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Abstract

The automated analysis of patients’ biomedical data can be used to de-
rive diagnostic and prognostic inferences about the observed patients. Many
noninvasive techniques for acquiring biomedical samples generate data that
are characterized by a large number of distinct attributes (i.e., features) and
a small number of observed patients (i.e., samples). Using these biomedi-
cal data to derive reliable inferences, such as classifying a given patient as
either cancerous or non-cancerous, requires that the ratior of the number
of samples to the number of features be within the range5 < r < 10. To
satisfy this requirement, the original set of features in the biomedical data
has to be reduced to an ‘optimal’ subset of features that most enhances the
classification of the observed patients.

In this paper, we propose a new feature selection technique (multilevel
feature selection) that seeks the ‘optimal’ feature subset in biomedical data
using a multilevel search algorithm. This algorithm combines a hierarchical
search framework with a tabu search method. The framework consists of in-
creasingly coarse forms (i.e., search subspaces) of the original feature space
that are strategically and progressively explored by the tabu search method.
The result of the search at any given coarse subspace is used to initialize the
search at the previous less coarse subspace.
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We evaluate the performance of the proposed technique in terms of the
solution quality, using experiments that compare the classification infer-
ences derived from the solution found, with those derived from other fea-
ture selection techniques such as the sequential forward selection, random
feature selection and tabu search feature selection. An equivalent amount of
computational resource is allocated to the evaluated techniques to provide
a common basis for comparison. The empirical results show that the mul-
tilevel feature selection technique finds ‘optimal’ subsets that enable more
accurate and stable classification than those obtained using the other feature
selection techniques.

Keywords: Multilevel search algorithms, feature selection problem, tabu search,
biomedical data.

1 Introduction

The advent of noninvasive techniques such as magnetic resonance spectroscopy
(MRS) [10] and gene microarrays [3] for acquiring biomedical data enables the
creation of automated means to identify the presence and monitor the progression
of diseases in patients. The biomedical sample that represents each observed pa-
tient usually consists of a combination of distinctive characteristics having quan-
titative measures. Each distinctive characteristic is a feature, and a collection ofL
ordered features is a feature vector. For instance, the normalized expression level
of each gene in gene microarrays corresponds to a feature, and the expression lev-
els of the genes for each observed specimen under a given condition corresponds
to a feature vector.

Useful and reliable information and inferences can be derived from biomedi-
cal data by applying appropriate pattern recognition techniques (classifiers) [11].
Unfortunately, classifier performance tends to degrade when the sample-to-feature
ratio r decreases beyond a certain range. Typical values ofr that are necessary
for good classifier performance range between 5 and 10; but for biomedical data,
r typically ranges between 1/500 and 1/20 [23]. The ratior can be increased
to the required range either by increasing the number of observed patients (i.e.,
the number of samples) or by reducing the number of features. The former op-
tion is usually not practical because of the lack of adequate biomedical samples.
The more practical option of reducing the original set to an ‘optimal’ subset of
features that most enhances classification performance is known as the feature
selection problem [14].
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Feature selection can be formulated as a combinatorial optimization problem.
In application to biomedical data, feature selection appears in two different com-
binatorial formulations. In one, it consists of finding a subset of features of fixed
cardinalitym (in the range5 < r < 10) that yields the lowest misclassification
error rate for a given classifier. In the other formulation, feature selection seeks
a subset of features with the smallest cardinality such that the misclassification
error rate is below a given threshold. In this paper, we present a configuration of
the multilevel feature selection technique for the first formulation. This can be
stated as follows:

Given an ordered set ofL featuresF = (f1, f2, . . . , fL), find a subsetS of F
such that|S| = m, and the error ratec(S) of a given classifier is minimized when
presented with the feature subsetS. That is:

min c(S)

(1)

such that S ⊂ F, |S| = m, m < L

The problem formulation in (1) can be solved exactly, using an exhaustive
enumeration of the

