314.51 469.34

10 0.752% 51.92 109011.41 28534.13 105.23 42.01 336.76 484.00

• To assess method performance, Gap(%) measured between
average solutions and BKS produced by long runs.

• Gap and standard deviation remain moderate, usually good sign

• CPU time is moderate (≈ 50min for 833 services).
I Straightforward parallelization, or reduction of termination

criterion if more speed is needed.

> Introduction Neighborhoods Generalizations Larger Neighborhoods Experiments Conclusions References 45/54



Addressing problems with turn penalties
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• Turn penalties seem to lead to slightly more difficult problems

• Significant reduction of left turns or U-turns even with very
small penalties.

• A few turns cannot be avoided, due to the graph topology
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Final experiments on other CARP variants

• Final experiments on CARP variants with multiple delivery
periods (PCARP), multiple depots (MDCARP), and the
min-max windy rural postman problem.
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Final experiments on other CARP variants

Variant Bench. n Author Runs Avg. Best T T* CPU

PCARP

PGDB [65,165]

LPR05 1 9.448% — 12.5 — P-IV 1.4G
CLP06 1 7.741% — 1.86 — P–IV 2.4G
MPY11 30 3.900% 1.951% 0.20 — Xe 2.0G
UHGS† 10 0.730% 0.217% 0.14 0.09 Xe 3.07G
UHGS 10 0.256% 0.071% 0.91 0.41 Xe 3.07G

PVAL [94,300]

CLP06 1 16.494% — 7.38 — P–IV 2.4G
MPY11 30 8.691% 6.317% 0.87 — Xe 2.0G
UHGS† 10 1.614% 0.721% 0.82 0.61 Xe 3.07G
UHGS 10 0.636% 0.161% 4.91 3.15 Xe 3.07G

MDCARP GDB [8,48]
KY10 1 2.041% — 0.02 — P-IV 1.4G
UHGS† 10 0.296% 0.104% 0.01 0.01 Xe 3.07G
UHGS 10 0.017% 0.000% 0.37 0.04 Xe 3.07G

MM-kWRPP

2V [7,78]
BCS10 1 0.103% — 0.94 — I2 2.4G
UHGS 10 0.008% 0.002% 0.18 0.07 Xe 3.07G

3V [7,78]
BCS10 1 0.230% — 0.41 — I2 2.4G
UHGS 10 0.008% 0.000% 0.18 0.07 Xe 3.07G

4V [7,78]
BCS10 1 0.303% — 0.29 — I2 2.4G
UHGS 10 0.014% 0.000% 0.18 0.06 Xe 3.07G

5V [7,78]
BCS10 1 0.392% — 0.24 — I2 2.4G
UHGS 10 0.021% 0.000% 0.19 0.07 Xe 3.07G

†: A shorter termination criteria has been used to make a fair comparison.
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Conclusions

• Revisited a solution representation with implicit service
orientations.

⇒ made it efficient, systematic and general

• Interesting complexity (amortized O(1) in theory and very fast
in practice) ⇒ Service orientations nearly come for free.

• Opportunities of problem and methodology generalizations

• State-of-the-art results for the CARP and MCGRP benchmark
sets, as well as several other problems

• Connecting further arc and node routing worlds
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Thank you for your attention !
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Technical report, instances, detailed results and slides available at:
http://w1.cirrelt.ca/~vidalt/en/publications-thibaut-vidal.html

Source code will be available (GPL v3.0) when the article appears
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