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Timing problems in vehicle routing

• General effort dedicated to better address rich vehicle routing problems
involving many side constraints and attributes

• Observation : many rich VRPs are hard because of their time features:
(single, soft, or multiple) time windows, time-dependent, flexible or
stochastic travel times, various time-dependent costs, break scheduling...

• Timing subproblems: similar formulations in various domains: VRP,
scheduling, PERT, resource allocation, isotone regression,
telecommunications...

• Cross-domain analysis of timing problems and algorithms:

I T. Vidal, T. G. Crainic, M. Gendreau, and C. Prins. A Unifying View on Timing
Problems and Algorithms. Submitted & revised to Networks.
Tech. Rep. CIRRELT 2011-43.
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Some examples

• Four different applications

• VRP with soft time windows. Optimizing arrival times for a
given sequence of visits σ:

min
t≥0

α

|σ|∑
i=1

max{eσ(i) − tσ(i), 0}+ β

|σ|∑
i=1

max{tσ(i) − lσ(i), 0} (1.1)

s.t. tσ(i) + δσ(i)σ(i+1) ≤ tσ(i+1) 1 ≤ i < |σ| (1.2)
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Some examples

• Four different applications

• E/T scheduling. Optimizing processing dates for a given sequence
of visits σ:

min
t≥0

|σ|∑
i=1

αi max{dσ(i) − tσ(i), 0}+

|σ|∑
i=1

βi max{tσ(i) − dσ(i), 0} (1.3)

s.t. tσ(i) + pσ(i) ≤ tσ(i+1) 1 ≤ i < |σ| (1.4)
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Some examples

• Four different applications

• Ship speed optimization. Optimizing leg speeds to visit a
sequence of locations σ:

min
t≥0

|σ|−1∑
i=1

dσ(i)σ(i+1)ĉ

(
dσ(i)σ(i+1)

tσ(i+1) − tσ(i)

)
(1.5)

s.t. tσ(i) + pσ(i) +
dσ(i)σ(i+1)

vmax
≤ tσ(i+1) 1 ≤ i < |σ| (1.6)

rσ(i) ≤ tσ(i) ≤ dσ(i) 1 ≤ i ≤ |σ| (1.7)
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Some examples

• Four different applications

• Isotonic Regression. Given a vector N = (N1, . . . ,Nn) of n real
numbers, finding a vector of non-decreasing values t = (t1, . . . , tn) as
close as possible to N according to a distance metric:

min
t=(t1,...,tn)

‖t−N‖ (1.8)

s.t. ti ≤ ti+1 1 ≤ i < n (1.9)
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General Timing Problem

• Timing problems:

min
t≥0

∑
F x∈Fobj

αx

∑
1≤y≤mx

f x
y (t) (1.10)

s.t . ti + pi ≤ ti+1 1 ≤ i < n (1.11)

f x
y (t) ≤ 0 F x ∈ Fcons , 1 ≤ y ≤ mx (1.12)

• Continuous variables ti following a total order.

• Additional features characterized by functions f x
y (t) for y ∈ {1, . . . ,mx},

either in the objective or as constraints.

• Many names in the literature: scheduling, timing, projection onto order

simplexes, optimal service time problem...
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Features

• Rich vehicle routing problems can involve various timing features

Symbol Parameters Char. functions ξ Most frequent roles

W Weights wi fi(t) = wi ti 1 Weighted execution dates
D Deadlines di fi(t) = (ti − di)

+ 1 Deadline constraints, tardiness
R Release dates ri fi(t) = (ri − ti)

+ 1 Release-date constraints, earliness.
TW Time windows

TWi = [ri , di ]
fi(t) = (ti − di)

+

+(ri − ti)
+

1 Time-window constraints,
soft time windows.

MTW Multiple TW
MTWi = ∪[rik , dik ]

fi(t) = min
k

[(ti − dik )+

+(rik − ti)
+]

