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Timing problems in vehicle routing

e General effort dedicated to better address rich vehicle routing problems
involving many side constraints and attributes

e Observation : many rich VRPs are hard because of their time features:
(single, soft, or multiple) time windows, time-dependent, flexible or
stochastic travel times, various time-dependent costs, break scheduling...

e Timing subproblems: similar formulations in various domains: VRP,
scheduling, PERT, resource allocation, isotone regression,
telecommunications...

e Cross-domain analysis of timing problems and algorithms:

» T. Vidal, T. G. Crainic, M. Gendreau, and C. Prins. A Unifying View on Timing
Problems and Algorithms. Submitted & revised to Networks.
Tech. Rep. CIRRELT 2011-43.

>  Research context Problem statement Methodology Remark Experiments Conclusions References 4/53



Some examples

e Four different applications

VRPTW E/T ship isotonic
3 = scheduling speed opt. regression
"’»;of‘*‘\n.:ﬂ ’.jn -, ) ’ -

e VRP with soft time windows. Optimizing arrival times for a
given sequence of visits o:

lo| lo]|
min a ; max{ e, (i) — to(i), 0} + B ; max{ty (i) — lo(i), 0} (1.1)
st logi) + 5g(i)g(i+1) < lo(it1) 1<i<|o] (1.2)
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e Four different applications

VRPTW E/T ship isotonic
scheduling speed opt. regression

e E/T scheduling. Optimizing processing dates for a given sequence
of visits o:

lo| lo|

mm Z o max{dg( ) — to(i)s 0} + Z Bi max{ta(i) — dg(i), 0} (1.3)
=1

st o)+ Poi) < to(it) 1<i<|o] (1.4)




Some examples

e Four different applications

VRPTW E/T ship isotonic

scheduling speed opt. regression
4 S

e Ship speed optimization. Optimizing leg speeds to visit a
sequence of locations o:

lo|—1
do (4)o(i+1)
i do(i)o(i1)C | ——— 1.5
2o ) oot <ta(i+1) R0 (15)
da i)o(e .
st to(s) + Po(i) + % < to(iv1) 1<i <o (1.6)
To(i) < to(i) < doi) 1<i<]|o (1.7)
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Some examples

e Four different applications

VRPTW E/T ship isotonic

scheduling speed opt. regression
AP -
; '

¢ Isotonic Regression. Given a vector N = (Ny,..., N,) of n real
numbers, finding a vector of non-decreasing values t = (t1,...,%,) as
close as possible to N according to a distance metric:
min It — N|| (1.8)
t:(tl,...,t")
st <41 1<i<n (19)
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General Timing Problem

e Timing problems:

min Soan Yo SR (1.10)

FzgFos 1<y<my,
st i+ pi <ty 1<i<n (1.11)
fyx(t) <0 F® g FOON 1< y<my (1.12)

e Continuous variables ¢; following a total order.

* Additional features characterized by functions f;(t) for y € {1,...,m.},
either in the objective or as constraints.

e Many names in the literature: scheduling, timing, projection onto order
simplexes, optimal service time problem...
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Features

e Rich vehicle routing problems can involve various timing features

>

Symbol Parameters Char. functions ¢ Most frequent roles
w Weights w; filt) = wit; 1 | Weighted execution dates
D Deadlines d; fl (t) = (ti — d;)* 1 | Deadline constraints, tardiness
R Release dates r; fit)= (ri—t)" 1 | Release-date constraints, earliness.
T™W Time windows filt)= (ti — d)T 1 | Time-window constraints,
TW; = [ri, di] +(ri — )t soft time windows.
MTW Multiple TW filt) = mkin [(t — di)™ 1 | Multiple time-window constraints
MTW; = Ulr, di] e — )]
Sev¥(t;) | Convex ¢fV¥(t;) fi(t) = ¢V (k) Separable convex objectives
Sei(t) General ¢;(t) filt) = ci(ti) Separable objectives,
time-dependent activity costs
DUR Total dur. 6,mes f(t) = (tn — Omaz — t1)™ | 2 | Duration or overall idle time
NWT No wait fi(t) = (tig1 —pi — t)F 2 | No wait constraints, min idle time
IDL Idle time ¢; fi(t) = (tix1—pi—ti—t;)" | 2 | Limited idle time by activity, min
idle time excess
P(t) Time-dependent fi(6) = (ti+pi(t;)—ti1)" | 2 | Processing-time constraints, min ac-
proc. times p;(;) tivities overlap
TL Time-lags d;; filt)= (4 — 0y — )t 2 | Min excess with respect to time-lags
Sei(At) General ¢;(t) fi(t) = ci(tiv1 — &) 2 | Separable functions of durations
between successive activities, flex.
processing times
Yeij(ti, ty) | General cg(t, t') fij(t)= ci(ti, t;) 2 | Separable objectives or constraints

