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e Prins (2004) = Important milestone for the VRP, first HGA
to outperform classical Tabu searches

e A key ingredient of success: the giant-tour solution
representation, allowing to use much simpler crossovers



Giant tour representation
with distances and demands :

Cs(3)
O

o Graph H
Cs(3) & shortest path solution :

150 + 40
Optimal segmentation
into routes :

Cy

C, .
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Giant-tour representations and the VRP

e Ten years on = extensive growth of population-based methods.

e Efficient GAs with a complete solution representation and
more advanced crossover operators now exist (Nagata and
Briysy, 2009)

e But the approach of Prins (2004) remains simple and generic

e Many generalizations (see the survey of Prins et al., 2014):
capacity and duration limits, time windows, choices of depots,
vehicle types, edges orientations in CARP, or profitable
customers in each route...
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Problem and notations

e The “Splitting” problem:

e INPUT:
» A giant tour of n customers with demands ¢, ..., ¢,
» A vehicle capacity limit @
» d; i+1 be the distances between two successive customers
» dy; and d;g the distances from and to the depot

e FIND: a best segmentation of the tour into feasible routes
which originate and return to the depot, and contain
consecutive visits from the giant tour
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e (Classical formulation as the search for a shortest path between
0 and n in an acyclic graph G = (V, A):
» V=(0,...,n)
» each arc (i,7) € A for ¢ < j corresponds to a feasible route
starting at the depot, visiting customers 7 4+ 1 to j, and
returning to the depot (Beasley, 1983; Prins, 2004).



Node | 0

1 2 3 4 5 6 7 8 9 10 11 12
dia;|— 4 3 7 2 7 3 8 6 8 4 3 3
d; |— 4 5 10 9 14 12 16 11 5 3 5 6 | withQ=30.
¢ |— 11 3 6 5 7 8 1 7 3 7 3 6
[ plil JO 8 12 24 25 43 44 56 67 69 75 80 84|




[llustrative Example

Node[0 1 2 3 4 5 6 7 8 9 10 11 12
diq:;|— 4 3 7 2 7 3 8 6 8 4 3 3
di |— 4 5 10 9 14 12 16 11 5 3 5 6
¢ |— 1 3 6 5 7 8 1 7 3 7 3 6
[ pldf [0 8 12 24 25 43 44 56 67 69 75 80 84|

Auxiliary Graph for Split:

with Q = 30.

©-0-0 *E@ E@é EG) é@f:_'@ ééG)E 500

>

with the cost of an arc (i,j):

c(1,7) = doit1 + D p—iv1,. j—1 Dek+1 + djo
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Bellman-based Split algorithm

1 p[0] <0
2 for t =1 to n do
3 | plt] o0
4 fort=0ton—1do
5 load <+ 0 ;
6 it t+1;
7 while : < n and load + ¢; < Q do
8 load < load + q; ;
9 if i =t+ 1 then
10 ‘ cost < dp,; ;
11 else
12 ‘ cost < cost + di_1,; ;
13 if p[t] + cost + dio < p[i] then
14 ‘ p[t] = p[t] + cost + dio ;
15 pred[i] =t ;
16 i1+ 1;

e O(n?) complexity = in practice O(nB) if the average number of
customers in a feasible route is bounded by a constant B.
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e Question 1: Can we do better?



e Question 1: Can we do better?

e Question 2: If we have a better Split, what can we do
with it?
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e Some O(n) algorithms are, in fact, already known for this
shortest path (see Burkard et al., 1996; Bein et al., 2005, and
the references therein) since the graph G satisfies the Monge

property:

c(ir, 1) + c(iz, j2) < (i1, g2) + c(i, 1)
forall 0 < <ipa<fji<p<n (3.1)
such that (i1, 2) € A,

e But this was not used to this date in the VRP literature...



e The Split graph satisfies in fact an even stronger property:

for all 0 < 4; < ip < m, there exists K € R such that
c(i1,j) — c(iz,j) = K for all j > iy such that (i1,5) € A.



An Even Stronger Property

e The Split graph satisfies in fact an even stronger property:

for all 0 < 4 < ip < n, there exists K € R such that
c(ir,j) — c(ia,j) = K for all j > i such that (i1,7) € A.

e This property will be used to eliminate dominated
predecessors and retain only good candidates

e = leading to a very simple labeling algorithm in O(n) which
can be efficiently used in practice.

