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Giant-tour representations and the VRP

• Prins (2004) ⇒ Important milestone for the VRP, first HGA
to outperform classical Tabu searches

• A key ingredient of success: the giant-tour solution
representation, allowing to use much simpler crossovers
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Giant-tour representations and the VRP

• Ten years on⇒ extensive growth of population-based methods.

• Efficient GAs with a complete solution representation and
more advanced crossover operators now exist (Nagata and
Bräysy, 2009)

• But the approach of Prins (2004) remains simple and generic

• Many generalizations (see the survey of Prins et al., 2014):
capacity and duration limits, time windows, choices of depots,
vehicle types, edges orientations in CARP, or profitable
customers in each route...
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Problem and notations

• The “Splitting” problem:

• INPUT:
I A giant tour of n customers with demands q1, . . . , qn
I A vehicle capacity limit Q
I di,i+1 be the distances between two successive customers
I d0i and di0 the distances from and to the depot

• FIND: a best segmentation of the tour into feasible routes
which originate and return to the depot, and contain
consecutive visits from the giant tour
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Problem and notations

• Classical formulation as the search for a shortest path between
0 and n in an acyclic graph G = (V,A):

I V = (0, . . . ,n)
I each arc (i , j ) ∈ A for i < j corresponds to a feasible route

starting at the depot, visiting customers i + 1 to j , and
returning to the depot (Beasley, 1983; Prins, 2004).
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Illustrative Example

Node 0 1 2 3 4 5 6 7 8 9 10 11 12

di−1,i — 4 3 7 2 7 3 8 6 8 4 3 3
d0,i — 4 5 10 9 14 12 16 11 5 3 5 6
qi — 11 3 6 5 7 8 1 7 3 7 3 6

p[i ] 0 8 12 24 25 43 44 56 67 69 75 80 84

with Q = 30.
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Auxiliary Graph for Split:
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with the cost of an arc (i,j):

c(i , j ) = d0,i+1 +
∑

k=i+1,...,j−1 dk ,k+1 + dj ,0
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Bellman-based Split algorithm

1 p[0]← 0 ;
2 for t = 1 to n do
3 p[t ]←∞ ;
4 for t = 0 to n − 1 do
5 load ← 0 ;
6 i ← t + 1 ;
7 while i ≤ n and load + qi ≤ Q do
8 load ← load + qi ;
9 if i = t + 1 then

10 cost ← d0,i ;
11 else
12 cost ← cost + di−1,i ;
13 if p[t ] + cost + di0 < p[i ] then
14 p[i ] = p[t ] + cost + di0 ;
15 pred [i ] = t ;

16 i ← i + 1 ;

• O(n2) complexity ⇒ in practice O(nB) if the average number of
customers in a feasible route is bounded by a constant B .
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Bellman-based Split algorithm

• Question 1: Can we do better?

• Question 2: If we have a better Split, what can we do
with it?
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Monge property

• Some O(n) algorithms are, in fact, already known for this
shortest path (see Burkard et al., 1996; Bein et al., 2005, and
the references therein) since the graph G satisfies the Monge
property:

c(i1, j1) + c(i2, j2) ≤ c(i1, j2) + c(i2, j1)

for all 0 ≤ i1 < i2 < j1 < j2 ≤ n

such that (i1, j2) ∈ A,
(3.1)

• But this was not used to this date in the VRP literature...
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An Even Stronger Property

• The Split graph satisfies in fact an even stronger property:

for all 0 ≤ i1 < i2 < n, there exists K ∈ R such that

c(i1, j )− c(i2, j ) = K for all j > i2 such that (i1, j ) ∈ A.

• This property will be used to eliminate dominated
predecessors and retain only good candidates

• ⇒ leading to a very simple labeling algorithm in O(n) which
can be efficiently used in practice.
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Towards a very simple algorithm

• Some notations: For i ∈ {1, . . . ,n}, define the cumulative
distance D [i ] and cumulative load Q [i ]:

D [i ] =

i−1∑
k=1

dk ,k+1 (3.2)

Q [i ] =

i∑
k=1

qk . (3.3)

• Then, the cost can be accessed as:

c(i , j ) = d0,i+1 + D [j ]−D [i + 1] + dj ,0, (3.4)

• and the arc (i , j ) exists if and only if the route is feasible, i.e.,
Q [j ]−Q [i ] ≤ Q .
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Towards a very simple algorithm

• We also rely on a double-ended queue Λ, which supports the
following operations in O(1):

front – accesses the oldest element in the queue;
front2 – accesses the second-oldest element in the queue;
back – accesses the most recent element in the queue;

push back – adds an element to the queue;
pop front – removes the oldest element in the queue;
pop back – removes the newest element in the queue.