1 Multiple time-window constraints

Σccvxi (ti) Convex ccvxi (ti) fi(t) = ccvxi (ti) 1 Separable convex objectives
Σci(ti) General ci(t) fi(t) = ci(ti) 1 Separable objectives,

time-dependent activity costs

DUR Total dur. δmax f (t) = (tn − δmax − t1)+ 2 Duration or overall idle time
NWT No wait fi(t) = (ti+1 − pi − ti)

+ 2 No wait constraints, min idle time
IDL Idle time ιi fi(t) = (ti+1−pi−ιi−ti)

+ 2 Limited idle time by activity, min
idle time excess

P(t) Time-dependent
proc. times pi(ti)

fi(t) = (ti +pi(ti)−ti+1)+ 2 Processing-time constraints, min ac-
tivities overlap

TL Time-lags δij fi(t) = (tj − δij − ti)
+ 2 Min excess with respect to time-lags

Σci(∆ti) General ci(t) fi(t) = ci(ti+1 − ti) 2 Separable functions of durations
between successive activities, flex.
processing times

Σcij (ti , tj ) General cij (t , t
′) fij (t)= ci(ti , tj ) 2 Separable objectives or constraints

by any pairs of variables
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Hierarchy of features

• These features
can be classified
within a hierarchy
(using many-one
linear reduction
relationships
between the
associated timing
problems)

• Features in the
NP-hard area lead
to NP-hard
timing problems
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Re-optimization

• Some particular features have been extensively studied in various
fields.
I For example for the problem {Σccvx

i (ti)| ø} 30 algorithms from various
domains (routing, scheduling, PERT, isotonic regression) were
inventoried, based on only three main concepts.

• Key lines of research related to the resolution of series of similar
timing problems within neighborhood searches, considering different
sequences σ.

min
t≥0

∑
F x∈Fobj

αx

∑
1≤y≤mx

f x
y (t) (1.13)

s.t . tσk (i) + pσk (i),σk (i+1) ≤ tσk (i+1) 1 ≤ i < |σ| (1.14)

f x
y (t) ≤ 0 F x ∈ Fcons , 1 ≤ y ≤ mx (1.15)
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One particular problem

• Consider one particular timing problem with flexible travel times
and deadlines:

min
t≥0

|σ|−1∑
i=1

ci(tσ(i+1) − tσ(i)) (2.1)

s.t. tσ(i) + pσ(i) +
dσ(i)σ(i+1)

vmax
≤ tσ(i+1) 1 ≤ i < |σ| (2.2)

tσ(i) ≤ dσ(i) 1 ≤ i ≤ |σ| (2.3)

tσ(|σ|) = B (2.4)

• It is a vehicle speed optimization problem with convex – and
possibly heterogeneous – cost/speed functions per leg.

• Direct applications related to:
I Ship speed optimization (Norstad et al., 2011; Hvattum et al., 2013)
I Vehicle routing with flexible travel time or pollution routing (Hashimoto

et al., 2006; Bektas and Laporte, 2011)
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One particular problem

• Consider one particular timing problem with flexible travel times
and deadlines:

min
t≥0

|σ|−1∑
i=1

ci(tσ(i+1) − tσ(i)) (2.5)

s.t. tσ(i) + pσ(i) +
dσ(i)σ(i+1)

vmax
≤ tσ(i+1) 1 ≤ i < |σ| (2.6)

tσ(i) ≤ dσ(i) 1 ≤ i ≤ |σ| (2.7)

tσ(|σ|) = B (2.8)

• A quick reformulation
I Waiting times can be modeled by additional activities with null cost
I Change of variables xi = tσ(i+1) − tσ(i) − pσ(i) − dσ(i)σ(i+1)

vmax
I leads to...
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A resource allocation problem

• A resource allocation problem with nested constraints (NESTED)

min f (x) =

n∑
i=1

fi(xi) (2.9)

s.t. 0 ≤ xi ≤ di i ∈ {1, . . . ,n} (2.10)

s[i]∑
k=1

xk ≤ ai i ∈ {1, . . . ,m − 1} (2.11)

n∑
i=1

xi = B (2.12)

I Integer or continuous variables are considered here
I Travel time xi on each leg, subject to a maximum bound di .
I Deadlines ai on arrival time at some ports.
I Table s[] listing the indices of variables on which deadlines are applied.