> Introduction Bellman Linear Applications Perspectives and Conclusions References 11/42



e Some notations: For i € {1,...,n}, define the cumulative
distance D[i] and cumulative load Q[i]:

D[i] = ’z_: e k41 (3.2)
k=1

Q=) (3.3)
k=1

e Then, the cost can be accessed as:
c(i,j) = do,i+1 + D[j] — D[i + 1] + d; o, (3.4)

e and the arc (z, ) exists if and only if the route is feasible, i.e.,

QY- Qi <@



Towards a very simple algorithm

e We also rely on a double-ended queue A, which supports the
following operations in O(1):

front — accesses the oldest element in the queue;
front2 — accesses the second-oldest element in the queue;
back — accesses the most recent element in the queue;
push_back — adds an element to the queue;
pop_front — removes the oldest element in the queue;
pop_back — removes the newest element in the queue.

We refer to the elements of the queue as (A1, ..., Ay)), from
the front A1 to the back Ay.

> Introduction Bellman Linear Applications Perspectives and Conclusions References

13/42



Towards a very simple algorithm

We propose the following linear time Split algorithm:

1 p[0] +0;

2 A« (0);

3 fort=11tondo

a | plt] < plfront] + [ (front, 1) ;

5 pred[t] < front ;

6 if ¢t <n then

7 if not dominates(back,t) then

8 while [A| > 0 and dominates(t, back) do
9 ‘ popBack() ;
10 pushBack(t)
11 while Q[t + 1] > Q + Q|front] do
12 ‘ popFront() ;

With the boolean function dominates(i,j) =

pli] + doit1 — D[i + 1] < pj] + doj+1 — D[j + 1] and Q[i] = Q[j] ifi<j
pli] + do,iv1 — D[i + 1] < plj] + do j41 — D[j + 1] ifi>7
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Towards a very simple algorithm

Correctness of the algorithm: Define f(i,z) the cost when
extending the label of a predecessor ¢ to a node x € {i +1,...,n}:

fli,z) = {P[i] + c(i,x) Qlz] - Q[i] < Q

00 otherwise

..and the auxiliary function i ég(’(x)

9i(z) = f(i,z) — Dlz] — dyo.
This function of z takes a
constant value as long as the
label extension is feasible.

(\J

( )

@.@.@@x

10

(if Q[z] — Q[{] < Q, then
gL(LE) = p[l} -+ dO,i+1 -+ D[x] - D[l + 1] + dyo — D(CL‘) —dgo = p[’L] + d0)¢+1 — D[l + 1]
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[llustrative Example

Node[0 1 2 3 4 5 6 7 8 9 10 11 12
dic1i 4 3 7 2 7 3 8 6 8 4 3 3
doi 4 5 10 9 14 12 16 11 5 3 5 6 with Q = 30.
ai 113 6 5 7 8 1 7 3 7 3 6

[ pli] [0 8 12 24 25 43 44 56 67 69 75 80 84]

Those were the arcs (in blue) explored in practice
on the illustrative example:

©-0-0 *g@é@é@ é@;ﬂé@ éé@*g»:@:@
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Extension to limited fleets

e Split considering a limited fleet of m vehicles in O(nm)
(instead of O(nBm))

1 for k=1 to m do
2 for t =0 to n do
3 ‘ plk,t] = 00 ;
4 p[0,0] +0;
5 for k=0 to m—1do
6 clear(A) ;
7 A+ (k) ;
8 fort =k+1 ton s.t. |[A| >0do
9 plk + 1, t] < plk, front] + f(front, t) ;
10 pred[k + 1][t] < front ;
11 if ¢ <n then
12 if not dominates(k, back, t) then
13 while |A| > 0 and dominates(k, t, back) do
14 ‘ popBack() ;
15 pushBack(t)
16 while [A| > 0 and Q[t + 1] > Q + Q|front] do
17 ‘ popFront() ;
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Management of soft capacity constraints

e Soft capacity constraints can also be addressed via a change of
the function dominates(i,j) =

pli] + doip1 — D[i + 1]+ o x (QU] — Qlil) < pli] +doj 1 — Dl +1] ifi<j
pli] + do,i+1 — D[i + 1] < p[j] + do,j+1 — D[j + 1] if 4> j.