We refer to the elements of the queue as (λ1, . . . , λ|Λ|), from
the front λ1 to the back λ|Λ|.
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Towards a very simple algorithm

We propose the following linear time Split algorithm:

1 p[0]← 0 ;
2 Λ← (0) ;
3 for t = 1 to n do
4 p[t ]← p[front ] + f (front , t) ;
5 pred [t ]← front ;
6 if t < n then
7 if not dominates(back , t) then
8 while |Λ| > 0 and dominates(t , back) do
9 popBack() ;

10 pushBack(t)

11 while Q [t + 1] > Q + Q [front ] do
12 popFront() ;

With the boolean function dominates(i , j ) ≡{
p[i ] + d0,i+1 −D [i + 1] ≤ p[j ] + d0,j+1 −D [j + 1] and Q [i ] = Q [j ] if i ≤ j

p[i ] + d0,i+1 −D [i + 1] ≤ p[j ] + d0,j+1 −D [j + 1] if i > j
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Towards a very simple algorithm

Correctness of the algorithm: Define f (i , x ) the cost when
extending the label of a predecessor i to a node x ∈ {i + 1, . . . ,n}:

f (i , x ) =

{
p[i ] + c(i , x ) Q [x ]−Q [i ] ≤ Q

∞ otherwise

...and the auxiliary function
gi(x ) = f (i , x ) − D [x ] − dx0.
This function of x takes a
constant value as long as the
label extension is feasible.

 

 

 

 

 

 

 

 

 

7 

3 

8 

4 

11 

9 10 

10 

5 
6 

7 

8 

x 

1 2 

9 

0 
 

12 

g3(x) 

g5(x) 

20 

g6(x) 30 

g1(x) 
 

g4(x) 

10 

11 12 

g2(x) 
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gi (x) = p[i ] + d0,i+1 +D [x ]−D [i + 1] + dx0−D(x)− dx0 = p[i ] + d0,i+1−D [i + 1]
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Illustrative Example

Node 0 1 2 3 4 5 6 7 8 9 10 11 12

di−1,i — 4 3 7 2 7 3 8 6 8 4 3 3
d0,i — 4 5 10 9 14 12 16 11 5 3 5 6
qi — 11 3 6 5 7 8 1 7 3 7 3 6

p[i ] 0 8 12 24 25 43 44 56 67 69 75 80 84

with Q = 30.

Those were the arcs (in blue) explored in practice
on the illustrative example:
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Extension to limited fleets

• Split considering a limited fleet of m vehicles in O(nm)
(instead of O(nBm))

1 for k = 1 to m do
2 for t = 0 to n do
3 p[k , t ] =∞ ;

4 p[0, 0]← 0 ;
5 for k = 0 to m − 1 do
6 clear(Λ) ;
7 Λ← (k) ;
8 for t = k + 1 to n s.t. |Λ| > 0 do
9 p[k + 1, t ]← p[k , front ] + f (front , t) ;

10 pred [k + 1][t ]← front ;
11 if t < n then
12 if not dominates(k , back , t) then
13 while |Λ| > 0 and dominates(k , t , back) do
14 popBack() ;
15 pushBack(t)

16 while |Λ| > 0 and Q [t + 1] > Q + Q [front ] do
17 popFront() ;
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Management of soft capacity constraints

• Soft capacity constraints can also be addressed via a change of
the function dominates(i , j ) ≡{

p[i ] + d0,i+1 −D [i + 1] + α× (Q [j ]−Q [i ]) ≤ p[j ] + d0,j+1 −D [j + 1] if i < j

p[i ] + d0,i+1 −D [i + 1] ≤ p[j ] + d0,j+1 −D [j + 1] if i > j .