There may be less deadline constraints m than variables n.
I Final arrival date B .
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A resource allocation problem

• Without the nested constraints (2.16) ⇒ Standard resource
allocation problem (Ibaraki and Katoh, 1988; Patriksson, 2008)

min
0≤x≤d

f (x) =

n∑
i=1

fi(xi) (2.13)

s.t.

n∑
i=1

xi = B (2.14)

I Interesting applications to search-effort allocation, portfolio selection,
energy optimization, sample allocation in stratified sampling, capital
budgeting, mass advertising, and matrix balancing, among others.
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A resource allocation problem

• Various applications

min
0≤x≤d

f (x) =

n∑
i=1

fi(xi) (2.15)

s.t.

s[i]∑
k=1

xk ≤ ai i ∈ {1, . . . ,m − 1} (2.16)

n∑
i=1

xi = B (2.17)

• With the nested constraints, additional applications to
I Project crashing (Talbot, 1982)
I Production and resource planning (Bellman et al., 1954; Bellman and

Dreyfus, 1962; Veinott, 1964)
I Lot sizing (Tamir, 1980)
I Assortment with downward substitution (Hanssmann, 1957; Sadowski,

1959; Pentico, 2008)
I Telecommunications (Padakandla and Sundaresan, 2009a)
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ε-approximate solutions

• Computational complexity of algorithms for general non-linear
optimization problems ⇒ an infinite output size may be needed due
to real optimal solutions.

• To circumvent this issue
I Existence of an oracle which returns the value of fi(x ) in O(1)
I Approximate notion of optimality (Hochbaum and Shanthikumar, 1990):

a continuous solution x(ε) is ε-accurate iff there exists an optimal
solution x∗ such that ||(x(ε) − x∗)||∞ ≤ ε.

I Accuracy is defined in the solution space, in contrast with some other
approximation approaches which considered objective space (Nemirovsky
and Yudin, 1983).
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Existing algorithms – VRP or ship routing literature

• Recursive smoothing
algorithm (Norstad et al.,
2011; Hvattum et al., 2013)
I Applicable only when

the cost/speed
functions are
arc-independent

I This case is strongly
polynomial (which even
never needs to evaluate the
objective function)

I Complexity : O(n2)

Image from R. Kramer, A.
Subramanian, T. Vidal, and L. A. F.
Cabral. A matheuristic approach for

the Pollution-Routing Problem. 2014.
arXiv: 1404.4895v1

A matheuristic approach for the Pollution-Routing Problem Kramer, R.; Subramanian, A.; Vidal, T.; Cabral, L.A.F.
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Figure 1: Computing arrival times with SOA

in Demir et al. (2012) have been used, that is:

w1 = 1.01763908× 10−3

w2 = 5.33605218× 10−5

w3 = 8.40323178× 10−9

w4 = 1.41223439× 10−7

ωfc = 1.4£/l

ωfd = 2.22222222× 10−3£/s.

However, these instances have a large time windows width, such that it is possible to visit

many customers within their respective time windows when traveling at optimal speed as further

discussed in Section 5.2. In view of this, we created two additional sets of instances with tighter

time windows by modifiying those of the PRPLIB. The time horizon of these new sets is 32400.