by any pairs of variables
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Hierarchy of features

e These features
can be classified
within a hierarchy
(using many-one
linear reduction
relationships
between the
associated timing
problems)

e Features in the
NP-hard area lead
to NP-hard
timing problems

Generality NP-hard e

| St o) | | TL |:

1 2 2 i3+

Feature Dimension
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Re-optimization

e Some particular features have been extensively studied in various

fields.

» For example for the problem {Xcf

CVX

(t;)| 9} 30 algorithms from various

domains (routing, scheduling, PERT, isotonic regression) were
inventoried, based on only three main concepts.

e Key lines of research related to the resolution of series of similar
timing problems within neighborhood searches, considering different

sequences o.

min o ), e > )

FregFow 1<y<my,
St tok(i) T Pok(i),ok(i+1) < tok(it1)

£ (6) <0

(1.13)
1<i<|o| (1.14)
F* e FO "1 <y<m, (1.15)
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One particular problem

e Consider one particular timing problem with flexible travel times
and deadlines:

lo]—1
Hin 2 Ci(lo(it1) — to(i)) (2.1)
da i)o( .
st to(i) + Po(i) T % < to(it1) 1<i <o (2.2)
to(i) < do(s) 1<i<|o (2.3)
to(jol) = B (2.4)

e It is a vehicle speed optimization problem with convex — and
possibly heterogeneous — cost/speed functions per leg.
e Direct applications related to:

» Ship speed optimization (Norstad et al., 2011; Hvattum et al., 2013)
» Vehicle routing with flexible travel time or pollution routing (Hashimoto
et al., 2006; Bektas and Laporte, 2011)
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o Consider one particular timing problem with flexible travel times
and deadlines:

lo|—1
Itnzig ' cilto(iv1) = to(i)) (25)
=1
do 1 )o (1 .
S to(i) + Do) + —om T < o4 1<i<lo|  (26)
max
to(i) < do(i 1<i<]|o] (2.7)
to(lo)) = B (2.8)

e A quick reformulation

» Waiting times can be modeled by additional activities with null cost
» Change of variables 2; = t,(;+1) — lo(s) — Po(i) — w
> leads to...



A resource allocation problem

¢ A resource allocation problem with nested constraints (NESTED)

>

vV vyVvyy

>

min  f(x) = Zfz(fﬁz) (2.9)

st. 0<2,<4d; ie{l,...,n} (2.10)
s[4
> m<a ie{l,...,m—1} (2.11)
k=1

]
|

B (2.12)

=1

Integer or continuous variables are considered here

Travel time z; on each leg, subject to a maximum bound d;.

Deadlines a; on arrival time at some ports.

Table s] listing the indices of variables on which deadlines are applied.
There may be less deadline constraints m than variables n.