(
L
m

)
different subsets having cardinalitym, but this approach

is impractical except for very small values ofL. To solve this feature selection
problem in a practical way, many techniques have been developed using search
algorithms that enable the selection of near-optimal feature subsets within practi-
cable computational time. Techniques based on simple heuristics such as greedy
sequential search algorithms [1], on evolutionary methods such as the genetic al-
gorithm (GA) [20] and on meta-heuristics such as tabu search [26] have been
proposed. These techniques have been adapted or possibly enhanced appropri-
ately to suit feature selection problems in particular types of biomedical data. For
instance, Nikulinet al. [18] proposed a GA-based feature selection technique
that is primarily aimed at biomedical spectra, wherein there is evident correla-
tion amongst adjacent features; however, this technique is inappropriate for other
types of biomedical data, such as microarrays, where such correlation may not
exist [23]. Also, feature selection techniques such as in [2, 6] that focus primarily
on microarrays data are usually not flexible enough to exploit the evident corre-
lation that exist amongst features in spectral data. There is a need for a feature
selection technique having an underlying search strategy that is flexible enough to
adapt effectively to the different types of biomedical data and enhance classifica-
tion performance.
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In this paper, we propose a new technique, that we identify asmultilevel fea-
ture selection, to solve the feature selection problem in biomedical data. The
proposed technique is based on the multilevel search algorithm. This algorithm
performs a strategic and flexible exploration of the feature space, using the hi-
erarchical approach that is inherent in multilevel algorithms. Starting from the
original feature set, the technique creates a hierarchy of feature subspaces with
increasing coarseness. The flexibility in the hierarchically coarsening feature sub-
spaces eases the adaptation of the technique to different forms of biomedical data.
Starting from the coarsest feature subspace to the least coarse, i.e., the original
feature subspace in the hierarchy, a tabu search [8] is used to find a sub-optimal
subset of the feature subspace at each level in a progressive manner. The resulting
sub-optimal subset at a level is used to initialize the search at the next less coarse
feature subspace. The result of the tabu search at the least coarse feature subspace
is regarded as theoptimalfeature subset found [4].

The remainder of this paper is organized as follows: Section 2 reviews the ex-
isting techniques that address the feature selection problem described in Section
1; Sections 3 and 4 describe respectively the multilevel search paradigm and its
application to the feature selection problem; Section 5 provides the results and in-
ferences derived from our experimentations, and the conclusion follows in Section
6.

2 Feature Selection Techniques

Feature selection techniques typically consist of an underlying search or ranking
algorithm that explores the feature space and a cost function (e.g., a measure of the
classification error rate) that guides the underlying algorithm. Considering the ap-
proach for evaluating the cost function of the feature selection techniques, Kohavi
and John [15] identify two approaches for designing feature selection techniques:
filter and wrapper approaches. The filter-based approach determines the fitness of
an examined feature subset without any reference to or feedback from the target
classifier. The cost function evaluation is independent of the target classifier that
uses the selected subset of features in the subsequent classification of independent
datasets. Rather, a generic error estimation function can be used to compute the
cost function value that guides the ranking of the individual features or the search
for an ‘optimal’ subset in the feature search space. On the other hand, the wrapper-
based approach determines the fitness of an examined feature subset by referring
the subset to the target classifier to get a feedback in the form of an estimation
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of the classification error rate that will result when the examined subset underlies
the design of the target classifier. The wrapper approach usually enables the se-
lection of feature subsets that leads to better classification accuracy than the filter
approach. However, the evaluation of each examined subset by the target classi-
fier to determine the fitness is more computationally intensive than for the simple
error estimation of filter-based methods. Consequently, since many subsets must
be evaluated by the wrapper-based methods, there is an additional computational
overhead that results from the evaluations that are based on the target classifier.

Considering the underlying search or ranking algorithm, Guyon and Elisse-
eff [9] also group feature selection techniques into two broad categories: feature
ranking techniques and feature subset selection techniques. Feature ranking tech-
niques order the features according to a relevance criterion such as covariance,
and select a subset from the ordered features. Kira and Rendell [13] describe a
simple feature ranking technique. The technique scores each feature in the orig-
inal feature set using a ranking criterion and selects the firstm features having
the highest scores as the ‘optimal’ feature subset, wherem is the cardinality of
the desired ‘optimal’ subset. A primary drawback of feature ranking techniques
with respect to classifier design is: a combination of them highest ranked fea-
tures is not necessarily the optimal or near-optimal subset ofm features for ‘best’
classifier performance [4].

Given sufficient computation time, feature subset selection techniques such
as in [17, 21, 22, 24] implicitly examine all the feature subsets and select the
subset having the ‘best’ cost function evaluation as ‘optimal’. These techniques
guarantee finding the optimal feature subset with respect to the estimation of the
target classifier performance. However, the computational requirements (time and
resources) of the techniques are very intensive and may be impractical when ap-
plied to large-scale feature selection problems. Furthermore, the techniques are
usually based on assumptions that are not always true in practice. For instance,
the branch-and-bound-based feature selection techniques [17, 21, 22] require that
the cost function be monotonic on the subset of features; i.e., adding a new feature
from the original set to a current subset of features must result in a better value of
the cost function.