e The rule for eliminating hs(q)

the front label also 3 /_ ()
requlres. a minor ) /_/ v
adaptation (see paper) 20 o T

e The complexity remains

O(n) h(q) r

45 50 55 60 65 70
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Computational experiments

e 105 benchmark instances based on the TSPLib
e 29 to 71,009 nodes

e 10 vehicle capacities: @ €
{102,2x102,4x10%,103,2x103,4x103,10%,2x 10%,4x 10%,10°}

e Comparing the speed of the classical Bellman-based Split
algorithm with the linear Split for the three problem settings

e Xeon 3.07GHz CPU, using a single thread.
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Computational experiments

We compare the following algorithms:

Algorithm:

Complexity:
Bellman-Based Split algorithm O(nB)
Bellman-Based Split algorithm with a fleet-size limit m O(nBm)

Bellman-Based Split algorithm with soft capacity constraints 0O(n2)

Linear Split algorithm O(n)
Linear Split algorithm with a fleet-size limit m O(nm)
Linear Split algorithm with soft capacity constraints O(n)
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Computational experiments

50000 100000

F &

Q= 100 200 500 1000 2000 5000 10000 20000

Figure : Speedups of the linear Split over the Bellman-based algorithm for
all 105 instances. Hard capacity constraints, unlimited fleet.
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Figure : Speedup factors for the case with a limited fleet.



Computational experiments

® No load limit Load limit set to 4Q
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Figure : Speedups for soft capacity constraints. Two sets of results: the
speedups relative to the Bellman algorithm with no limit on the excess
capacity (black dots), and those relative to the Bellman algorithm with a
limit of 4@ on the total demand of a route (gray dots).
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e The VRP with intermediate facilities (see, e.g. Crevier
et al., 2007; Tarantilis et al., 2008; Hemmelmayr et al., 2013;
Schneider et al., 2015):



The VRP with intermediate facilities

e The VRP with intermediate facilities (see, e.g. Crevier
et al., 2007; Tarantilis et al., 2008; Hemmelmayr et al., 2013;
Schneider et al., 2015):

e (Classical duration-constrained CVRP

e With the possibility to reload at a subset of intermediate
facilities locations
» Docking time at the intermediate facilities
» Service time at the customers
» Duration constraint is global on the whole route
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The VRP with intermediate facilities

e The VRP with intermediate facilities (see, e.g. Crevier
et al., 2007; Tarantilis et al., 2008; Hemmelmayr et al., 2013;
Schneider et al., 2015):

e (Classical duration-constrained CVRP

e With the possibility to reload at a subset of intermediate
facilities locations

» Docking time at the intermediate facilities
» Service time at the customers
» Duration constraint is global on the whole route

e Generalizes the multi-trip VRP
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The VRP with intermediate facilities

>

The VRP with intermediate facilities (see, e.g. Crevier
et al., 2007; Tarantilis et al., 2008; Hemmelmayr et al., 2013;
Schneider et al., 2015):

Classical duration-constrained CVRP

With the possibility to reload at a subset of intermediate
facilities locations

» Docking time at the intermediate facilities
» Service time at the customers
» Duration constraint is global on the whole route

Generalizes the multi-trip VRP

Close connections to green VRPs with choices of recharging
stations
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=

e 3-4 main decision sets

e and a classical way to

Sequencing

e

deal with them:

Reloading

Decisions HEURISTIC
SEARCH
DYNAMIC

Shortest
Paths

= This is, however, not a unique option.

PROGRAMMING
Each solution
evaluation in O(1)
once the shortest
paths are known



H
HEURISTIC

w_ / SEARCH
A X DYNAMIC

Reloading PROGRAMMING
Decisions Evaluation of each

= Let’s give more solution in O(n)
R ... or even O(B)
respons1b1hty to I ... and will be even further

DP: reduced via move LBs for filtering
... such that it will become

very close to O(1) in practice

Shortest

Paths




Move evaluations

e Evaluating any neighbor solution, defined as sequences of
services without visits to intermediate facilities, requires to
solve an optimization problem for the choice of visits to
intermediate facilities.

e Can be transformed into an instance of Split problem
(with some pre-processing prior to routing optimization: find

for any customer pair (i,7) the facility which leads to the
smallest detour).

e Now solved in O(n)
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e This solution evaluation procedure is more time consuming
than usual.

e To save some computational effort, rely on lower bounds on
solution cost to filter non-promising moves:

» Let Z(o) be a lower bound on the cost of a route o

» A move that modifies two routes: {o1,02} = {0],05} has a
chance to be improving if and only if:

AH = Z(O’i) + Z(O’é) — Z(O’l) — Z(UQ) < 0.