Final arrival date B.
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A resource allocation problem

e Without the nested constraints (2.16) = Standard resource
allocation problem (Ibaraki and Katoh, 1988; Patriksson, 2008)

o, S :;ﬁ(l’i) (2.13)
st zn: 5 =B (2.14)
=1

» Interesting applications to search-effort allocation, portfolio selection,
energy optimization, sample allocation in stratified sampling, capital
budgeting, mass advertising, and matrix balancing, among others.
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A resource allocation problem

e Various applications

min_ f(x) =_Zfi<xi> (2.15)

0<x<d

s[4]

s.t. Z T
k=1

zn:% =B (2.17)
=1

IN
£

ief{l,....m—1} (2.16)

e With the nested constraints, additional applications to

» Project crashing (Talbot, 1982)

» Production and resource planning (Bellman et al., 1954; Bellman and
Dreyfus, 1962; Veinott, 1964)

» Lot sizing (Tamir, 1980)

» Assortment with downward substitution (Hanssmann, 1957; Sadowski,
1959; Pentico, 2008)

» Telecommunications (Padakandla and Sundaresan, 2009a)
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e-approximate solutions

e Computational complexity of algorithms for general non-linear
optimization problems = an infinite output size may be needed due
to real optimal solutions.

e To circumvent this issue

» Existence of an oracle which returns the value of f;(z) in O(1)
» Approximate notion of optimality (Hochbaum and Shanthikumar, 1990):

a continuous solution x() is e-accurate iff there exists an optimal
solution x* such that ||(x(9) —x*)|| < e.

» Accuracy is defined in the solution space, in contrast with some other

approximation approaches which considered objective space (Nemirovsky
and Yudin, 1983).
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Existing algorithms — VRP or ship routing literature

(a) (b)
s 3 o £ 3
e Recursive smoothing o E s . L
algorithm (Norstad et al., —|* = 7 C T
2011; Hvattum et al., 2013) o “

» Applicable only when
the cost/speed
functions are
arc-independent

» This case is strongly
polynomial (which even
never needs to evaluate the
objective function)

» Complexity : O(n?)

Image from R. Kramer, A.
Subramanian, T. Vidal, and L. A. F.
Cabral. A matheuristic approach for
the Pollution-Routing Problem. 2014.

arXiv: 1404.4895v1
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Existing algorithms — VRP or ship routing literature

e And this approach is closely related to the concept of string method
(Dantzig 1971 and other earlier contributions)

£ N

BA~!
°

A2 -3
o P . B3

ah™ Pull Toose

@) * © a2t string tight

.
T T

20 A2 A e
Image from G. B. Dantzig. A control problem of Bellman. Management Science. 17(9),
pp- 542-546, 1971.
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Existing algorithms — VRP or ship routing literature

e Dynamic programming approach for the case of piecewise linear and
convex functions (Hashimoto et al., 2006)

e Compute recursively the functions F;(b) which evaluate the
minimum cost to execute the i first activities (1, ..., ;) with a
resource consumption of b.

e Bi-directional dynamic programming can be used. An efficient way to
solve serial problems with different (but similar) sequences, using
pre-processing and incremental evaluation of moves.
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Existing algorithms — Others

e Dual-inspired methods. Rely on the fact that the continuous
resource allocation problem without nested constraints (2.16) can be
solved by finding the zero of a single Lagrangian equation:

w

L) =S 20 - B=0

=0

with 2,(\) = f;" (max(f';(0), min(\, f;(d;))))

(2.18)

e Iteratively solving Lagrangian equations and adjusting violated
nested constraints by variable setting.
» Padakandla and Sundaresan (2009a): complexity of O(n?®g.p(n, B))
» Wang (2014): complexity of O(n?logn + n®grap(n, B))
» where ®r,p(n, B) is the complexity of solving one RAP with n tasks,
e.g., by bisection search.
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Existing algorithms — Others

e A greedy method with scaling for NESTED with integer variables
(Hochbaum, 1994)

» Greedy algorithms iteratively consider all feasible increments of one
resource, and select the least-cost one.

» Convergence guarantee (Federgruen and Groenevelt, 1986) to the
optimum of the integer RAP in the presence of polymatroidal constraints.

e Scaling.
» An initial problem is solved with large increments
» The increment size is iteratively divided by two to achieve higher
accuracy.
» At each iteration, and for each variable, only one increment from the
previous iteration may require to be corrected.
» Complexity of O(nlognlog£) for NESTED with integer variables
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Proximity theorem

¢ Proximity Theorem (Hochbaum, 1994):

Theorem

For any optimal continuous solution x of NESTED, there exists an
optimal solution z of the same problem with integer variables, such that
z—e <x<z+ne, and thus ||z — X||ec < n. Reversely, for any integer
optimal solution z, there exists an optimal continuous solution such
that ||z — xX||eo < n.