The time-window width of each customer in Set B is randomly selected between the interval

11
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Existing algorithms – VRP or ship routing literature

• And this approach is closely related to the concept of string method
(Dantzig 1971 and other earlier contributions)

CONTROL PROBLEM OF BELLMAN 545 

(otherwise it2 = i3e,).' Moreover, the broken line curve having this property is unique. 
On the contrary, suppose now that there are two broken line curves joining Po to Pn 
with this property. Let Q be the first intersection of these curves to the right of P0 
(this may be the point P.), then all points of one of the curves between Po and Q are 
above those of the other curve, hence must only be in contact with upper bounds. This 
curve, then, is convex; that is, all contact points between P0 and Q lie below the line 
joining P0Q. Similarly for the second curve, its contact points must belong to set bound- 
ing from below; the curve is concave and all contact points are above P0Q. Thus a con- 
tradiction is reached because we have shown the contact points for the second curve are 
above those of the first whereas the reverse is true. This establishes the uniqueness of 
the optimizing curve. 

Construction: 

XAXn 

1x-I x 2,\-2 3- 

string tight 

XO A~~~~~~~ 
x-2~~~S=(2-) 

Stying Solution 

Place a "loose" string between the end points threading through the boundary points and 
draw tight. Analytically one first constructs the convex covering from above of the 
lower bounds. Then for all points for which it happens that the upper bounds lie below 
a broken line segment of this convex covering construct the convex cover from below 
of the end points of the segment and of the upper bound points below this segment. 
This process is repeated if any lower bounds lie above the curve thus constructed. Each 
step determines at least one ti ; in the worst case n steps are required. 

Example. Suppose b= b= *= bnl = b; a-=a2= ... = an_l=a; a < ao 
bo = xo < b. In terms of t = x)< and s = X 2t, the lower and upper bounds are given 
in parametric forms 

{s _ } or = a2s; {s or e = b 

I Follows by the same argument used to prove the necessary half of the theorem. 

This content downloaded from 132.204.3.57 on Wed, 21 Aug 2013 11:18:08 AM
All use subject to JSTOR Terms and Conditions

Image from G. B. Dantzig. A control problem of Bellman. Management Science. 17(9),
pp. 542–546, 1971.
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Existing algorithms – VRP or ship routing literature

• Dynamic programming approach for the case of piecewise linear and
convex functions (Hashimoto et al., 2006)

• Compute recursively the functions Fi(b) which evaluate the
minimum cost to execute the i first activities (x1, . . . , xi) with a
resource consumption of b.

• Bi-directional dynamic programming can be used. An efficient way to
solve serial problems with different (but similar) sequences, using
pre-processing and incremental evaluation of moves.
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Existing algorithms – Others

• Dual-inspired methods. Rely on the fact that the continuous
resource allocation problem without nested constraints (2.16) can be
solved by finding the zero of a single Lagrangian equation:

L′rap(λ) =

w∑
i=v

x̄i(λ)− B = 0

with x̄i(λ) = f ′−1
i

(
max(f ′i(0),min(λ, f ′i(di)))

) (2.18)

• Iteratively solving Lagrangian equations and adjusting violated
nested constraints by variable setting.
I Padakandla and Sundaresan (2009a): complexity of O(n2ΦRap(n,B))
I Wang (2014): complexity of O(n2 log n + nΦRap(n,B))
I where ΦRap(n,B) is the complexity of solving one RAP with n tasks,

e.g., by bisection search.
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Existing algorithms – Others

• A greedy method with scaling for NESTED with integer variables
(Hochbaum, 1994)
I Greedy algorithms iteratively consider all feasible increments of one

resource, and select the least-cost one.
I Convergence guarantee (Federgruen and Groenevelt, 1986) to the

optimum of the integer RAP in the presence of polymatroidal constraints.

• Scaling.
I An initial problem is solved with large increments
I The increment size is iteratively divided by two to achieve higher

accuracy.
I At each iteration, and for each variable, only one increment from the

previous iteration may require to be corrected.
I Complexity of O(n log n log B

n ) for NESTED with integer variables
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Proximity theorem

• Proximity Theorem (Hochbaum, 1994):

Theorem

For any optimal continuous solution x of NESTED, there exists an
optimal solution z of the same problem with integer variables, such that
z− e < x < z + ne, and thus ||z− x||∞ ≤ n. Reversely, for any integer
optimal solution z, there exists an optimal continuous solution such
that ||z− x||∞ ≤ n.