Lower bounds on move evaluations

e In the VRP-IF, the cost of a route ¢ is always greater than

» the total travel distance (without recharging), plus
» the minimum number of necessary visits
x shortest detour S(o) to a facility

lo]—1
= dovors + {Zléq‘“J x (o)
=1

e And this bound helps, in practice, to filter a significant subset
of the moves

(Experiments of today)
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Preprocessing and bidirectional search

e To improve further the move evaluations, it is even possible to
avoid solving each SP subproblem independently in O(n)

= Rely instead on pre-processed shortest paths for partial routes.

e Key property of classical routing neighborhoods:

» Any local-search move involving a bounded number of node
relocations or arc exchanges can be assimi-
lated to a concatenation of a bounded number of sub-sequences.

Inter-route RELOCATE

T lntm route CROSS
AO-O-@f@-O-, @

» To decrease the computational complexity, compute auxiliary
data on subsequences by induction on concatenation ().
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Preprocessing and bidirectional search

e Now, consider an inter-route move, which inserts or replaces a
bounded number of customers in a route.
= New route obtained by the concatenation of 3 services sequences
= Prior to move evaluations, we pre-process the shortest paths
from the node 0 to the subsequent nodes, and from the end
(backwards) to each node, in O(n).

EOEOE] 0P Y'0ORT ¥ FUPOPT
GE0RGE  HOR YO0

(o) [} O3

Y

o, ——

= Reusing the preprocessed information allows to evaluate each
classical inter-route move in O(B).

= We discuss later about intra-route moves...

31/42
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Computational experiments

e Some Preliminary experiments with:

e The ILS variant of Prins (2009)

» Produces iteratively ne offspring from the incumbent solution
(via shaking and LS) and selects the best. Search is restarted

np times until n; consecutive generations without improvement.

Shaking done by 1 or 2 random swaps, with equal probability.

e The unified hybrid genetic search (UHGS) of Vidal et al.
(2012, 2014)
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e LS based on the classical routing neighborhoods (but applied
on solutions represented without intermediate-facility visits):
RELOCATE, SwAP, CROSS, 2-0PT and 2-0PT*.

» Exploration in random order

» First improvement policy

» Restrictions of moves to the I'™ closest services
= Number of neighbors in O(n)



¢ Using a short termination criterion: (np, nc, nr) = (5,10, 50)
for ILS, and Ity,x = 5,000 for UHGS

e Single core: Xeon 3.07 GHz CPU with 16 GB of RAM
e Reporting the average and best solutions on 10 runs.

o All Gap(%) values measured from the best known solutions
(BKS)



e Comparing with the previous methods for this problem:

CCLO7: Hybrid TS with Adaptive Memory Programming
and Integer Programming of Crevier et al. (2007)

TZKO08: Hybrid guided local search of Tarantilis et al.
(2008)

HDHR13: Variable neighborhood search of Hemmelmayr
et al. (2013)

SSH15: Adaptive VNS of Schneider et al. (2015)



Computational experiments

CcCLo7 TZKO08 HDHR13 SSH15 ILS BKS

Inst n  m r| Avg-10 T Avg-10  Best-10 T Avg-10 Best-10 T Avg-10  Best-10 T Avg-10 Best-10 T