Corollary

To obtain an e-approximate solution of the NESTED problem with
continuous variables, it is possible to solve a scaled NESTED problem
with integer variables, in which all problem parameters have been
multiplied by [2].
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e Simple divide and conquer framework: to solve a NESTED(v, w)
subproblem, first solve NESTED(v, ¢) and NESTED(¢ + 1, w), and use
this information to solve more efficiently the original problem.

e But how to use the information from subproblems...

s[1]1=2
s[2]=3
s[3]1=6

| X1| X2 X3 Xa | Xs5 | Xg X7 | Xg

RECURSION

el IESE IERN 0 0 e S




Proposed Algorithm

e First an initialization step and feasibility check, then the main loop
of the algorithm is the following:

Algorithm 1 NESTED(v, w)

1: if v = w then
2: (Ts[v—1]415 - - - » Ts[v]) < RAP(v, )
3: else
4: SOLVE TWO SUBPROBLEMS:
5: t <+ LHTMJ
6: (Tspy—1]415 - - - » Ts[y]) < NESTED(v, t)
7 (Tst)415 - - - » Ts[w]) & NESTED(L + 1, w)
8:
9: DO SOMETHING TO SOLVE THE UPPER LEVEL:
10: for i = s[v — 1] + 1 to s[t] do
11: (Ei,a¢)<—(0,a}i)
12: for i = s[t] + 1 to s[w] do
13: (@, 87,) — (zi, di)
14: (xs['ufl]+17'~~7ms[w]) — R‘AP(va)
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e Claim: the algorithm NESTED(v, w) is a valid divide-and-conquer
approach which returns the optimal solution of the following model:

NESTED(v, w)

s.t.

s[w]
> flwm)
i=s[v—1]+1
s[1]
Z T < @ —Gy—1 L E€{v,...,w—1}
k=s[v—1]+1
s[w]
Z Ti = Gy — Qy—1
i=s[v—1]+1
0<z < d ie{slv—1]+1,...,s[w]}



e RAP(v,w) is a simple resource allocation problem with updated

bounds.

RAP(v, w)

\

s.t.

s[w]

> filw)
i=s[v—1]+1

s[w]

Z T; = Qo — Qy—1
i=s[v—1]+1

G <z < d; ie{slv—1]+1,...,s[w]}

e Any classic method can be used to solve this problem.

» Integer variables : O(nlog %) by Frederickson and Johnson (1982)
» Continuous variables : can use bisection search on the Lagrangian dual



Consider (v, t,w) s.t. 1 <v<t<w<mand v < w. Let (zsf’[’:)_l]+l, .. ,zj[:]) and
(m:[:]+1, ey ZJ[IU]) be optimal integer solutions of NESTED(v,t) and NESTED(t + 1, w),
Q . . : * % * ok
then NESTED(v, w) admits an optimal integer solution (acs[v_l] 1 zs[w]) such that
o < gt i€ {sfv—1]41,...,s[t]} (3.1)
o > ol ie{s[t]+1,...,sw]} (3.2)
s[1]=2
s[2]=3
s[3]=6
| X1| X2 X3 Xa | Xs | X6 X7 | Xg |

RECURSION
DEPTH | "ll X2 X
o JIE < T
o o




Convergence

Theorem

Consider (v,t,w) s.t. 1<v<t<w<mandv < w. Let (zj[z_1]+1,...,zi[:]) and
(a:IﬁHl, ey x:[tu]) be optimal integer solutions of NESTED(v,t) and NESTED(t + 1, w),

then NESTED(v, w) admits an optimal integer solution (ZL‘S*[ ,zs*[’;]) such that

-
v—1]4+12" "

o <z ie{slv—1141,...,s[t} (3.3)

o > ol ie{s[t]+1,...,s[w]} (3.4)

e The valid inequalities (3.3-3.4) can be added to the formulation of
NESTED(v, w).