• The rule for eliminating
the front label also
requires a minor
adaptation (see paper)

• The complexity remains
O(n).
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Computational experiments

• 105 benchmark instances based on the TSPLib

• 29 to 71,009 nodes

• 10 vehicle capacities: Q ∈
{102, 2×102, 4×102, 103, 2×103, 4×103, 104, 2×104, 4×104, 105}

• Comparing the speed of the classical Bellman-based Split
algorithm with the linear Split for the three problem settings

• Xeon 3.07 GHz CPU, using a single thread.
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Computational experiments

We compare the following algorithms:
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Computational experiments
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Figure : Speedups of the linear Split over the Bellman-based algorithm for
all 105 instances. Hard capacity constraints, unlimited fleet.
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Computational experiments
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Figure : Speedup factors for the case with a limited fleet.
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Figure : Speedups for soft capacity constraints. Two sets of results: the
speedups relative to the Bellman algorithm with no limit on the excess
capacity (black dots), and those relative to the Bellman algorithm with a
limit of 4Q on the total demand of a route (gray dots).
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The VRP with intermediate facilities

• The VRP with intermediate facilities (see, e.g. Crevier
et al., 2007; Tarantilis et al., 2008; Hemmelmayr et al., 2013;
Schneider et al., 2015):

• Classical duration-constrained CVRP

• With the possibility to reload at a subset of intermediate
facilities locations

I Docking time at the intermediate facilities
I Service time at the customers
I Duration constraint is global on the whole route

• Generalizes the multi-trip VRP

• Close connections to green VRPs with choices of recharging
stations
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A question of search space

• 3–4 main decision sets

• and a classical way to
deal with them:

 

Assignment Sequencing 

Reloading 
Decisions 

Shortest 
Paths 

HEURISTIC  
SEARCH 
 

DYNAMIC  

PROGRAMMING 

Each solution 

evaluation in O(1)  

once the shortest  

paths are known 

 

⇒ This is, however, not a unique option.
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A question of search space

⇒ Let’s give more
responsibility to
DP:

 

Assignment Sequencing 

Reloading 
Decisions 

Shortest 
Paths 

HEURISTIC  
SEARCH 

DYNAMIC  

PROGRAMMING 

Evaluation of each  

solution in O(n) 

           … or even O(B) 

           … and will be even further 

reduced via move LBs for filtering 

  … such that it will become 

very close to O(1) in practice 
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Move evaluations

• Evaluating any neighbor solution, defined as sequences of
services without visits to intermediate facilities, requires to
solve an optimization problem for the choice of visits to
intermediate facilities.

• Can be transformed into an instance of Split problem

(with some pre-processing prior to routing optimization: find
for any customer pair (i , j ) the facility which leads to the
smallest detour).

• Now solved in O(n)
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Move LBs

• This solution evaluation procedure is more time consuming
than usual.

• To save some computational effort, rely on lower bounds on
solution cost to filter non-promising moves:

I Let Z̄ (σ) be a lower bound on the cost of a route σ

I A move that modifies two routes: {σ1, σ2} ⇒ {σ′1, σ′2} has a
chance to be improving if and only if:

∆Π = Z̄ (σ′1) + Z̄ (σ′2)− Z (σ1)− Z (σ2) < 0.
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Lower bounds on move evaluations

• In the VRP-IF, the cost of a route σ is always greater than
I the total travel distance (without recharging), plus
I the minimum number of necessary visits

× shortest detour S (σ) to a facility

Z̄ (σ) =

|σ|−1∑
i=1

dσiσi+1 +

⌊∑|σ|
i=1 qσi
Q

⌋
× S (σ)

• And this bound helps, in practice, to filter a significant subset
of the moves

(Experiments of today)
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Preprocessing and bidirectional search

• To improve further the move evaluations, it is even possible to
avoid solving each SP subproblem independently in O(n)

⇒ Rely instead on pre-processed shortest paths for partial routes.

• Key property of classical routing neighborhoods:

I Any local-search move involving a bounded number of node
relocations or arc exchanges can be assimi-
lated to a concatenation of a bounded number of sub-sequences.