al 48 6 3]1211.28 4.58 1189.70 1179.79 3 1180.57  1179.79  1.42 | 1184.57 1179.79 0.64 | 1179.79 1179.79 1.46 | 1179.79
bl 96 4 3| 1232.67 1225.08 1217.07 1217.07 1217.07 6.39 | 1218.21 1217.07 4.19 | 1217.07 1217.07 520 | 1217.07
cl 192 5 3|1893.01 1898.92  1883.05 1867.96 1866.76  20.40 | 1925.41  1882.46 ! 1869.20  1866.76  30.05 | 1866.76
dl 48 5 41076.31 1064.29  1059.43 1059.43  1059.43 1.57 | 1061.5 1059.43 0.55 | 1059.43 1059.43 1059.43
el 96 5 4 |1311.60 13.52 | 1309.12 1309.12 1309.12 1309.12 6.22 | 1312.75 1309.12 5.08 | 1309.12 1309.12 1309.12
fl 192 4 4|1601.54 41.41 | 1585.83  1572.17 1573.05  1570.41 25.60 | 1601.4  1577.63 34.99 | 1571.86 1570.41 1570.41
gl 72 5 5]1202.00 5522 | 1190.21 1181.13 1183.32 1181.13 3.38 | 1183.75 1181.13 1.69 | 1181.13 1181.13 1181.13
hl 144 4 5159851 32.07 1577.54  1547.25 1548.61 1545.50 14.61 | 1567.22 1553.75  14.08 b 23 1545.50 1545.50
il 216 4 5|1976.11 51.01 | 1956.17  1925.99 1923.52  1922.18 33.58 | 1974.97 1934.08 35.11 | 1925.72 1922.18 1922.18
il 72 4 6|1161.77 58.90 1128.86  1117.20 1115.78 1115.78 2.78 | 1116.82 1115.78 2.02 | 1115.78 1115.78 1115.78
kl 144 4 6161845 64.61 1591.74  1580.39 1577.96 1576.36 4.56 | 1600.42 1577.98 10.74 | 1577.89  1573.21 1576.36
11 216 4 6|1917.08 104.27 | 1904.39  1880.60 1869.70  1863.28 35.48 | 1916.07 1894.69 40.59 | 1873.37  1868.70 1863.28
a2 48 4 51100516 6.39 997.94 997.94 1.23 | 997.94 997.94 0.72 997.94
b2 96 4 5| 1333.20 14.72 1291.19 1291.19 6.41 | 1300.42 1291.19 4.83 1291.19
2 144 4 5179246 61.68 1715.84  1715.600 15.01 | 1741.55 1715.60 18.32 B 1715.60
d2 192 3 5 |1898.21 40.54 1860.92 1903.15 1874.12  30.64 1858.81  30.06 | 1856.84
€2 240 3 5|1995.75 73.78 - - - 1922.81 1957.8  1937.84 416 | 1930.04 1919.23 30.14 | 1919.38
f2 288 3 5231215 162.22 2233.43 2313.08 2268.54 42.8 | 2255.59  2238.26 y

g2 72 4 7118593 29.51 - - - 1153.17 1158.21 1152.92 2.2 1152.92 1152.92

h2 144 4 7161175 160.79 - - - 1575.28 1586.24 1576.86  21.2 | 1575.67 1575.28 .85

i2 216 3 7|1998.20 322.41 1922.24 1971.27  1944.74  41.1 1928.80  1920.75 30.08 | 1919.74
j2 288 3 7|2325.18 256.85 - - - 2250.21 2303.67 2281.86 41.93 | 2262.16 2249.79  30.19 | 2247.70

Gap(%) 2.63% 1.14% 0.22% 0.09% 0.00% 1.44% 0.49% 0.20% 0.04%
T(min) 73.11 18.92 21.55 19.46 17.20
CPU Prosys 2GHz PIV 2.4 GHz 2.4 GHz 15 2.67 GHz Xe 3.07G
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Computational experiments