Corollary

To obtain an ε-approximate solution of the NESTED problem with
continuous variables, it is possible to solve a scaled NESTED problem
with integer variables, in which all problem parameters have been
multiplied by dn

ε e.
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Proposed Algorithm

• Simple divide and conquer framework: to solve a Nested(v ,w)
subproblem, first solve Nested(v , t) and Nested(t + 1,w), and use
this information to solve more efficiently the original problem.

• But how to use the information from subproblems...
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Proposed Algorithm

• First an initialization step and feasibility check, then the main loop
of the algorithm is the following:

Algorithm 1 Nested(v ,w)

1: if v = w then
2: (xs[v−1]+1, . . . , xs[v ])← Rap(v , v)
3: else
4: Solve two subproblems:
5: t ← b v+w

2
c

6: (xs[v−1]+1, . . . , xs[t])← Nested(v , t)
7: (xs[t]+1, . . . , xs[w ])← Nested(t + 1,w)
8:
9: Do something to solve the upper level:

10: for i = s[v − 1] + 1 to s[t ] do
11: (c̄i , d̄i )← (0, xi )
12: for i = s[t ] + 1 to s[w ] do
13: (c̄i , d̄i )← (xi , di )
14: (xs[v−1]+1, . . . , xs[w ])← Rap(v ,w)
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Proposed Algorithm

• Claim: the algorithm Nested(v ,w) is a valid divide-and-conquer
approach which returns the optimal solution of the following model:

Nested(v ,w)



min

s[w ]∑
i=s[v−1]+1

fi(xi)

s.t.

s[i]∑
k=s[v−1]+1

xk ≤ āi − āv−1 i ∈ {v , . . . ,w − 1}

s[w ]∑
i=s[v−1]+1

xi = āw − āv−1

0 ≤ xi ≤ di i ∈ {s[v − 1] + 1, . . . , s[w ]}
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Proposed Algorithm

• Rap(v ,w) is a simple resource allocation problem with updated
bounds.

Rap(v ,w)



min

s[w ]∑
i=s[v−1]+1

fi(xi)

s.t.

s[w ]∑
i=s[v−1]+1

xi = āw − āv−1

ĉi ≤ xi ≤ d̂i i ∈ {s[v − 1] + 1, . . . , s[w ]}

• Any classic method can be used to solve this problem.
I Integer variables : O(n log B

n ) by Frederickson and Johnson (1982)
I Continuous variables : can use bisection search on the Lagrangian dual
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Convergence

Theorem

Consider (v , t ,w) s.t. 1 ≤ v ≤ t ≤ w ≤ m and v < w. Let (x↓∗
s[v−1]+1

, . . . , x↓∗
s[t]

) and

(x↑∗
s[t]+1

, . . . , x↑∗
s[w ]

) be optimal integer solutions of Nested(v , t) and Nested(t + 1,w),

then Nested(v ,w) admits an optimal integer solution (x∗∗
s[v−1]+1

, . . . , x∗∗
s[w ]

) such that

x∗∗i ≤ x↓∗i i ∈ {s[v − 1] + 1, . . . , s[t ]} (3.1)

x∗∗i ≥ x↑∗i i ∈ {s[t ] + 1, . . . , s[w ]} (3.2)
 

s[1] = 2   
s[2] = 3   
s[3] = 6   

 

  

 x1 

 

x2 

 

x3 

 

x4 

 

x5 

 

x6 

 

x7 

 

x8 

 a1 

 

a2 

 

a3 

 

B 

 

Σxi 

x1 

 

x2 

 

x3 

 

x4 

 

x5 

 

x6 

 

x7 

 

x8 

 

 x1 

 

x2 

 

x3 

 

x4 

 

x5 

 

x6 

 

x7 

 

x8 

 
RECURSION 

DEPTH 
 

> Research context Problem statement Methodology Remark Experiments Conclusions References 31/53