I To decrease the computational complexity, compute auxiliary
data on subsequences by induction on concatenation (⊕).
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Preprocessing and bidirectional search

• Now, consider an inter-route move, which inserts or replaces a
bounded number of customers in a route.

⇒ New route obtained by the concatenation of 3 services sequences
⇒ Prior to move evaluations, we pre-process the shortest paths

from the node 0 to the subsequent nodes, and from the end
(backwards) to each node, in O(n).

 

 

 

 

 

 

 

 

 

 

 

0 3 1 2 4 5 6 7 8 9 10 11 12 

σ1 σ2 σ3 

⇒ Reusing the preprocessed information allows to evaluate each
classical inter-route move in O(B).

⇒ We discuss later about intra-route moves...
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Computational experiments

• Some Preliminary experiments with:

• The ILS variant of Prins (2009)
I Produces iteratively nC offspring from the incumbent solution

(via shaking and LS) and selects the best. Search is restarted
nP times until nI consecutive generations without improvement.
Shaking done by 1 or 2 random swaps, with equal probability.

• The unified hybrid genetic search (UHGS) of Vidal et al.
(2012, 2014)
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Computational experiments

• LS based on the classical routing neighborhoods (but applied
on solutions represented without intermediate-facility visits):
Relocate, Swap, CROSS, 2-opt and 2-opt*.

I Exploration in random order
I First improvement policy
I Restrictions of moves to the Γth closest services

⇒ Number of neighbors in O(n)
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Computational experiments

• Using a short termination criterion: (nP ,nC ,nI ) = (5, 10, 50)
for ILS, and Itmax = 5, 000 for UHGS

• Single core: Xeon 3.07 GHz CPU with 16 GB of RAM

• Reporting the average and best solutions on 10 runs.

• All Gap(%) values measured from the best known solutions
(BKS)
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Computational experiments

• Comparing with the previous methods for this problem:

CCL07: Hybrid TS with Adaptive Memory Programming
and Integer Programming of Crevier et al. (2007)

TZK08: Hybrid guided local search of Tarantilis et al.
(2008)

HDHR13: Variable neighborhood search of Hemmelmayr
et al. (2013)

SSH15: Adaptive VNS of Schneider et al. (2015)
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Computational experiments

CCL07 TZK08 HDHR13 SSH15 ILS BKS

Inst n m r Avg-10 T Avg-10 Best-10 T Avg-10 Best-10 T Avg-10 Best-10 T Avg-10 Best-10 T

a1 48 6 3 1211.28 4.58 1189.70 1179.79 3.38 1180.57 1179.79 1.42 1184.57 1179.79 0.64 1179.79 1179.79 1.46 1179.79

b1 96 4 3 1232.67 9.17 1225.08 1217.07 7.80 1217.07 1217.07 6.39 1218.21 1217.07 4.19 1217.07 1217.07 5.20 1217.07

c1 192 5 3 1893.01 36.22 1898.92 1883.05 34.21 1867.96 1866.76 20.40 1925.41 1882.46 32.98 1869.20 1866.76 30.05 1866.76

d1 48 5 4 1076.31 8.55 1064.29 1059.43 5.87 1059.43 1059.43 1.57 1061.5 1059.43 0.55 1059.43 1059.43 1.34 1059.43

e1 96 5 4 1311.60 13.52 1309.12 1309.12 8.62 1309.12 1309.12 6.22 1312.75 1309.12 5.08 1309.12 1309.12 3.47 1309.12

f1 192 4 4 1601.54 41.41 1585.83 1572.17 38.81 1573.05 1570.41 25.60 1601.4 1577.63 34.99 1571.86 1570.41 30.04 1570.41

g1 72 5 5 1202.00 55.22 1190.21 1181.13 5.79 1183.32 1181.13 3.38 1183.75 1181.13 1.69 1181.13 1181.13 5.84 1181.13

h1 144 4 5 1598.51 32.07 1577.54 1547.25 11.06 1548.61 1545.50 14.61 1567.22 1553.75 14.08 1547.23 1545.50 22.54 1545.50

i1 216 4 5 1976.11 51.01 1956.17 1925.99 42.50 1923.52 1922.18 33.58 1974.97 1934.08 35.11 1925.72 1922.18 30.07 1922.18