e Alone, they guarantee that nested constraints are satisfied
= nested constraints can thus be eliminated.

e This leads to a RAP(v, w) with updated bounds which can be
efficiently solved.
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Convergence

e Proof of this theorem, in the integer case, using the properties of the
greedy algorithm

e For continuous variables, use the proximity theorem of Hochbaum
(1994) with a suitable scaling coefficient.

e Alternatively, the KKT conditions can be used for a different proof

by contradiction, but need of strong convexity and differentiability
(not needed in the first proof).
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The proposed decomposition algorithm for NESTED with integer
variables works with a complezity of O(nlogm log %)

» In the continuous case, an e-approximate solution is obtained in
O(nlog mlog £) operations

» For quadratic NESTED, an overall complexity of O(nlogm) is achieved,
using Brucker (1984) or Maculan et al. (2003) for the quadratic RAP
sub-problems
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A remark on the expected number of active constraints

e Assume random-generated problem instances such that:
> d2 = +oo’
» functions f; strictly convex and differentiable, f;(z) = v;h(z/v;)

o Define T'; = "}, v for i € {0,...,n}.

e We can show that solving the KKT conditions of NESTED under
these assumptions is equivalent to computing the convex hull of the
set of points P such that

P = {(FSU]’ aj) | j € {0, Ceey m}} (41)
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A remark on the expected number of active constraints

e Assume is addition that
» a; = a;+1 — a; are i.i.d. random variables;
» ~,; are i.i.d. random variables independent from the «;’s
» and the vectors (;, ;) are non-colinear.

Then the expected number of points on the convex hull grows as
O(log m) (Baxter, 1961). Equivalently, there are O(log m)
expected active nested constraints in the solution.

This has a large practical impact when the complexity of the method
depends on the number of active constraints
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Metho 1

e To assess the practical performance of the proposed algorithm, we
implemented it as well as the three other methods.

>

>

>
>
>

PS09 : dual algorithm of Padakandla and Sundaresan (2009b);

W14 : dual algorithm of Wang (2014);

H94 : scaled greedy algorithm of Hochbaum (1994);

MOSEK : interior point method of MOSEK (Andersen et al., 2003, for
conic quadratic opt.);

THIS : proposed decomposition method.

In these tests, we rely on a simple bisection search on the Lagrangian
equation to solve the RAP subproblem.
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Metho 1

e Each algorithm is tested on randomly-generated instances of

NESTED problems (100 or 10 per type and size) with three families

of objective functions.

o
Fl @)= e refo,1]
[Crashing] filz) =k + % x € [¢, d;
FuelOpt]  file) =pixeix (2) zelendl

Size of instances ranges from n = 10 to 1,000, 000.
Accuracy of e = 1078

Coded in C++

Tests conducted on a Xeon 3.07 GHz CPU

vV vy VvYyy
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Results m = n

>

. Time (s
Instance nnb Active | pgaq W14 H94( ) MOSEK  THIS
[F] 10 1.15 8.86x107°  8.06x107°  6.18x107° 8.73x107%  1.85x107°
10% 1.04 7.96x107%  7.03x107%  6.74x107*  2.03x107%  1.69x10*
10* 1.15 1.06x102 8.72x 10! 1.46x1071 - 2.23x1072
106 1.10 - - 4.42x10" - 4.36

[F-Uniform] 10 2.92 1.03x10™*  4.57x107°  5.86x107°  8.76x107%  2.62x10~°
102 5.06 1.37x1072  1.61x1073  7.42x107*%  2.14x1072  4.97x107*
10* 9.99 - 6.08 1.67x107* - 1.31x107*

106 14.50 - - 7.06x10" - 4.62x10*
[F-Active] 10 3.67 1.19x107%  3.94x107°  5.76x107° 8.71x107%  2.88x107°
10? 10.00 2.28x1072  9.65x107%  7.50x107*  2.18x1072  4.69x10~*
10* 50.75 - 2.31 1.62x107* E 9.95x1072