Convergence

Theorem

Consider (v , t ,w) s.t. 1 ≤ v ≤ t ≤ w ≤ m and v < w. Let (x↓∗
s[v−1]+1

, . . . , x↓∗
s[t]

) and

(x↑∗
s[t]+1

, . . . , x↑∗
s[w ]

) be optimal integer solutions of Nested(v , t) and Nested(t + 1,w),

then Nested(v ,w) admits an optimal integer solution (x∗∗
s[v−1]+1

, . . . , x∗∗
s[w ]

) such that

x∗∗i ≤ x↓∗i i ∈ {s[v − 1] + 1, . . . , s[t ]} (3.3)

x∗∗i ≥ x↑∗i i ∈ {s[t ] + 1, . . . , s[w ]} (3.4)

• The valid inequalities (3.3-3.4) can be added to the formulation of
Nested(v ,w).

• Alone, they guarantee that nested constraints are satisfied
⇒ nested constraints can thus be eliminated.

• This leads to a Rap(v ,w) with updated bounds which can be
efficiently solved.
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Convergence

• Proof of this theorem, in the integer case, using the properties of the
greedy algorithm

• For continuous variables, use the proximity theorem of Hochbaum
(1994) with a suitable scaling coefficient.

• Alternatively, the KKT conditions can be used for a different proof
by contradiction, but need of strong convexity and differentiability
(not needed in the first proof).
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Complexity

Theorem

The proposed decomposition algorithm for NESTED with integer
variables works with a complexity of O(n log m log B

n ).

I In the continuous case, an ε-approximate solution is obtained in
O(n log m log B

ε ) operations

I For quadratic NESTED, an overall complexity of O(n log m) is achieved,
using Brucker (1984) or Maculan et al. (2003) for the quadratic RAP
sub-problems
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A remark on the expected number of active constraints

• Assume random-generated problem instances such that:
I di = +∞;
I functions fi strictly convex and differentiable, fi(x ) = γih(x/γi)

• Define Γi =
∑i

k=1 γk for i ∈ {0, . . . ,n}.
• We can show that solving the KKT conditions of NESTED under

these assumptions is equivalent to computing the convex hull of the
set of points P such that

P = {(Γs[j ], aj ) | j ∈ {0, . . . ,m}}. (4.1)
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A remark on the expected number of active constraints
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A remark on the expected number of active constraints

• Assume is addition that
I αi = ai+1 − ai are i.i.d. random variables;
I γi are i.i.d. random variables independent from the αi ’s
I and the vectors (γi , αi) are non-colinear.

• Then the expected number of points on the convex hull grows as
O(log m) (Baxter, 1961). Equivalently, there are O(log m)
expected active nested constraints in the solution.

• This has a large practical impact when the complexity of the method
depends on the number of active constraints
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Metho 1

• To assess the practical performance of the proposed algorithm, we
implemented it as well as the three other methods.
I PS09 : dual algorithm of Padakandla and Sundaresan (2009b);
I W14 : dual algorithm of Wang (2014);
I H94 : scaled greedy algorithm of Hochbaum (1994);
I MOSEK : interior point method of MOSEK (Andersen et al., 2003, for

conic quadratic opt.);
I THIS : proposed decomposition method.

• In these tests, we rely on a simple bisection search on the Lagrangian
equation to solve the RAP subproblem.
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Metho 1

• Each algorithm is tested on randomly-generated instances of
NESTED problems (100 or 10 per type and size) with three families
of objective functions.