j1 72 4 6 1161.77 58.90 1128.86 1117.20 5.52 1115.78 1115.78 2.78 1116.82 1115.78 2.02 1115.78 1115.78 2.35 1115.78

k1 144 4 6 1618.45 64.61 1591.74 1580.39 12.07 1577.96 1576.36 14.56 1600.42 1577.98 10.74 1577.89 1573.21 20.93 1576.36

l1 216 4 6 1917.08 104.27 1904.39 1880.60 51.39 1869.70 1863.28 35.48 1916.07 1894.69 40.59 1873.37 1868.70 30.08 1863.28

a2 48 4 5 1005.16 6.39 – – – 997.94 997.94 1.23 997.94 997.94 0.72 997.94 997.94 0.70 997.94

b2 96 4 5 1333.20 14.72 – – – 1291.19 1291.19 6.41 1300.42 1291.19 4.83 1292.95 1292.95 5.51 1291.19

c2 144 4 5 1792.46 61.68 – – – 1715.84 1715.600 15.01 1741.55 1715.60 18.32 1716.40 1716.40 18.56 1715.60

d2 192 3 5 1898.21 40.54 – – – 1860.92 1856.84 30.14 1903.15 1874.12 30.64 1862.19 1858.81 30.06 1856.84

e2 240 3 5 1995.75 73.78 – – – 1922.81 1919.38 49.31 1957.8 1937.84 41.6 1930.04 1919.23 30.14 1919.38

f2 288 3 5 2312.15 162.22 – – – 2233.43 2230.32 71.24 2313.08 2268.54 42.8 2255.59 2238.26 30.21 2230.32

g2 72 4 7 1185.93 29.51 – – – 1153.17 1152.92 3.71 1158.21 1152.92 2.2 1152.92 1152.92 2.76 1152.92

h2 144 4 7 1611.75 160.79 – – – 1575.28 1575.28 15.66 1586.24 1576.86 21.2 1575.67 1575.28 16.85 1575.28

i2 216 3 7 1998.20 322.41 – – – 1922.24 1919.74 41.92 1971.27 1944.74 41.1 1928.80 1920.75 30.08 1919.74

j2 288 3 7 2325.18 256.85 – – – 2250.21 2247.70 73.38 2303.67 2281.86 41.93 2262.16 2249.79 30.19 2247.70

Gap(%) 2.63% 1.14% 0.22% 0.09% 0.00% 1.44% 0.49% 0.20% 0.04%

T(min) 73.11 18.92 21.55 19.46 17.20

CPU Prosys 2GHz PIV 2.4 GHz 2.4 GHz I5 2.67 GHz Xe 3.07G
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Computational experiments

CCL07 TZK08 HDHR13 SSH15 UHGS BKS

Inst n m r Avg-10 T Avg-10 Best-10 T Avg-10 Best-10 T Avg-10 Best-10 T Avg-10 Best-10 T

a1 48 6 3 1211.28 4.58 1189.70 1179.79 3.38 1180.57 1179.79 1.42 1184.57 1179.79 0.64 1179.79 1179.79 2.80 1179.79

b1 96 4 3 1232.67 9.17 1225.08 1217.07 7.80 1217.07 1217.07 6.39 1218.21 1217.07 4.19 1217.07 1217.07 10.13 1217.07

c1 192 5 3 1893.01 36.22 1898.92 1883.05 34.21 1867.96 1866.76 20.40 1925.41 1882.46 32.98 1866.62 1863.49 30.01 1866.76

d1 48 5 4 1076.31 8.55 1064.29 1059.43 5.87 1059.43 1059.43 1.57 1061.5 1059.43 0.55 1059.43 1059.43 2.64 1059.43

e1 96 5 4 1311.60 13.52 1309.12 1309.12 8.62 1309.12 1309.12 6.22 1312.75 1309.12 5.08 1309.12 1309.12 8.36 1309.12

f1 192 4 4 1601.54 41.41 1585.83 1572.17 38.81 1573.05 1570.41 25.60 1601.4 1577.63 34.99 1572.19 1570.41 30.02 1570.41

g1 72 5 5 1202.00 55.22 1190.21 1181.13 5.79 1183.32 1181.13 3.38 1183.75 1181.13 1.69 1181.13 1181.13 12.31 1181.13