CCL07 TZK08 HDHR13 SSH15 UHGS BKS

Inst n m r|Avgl0 T | Avg10 Best-10 T | Avg-10  Best-10 T | Avg-10 Best-10 T | Avg-10 Best-10 T
al 48 6 3121128 458 | 1180.70 1179.79 1180.57 1179.79 142 | 118457 1179.79 0.64 | 1179.79 1179.79 2.80 | 1179.79
bl 96 4 3|1232.67 1225.08 1217.07 1217.07 1217.07 6.39 | 121821 1217.07 4.19 | 1217.07 1217.07 10.13 | 1217.07
el 192 5 3| 1893.01 1898.92  1883.05 1867.96  1866.76  20.40 | 192541  1882.46 98 | 1866.62 1863.49 30.01 | 1866.76
dl 48 5 4107631 1064.29  1059.43 1059.43 105943 157 | 1061.5 1059.43 0.55 | 1059.43 1059.43 2.64 |1059.43
el 96 5 4131160 13.52 | 1309.12 1309.12 1309.12 1309.12 6.22 |1312.75 1309.12 5.08 | 1309.12 1309.12 8.36 | 1309.12
fl192 4 4160154 4141 | 1585.83  1572.17 1573.05 1570.41 25.60 | 16014  1577.63 34.99 | 1572.19 1570.41 30.02 | 1570.41
gl 72 5 5[120200 5522 | 1190.21 1181.13 1183.32 118113  3.38 | 1183.75 118113 1.69 | 1181.13 1181.13 12.31 | 1181.13
bl 144 4 5159851 32.07 | 1577.54 1547.25 1548.61 1545.50 14.61 | 1567.22 1553.75 14.08 | 1545.56 1545.50 30.01 | 1545.50
il 216 4 5197611 5101 | 1956.17  1925.99 1923.52  1922.18 3358 | 1974.97 1934.08 3511 | 192451 1923.62 30.02 | 1922.18
jl 72 4 6|1161.77 5890 | 1128.86 1117.20 1115.78 1115.78 2,78 |1116.82 1115.78 2.02 | 1115.78 1115.78 5.13 | 1115.78
kI 144 4 6161845 6461 | 1591.74  1580.39 1577.96  1576.36  14.56 | 160042 1577.98 10.74 | 1576.30 1573.21 30.01 | 1576.36
11 216 4 6|1917.08 104.27 | 1904.39  1880.60 1869.70  1863.28 35.48 | 1916.07 1894.60 40.59 | 1871.83  1865.27 30.02 | 1863.28
a2 48 4 5[1005.16 6.39 997.94  997.94  1.23 | 997.94 997.94 0.72 | 997.94 150 | 997.94
b2 96 4 5133320 14.72 1201.19 129119 641 | 130042 1291.19 4.83 1291.19
2 144 4 5179246 61.68 1715.84  1715.600 15.01 | 174155 1715.60 18.32 1715.60
d2 192 3 5[1898.21 40.54 1860.92 1903.15 1874.12  30.64 1856.84
€2 240 3 5199575 7378 - - — | 192281 1957.8  1937.84 416 | 1¢ 1919.38
f2 288 3 5231215 162.22 2233.43 2313.08 226854 428 | 2248.85
g2 T2 4 7|1185.93 2951 - - - | 115347 115821 1152.92 22 |1152.92
h2 144 4 7[1611.75 160.79 - - ~ | 1575.28 1586.24  1576.86  21.2 | 1575.60
2 216 3 7199820 32241 1922.24 197127 194474 411 | 1926.76  1920.75 30.03 | 1919.74
2288 3 7232518 256.85 - - ~ | 225021 2303.67 2281.86 41.93 | 2263.89 225318 30.05 | 2247.70

Gap(%) 2.63% 114%  0.22% 0.00%  0.00% 1.44%  0.49% 0.14%  0.01%

T(min) 73.11 18.92 2155 19.46 20.37

CPU Prosys 2GHz PIV 2.4 GHz 2.4 GHz 15 2.67 GHz Xe 3.07G
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Conclusions

e Introduced a simple linear-time Split algorithm

» Simple to implement, efficient in practice
» Large speedups when run on problem instances with long routes
» Possible limited fleet, soft capacity constraints, etc...

e Opportunity of applications to problem classes with
intermediate facilities, multiple trips, or recharging stations

» Allows to deal with the decision subset related to
intermediate-facilities visits via tailored solution evaluation
procedures rather than tailored moves

» Preliminary results on the VRP-IF (with a short termination
criterion) look OK.
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Conclusions

e Many other opportunities related to Split in the VRP:

» More intensive search in the space of giant tours

» Improvements for other forms of split algorithms, e.g., HVRP,
LRP, etc...

» Many results that we know on Split have connections with
results on other enumerative neighborhoods in local searches...

e Aiming for a paradigm shift — we assume too fast that the
classical neighborhoods and their complexities are established

» When an improvement occurs, large potential gains

» Wide scope of application

» Average case O(nlogn) exploration procedures are also known
for several other problems and neighborhoods... (Bentley and
Friedman, 1978; Bentley, 1992)
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