[F] fi(x ) =
x 4

4
+ pi x x ∈ [0, 1] (5.1)

[Crashing] fi(x ) = ki +
pi

x
x ∈ [ci , di ] (5.2)

[FuelOpt] fi(x ) = pi × ci ×
(ci

x

)3
x ∈ [ci , di ] (5.3)

I Size of instances ranges from n = 10 to 1, 000, 000.
I Accuracy of ε = 10−8

I Coded in C++
I Tests conducted on a Xeon 3.07 GHz CPU
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Results m = n

Instance n nb Active
Time (s)

PS09 W14 H94 MOSEK THIS

[F] 10 1.15 8.86×10−5 8.06×10−5 6.18×10−5 8.73×10−3 1.85×10−5

102 1.04 7.96×10−3 7.03×10−3 6.74×10−4 2.03×10−2 1.69×10−4

104 1.15 1.06×102 8.72×101 1.46×10−1 – 2.23×10−2

106 1.10 – – 4.42×101 – 4.36

[F-Uniform] 10 2.92 1.03×10−4 4.57×10−5 5.86×10−5 8.76×10−3 2.62×10−5

102 5.06 1.37×10−2 1.61×10−3 7.42×10−4 2.14×10−2 4.97×10−4

104 9.99 – 6.08 1.67×10−1 – 1.31×10−1

106 14.50 – – 7.06×101 – 4.62×101

[F-Active] 10 3.67 1.19×10−4 3.94×10−5 5.76×10−5 8.71×10−3 2.88×10−5

102 10.00 2.28×10−2 9.65×10−4 7.50×10−4 2.18×10−2 4.69×10−4

104 50.75 – 2.31 1.62×10−1 – 9.95×10−2

106 280.30 – – 5.65×101 – 2.21×101

[Crashing] 10 6.44 4.49×10−5 1.81×10−5 5.02×10−5 9.46×10−3 8×10−6

102 24.61 6.03×10−3 7.05×10−4 6.80×10−4 5.95×10−2 1.25×10−4

104 46.90 2.50×102 2.85 1.50×10−1 – 4.93×10−2

106 88.30 – – 6.02×101 – 2.35×101

[FuelOpt] 10 2.93 8.46×10−5 3.17×10−5 6.62×10−5 8.74×10−3 2.20×10−5

102 5.31 1.22×10−2 1.28×10−3 7.98×10−4 1.99×10−2 4.21×10−4

104 9.53 2.43×102 4.81 1.95×10−1 – 1.02×10−1

106 12.80 – – 8.54×101 – 2.99×101
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Results m = n

• Experiments with m = n
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Figure : CPU Time(s) as a function of n ∈ {10, . . . , 106}. m = n. Logarithmic
representation
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Results m = n

• Experiments with m = n
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Figure : CPU Time(s) as a function of n ∈ {10, . . . , 106}. m = n. Logarithmic
representation
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Results m < n

• Experiments with varying values of m, m < n.
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Figure : CPU Time(s) as a function of m. n ∈ {5000, 1000000}. Logarithmic
representation
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Results m < n

• Experiments with varying values of m, m < n.
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Figure : CPU Time(s) as a function of m. n ∈ {5000, 1000000}. Logarithmic
representation
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Results m < n

• Experiments with varying values of m, m < n.
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Figure : CPU Time(s) as a function of m. n ∈ {5000, 1000000}. Logarithmic
representation
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Conclusions

• Investigate a particular case of timing problem with flexible travel
times, equivalent to a nested resource allocation problem.

• Highlighted a rich variety of applications

• Interesting geometrical properties

• A new polynomial algorithm
I matching the state-of-the-art complexity (Hochbaum, 1994) when m = n
I and improving when log m = o(log n)

• Different concepts based on monotonicity properties

• Extensive experimental analyses
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Perspectives

• Resolution of series of problems with different permutations of
activities

• Identifying an even richer set of related problems, models and
applications

• Further generalizations

> Research context Problem statement Methodology Remark Experiments Conclusions References 49/53



Thank you

THANK YOU FOR YOUR ATTENTION !

• For further reading:

I T. Vidal, T. G. Crainic, M. Gendreau, and C. Prins. A Unifying View on
Timing Problems and Algorithms. Submitted & revised to Networks.
Tech. Rep. CIRRELT 2011-43.

I T. Vidal, P. Jaillet, and N. Maculan, A decomposition algorithm for
nested resource allocation problems. 2014. arXiv:1404.6694v1.

I http://w1.cirrelt.ca/∼vidalt/
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