h1 144 4 5 1598.51 32.07 1577.54 1547.25 11.06 1548.61 1545.50 14.61 1567.22 1553.75 14.08 1545.56 1545.50 30.01 1545.50

i1 216 4 5 1976.11 51.01 1956.17 1925.99 42.50 1923.52 1922.18 33.58 1974.97 1934.08 35.11 1924.51 1923.62 30.02 1922.18

j1 72 4 6 1161.77 58.90 1128.86 1117.20 5.52 1115.78 1115.78 2.78 1116.82 1115.78 2.02 1115.78 1115.78 5.13 1115.78

k1 144 4 6 1618.45 64.61 1591.74 1580.39 12.07 1577.96 1576.36 14.56 1600.42 1577.98 10.74 1576.30 1573.21 30.01 1576.36

l1 216 4 6 1917.08 104.27 1904.39 1880.60 51.39 1869.70 1863.28 35.48 1916.07 1894.69 40.59 1871.83 1865.27 30.02 1863.28

a2 48 4 5 1005.16 6.39 – – – 997.94 997.94 1.23 997.94 997.94 0.72 997.94 997.94 1.50 997.94

b2 96 4 5 1333.20 14.72 – – – 1291.19 1291.19 6.41 1300.42 1291.19 4.83 1292.95 1292.95 10.35 1291.19

c2 144 4 5 1792.46 61.68 – – – 1715.84 1715.600 15.01 1741.55 1715.60 18.32 1716.40 1716.40 30.01 1715.60

d2 192 3 5 1898.21 40.54 – – – 1860.92 1856.84 30.14 1903.15 1874.12 30.64 1858.87 1853.86 30.01 1856.84

e2 240 3 5 1995.75 73.78 – – – 1922.81 1919.38 49.31 1957.8 1937.84 41.6 1923.74 1919.23 30.02 1919.38

f2 288 3 5 2312.15 162.22 – – – 2233.43 2230.32 71.24 2313.08 2268.54 42.8 2248.85 2230.95 30.04 2230.32

g2 72 4 7 1185.93 29.51 – – – 1153.17 1152.92 3.71 1158.21 1152.92 2.2 1152.92 1152.92 5.01 1152.92

h2 144 4 7 1611.75 160.79 – – – 1575.28 1575.28 15.66 1586.24 1576.86 21.2 1575.60 1575.28 29.75 1575.28

i2 216 3 7 1998.20 322.41 – – – 1922.24 1919.74 41.92 1971.27 1944.74 41.1 1926.76 1920.75 30.03 1919.74

j2 288 3 7 2325.18 256.85 – – – 2250.21 2247.70 73.38 2303.67 2281.86 41.93 2263.89 2253.18 30.05 2247.70

Gap(%) 2.63% 1.14% 0.22% 0.09% 0.00% 1.44% 0.49% 0.14% 0.01%

T(min) 73.11 18.92 21.55 19.46 20.37

CPU Prosys 2GHz PIV 2.4 GHz 2.4 GHz I5 2.67 GHz Xe 3.07G
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Conclusions

• Introduced a simple linear-time Split algorithm

I Simple to implement, efficient in practice
I Large speedups when run on problem instances with long routes
I Possible limited fleet, soft capacity constraints, etc...

• Opportunity of applications to problem classes with
intermediate facilities, multiple trips, or recharging stations

I Allows to deal with the decision subset related to
intermediate-facilities visits via tailored solution evaluation
procedures rather than tailored moves

I Preliminary results on the VRP-IF (with a short termination
criterion) look OK.
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Conclusions

• Many other opportunities related to Split in the VRP:

I More intensive search in the space of giant tours
I Improvements for other forms of split algorithms, e.g., HVRP,

LRP, etc...
I Many results that we know on Split have connections with

results on other enumerative neighborhoods in local searches...

• Aiming for a paradigm shift — we assume too fast that the
classical neighborhoods and their complexities are established

I When an improvement occurs, large potential gains
I Wide scope of application
I Average case O(n log n) exploration procedures are also known

for several other problems and neighborhoods... (Bentley and
Friedman, 1978; Bentley, 1992)
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Thank You I

Thank you for your attention !
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