106 280.30 - - 5.65x10" - 2.21x10*

[Crashing] 10 6.44 4.49x107°  1.81x107°  5.02x107°  9.46x1073 8x10~6
10? 24.61 6.03x1073  7.05x107*  6.80x107*  5.95x1072  1.25x107*
10* 46.90 2.50%x10% 2.85 1.50x107* 4.93x1072

106 88.30 - - 6.02x10" E 2.35%10"
[FuelOpt] 10 2.93 8.46x107°  3.17x107°  6.62x107°  8.74x107%  2.20x10~°
10% 5.31 1.22x1072  1.28x107%  7.98x10~%  1.99x1072  4.21x10~*
10* 9.53 2.43x102 4.81 1.95x10* E 1.02x107*

106 12.80 8.54x 10" 2.99x10*
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o Experiments with m = n

[F-Uniform]

1000 1 1000 1

100 B 100 B

10 1 10 1

1 1 1 1

E 0.1 1 0.1 1

3 0.01 1 0.01 b

0.001 1 0.001 1

0.0001 B 0.0001 B

le-05 1 le-05 1
le-06 - . . . . . le-06 L . . . . .

10 100 1000 10000 100000 1le+06 10 100 1000 10000 100000 1le+06

n

Figure : CPU Time(s) as a function of n € {10,...,10°}. m = n. Logarithmic
representation



e Experiments with m = n

[Crashing] [FuelOpt]

1000 1 1000 1
100 1 100 1
10 1 10 b
1 1 1 1
0.1 13 0.1 1
0.01 1 &= 0.01 4
0.001 q 0.001 ]
0.0001 q 0.0001 ]
le-05 1 le-05 1

le-06 . . . . . le-06 . . . . .
10 100 1000 10000 100000 1le+06 10 100 1000 10000 100000 1le+06

n

Figure : CPU Time(s) as a function of n € {10,...,10%}. m = n. Logarithmic
representation



e Experiments with varying values of m, m < n.

[F-Uniform], n=5000 [F-Uniform], n=1000000

1000 [ PSOS —— ] 1000 [ Ho4 o ‘ ‘ ‘ ]
g;i T THIS —e—
.

100 FoHrg —e—o

10 e ] ] 1ol //_/-—-/"‘_"-’L—‘J 1
g

O 1 b e —— L ]
B
0-1¢ - 1 0.1 F ]
001k /( 7 Ll 7
0.001 — w s \ 0.001 = s w \ ‘ ‘ ‘
1 10 100 1000 1 10 100 1000 10000 100000 le+06
m

Figure : CPU Time(s) as a function of m. n € {5000,1000000}. Logarithmic
representation



e Experiments with varying values of m, m < n.

[Crashing], n=5000

[Crashing] , n=1000000

T T T T
1000 f PSO9 74‘*7" — B 1000 F 594 o
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e Experiments with varying values of m, m < n.
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Conclusions

Investigate a particular case of timing problem with flexible travel
times, equivalent to a nested resource allocation problem.

Highlighted a rich variety of applications

Interesting geometrical properties

A new polynomial algorithm

» matching the state-of-the-art complexity (Hochbaum, 1994) when m = n
» and improving when log m = o(logn)

Different concepts based on monotonicity properties

Extensive experimental analyses
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e Resolution of series of problems with different permutations of
activities

o Identifying an even richer set of related problems, models and
applications

o Further generalizations



Thank you

THANK YOU FOR YOUR ATTENTION !

e For further reading:

» T. Vidal, T. G. Crainic, M. Gendreau, and C. Prins. A Unifying View on
Timing Problems and Algorithms. Submitted & revised to Networks.
Tech. Rep. CIRRELT 2011-43.

» T. Vidal, P. Jaillet, and N. Maculan, A decomposition algorithm for
nested resource allocation problems. 2014. arXiv:1404.6694v1.

» http://wl.cirrelt.ca/~vidalt/
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