To solve the feature selection problem in a practical way, some other tech-
niques find an approximate solution that is ‘good’, hopefully as close as possible
to the optimal subset. These techniques intelligently examine some of the possible
subsets of features and select as the ‘optimal’ subset the ‘best’ cost function evalu-
ation amongst all the examined subsets. Some of these techniques are discussed in
the following. Sequential forward selection (SFS) and sequential backward selec-
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tion (SBS) [1] are based on simple greedy deterministic heuristics.SFSstarts by
selecting the empty subset as the current subset and sequentially adds a new fea-
ture (from the original set) to the current subset. In each sequence, the added fea-
ture satisfies the condition of combining with the current subset to give the ‘best’
evaluation of the cost function. The selection process stops when a termination
criterion is satisfied (e.g., when the addition of a new feature no longer improves
the cost function or when the cardinality of the subset equals a set threshold) and
the ‘optimal’ subset of the selection is the current subset prior to termination.SBS
is similar toSFS, but the selection process is reversed.SBSbegins with the entire
original set as the current subset and sequentially removes a feature from the cur-
rent subset until a termination criterion is satisfied.SFSadds a single feature (and
SBSremoves a single feature) at each search sequence; hence, the discriminatory
dependencies that exist amongst some combinations of features are ignored dur-
ing the search. Stearns [24] proposes the plus-l-take-away-r method to address
the shortcoming of possible exclusion. At each sequence, the method addsl fea-
tures to the current selection usingSFSand removesr features usingSBS. The
challenging task of this method is: there are presently no theoretical means of
choosing a predefined value forl andr that enables finding the ‘optimal’ subset.
Generalized sequential forward selection (GSFS), a generic form ofSFS, pro-
vides a flexible means of finding the ‘optimal’ subset by permitting the addition
of k features to the current selection at every search sequence. Similarly, there are
generic forms forSBSand plus-l-take-away-r: generalized sequential backward
selection (GSBS) and generalized plus-l-take-away-r, respectively.

The aforementioned sequential search techniques do not permit backtracking;
that is, a search step cannot be reversed even when subsequent steps reveal the step
as impairing to finding the ‘optimal’ subset. To resolve the backtracking draw-
back, Pudil et al. [19] propose the sequential floating forward selection (SFFS)
and the sequential floating backward selection (SFBS). At each search sequence,
the SFFSmethod adds to the current selection, usingSFS, and performs some
SBSsteps as long as the cost function evaluates to a better value.SFBS is sim-
ilar to SFFS, but the progressive search sequence is based onSBS. Generally,
other than theSFSandSBS, the sequential search techniques are computationally
expensive for large-scale feature selection problems.

Siedlecki and Sklansky [20] propose a genetic algorithm (GA) approach for
feature subset selection. Nikulinet al. [18] develop a GA-based technique for se-
lecting the ‘optimal’ subset of block of features (regions). The technique does not
generate a stable subset of features, however, and may be inadequate for biomed-
ical data not having correlation amongst consecutive features [23].
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Zhang and Sun [26] develop a tabu search method for feature subset selection.
Tabu search is an iterative search method where, at each iteration, a successor
solutions′ to a current solutions is selected from a setN (s) of solutions called
the neighborhoodof s. The successors′ is often obtained by applying a simple
rule such the following:

s′ = min{c(s′) | s′ ∈ D(s)}. (2)

whereD(s) ⊆ N (s). To avoid cycling (which happens whenc(s′) ≥ c(s) ∀s′ ∈
N (s)), tabu search uses an adaptive memory, known as thetabu list, to keep
track of solutions (or solution attributes) that have been visited and should be
avoided for a number of iterations; thetabu tenuredetermines how long a solution
remains in the tabu list. In Zhang and Sun [26], a comparative analysis of the tabu-
search-based technique and other feature selection techniques (SFS, GSFS, SBS,
GSBS, plus-l-take-away-r, SFFS, SFBSandGA) is performed using a synthetic
dataset. Although the result of the performance analysis shows tabu search as
a promising search heuristic for feature selection problem, the analysis is done
using a synthetic dataset and the claims should be verified using real-life datasets.

We examine the strength of the basic tabu search feature selection technique
using biomedical data and propose a new technique that integrates tabu search and
can be adapted to solve the feature selection problem in most forms of biomedical
data (e.g.,MR spectra, microarrays, mass spectra). The proposed technique is
based on the multilevel search paradigm [25].

3 The multilevel search paradigm

The basic framework ofmultilevel searchalgorithms can be described as fol-
lows: Starting from an original discrete optimization problem instanceP0 with
solution spaceS0, acoarsening phaseprojectsP0 into smaller problem instances
P1, P2, . . . , Pl by recursively reducing the number of decision variables with re-
spect toP0. Usually, the projection is such that the search spacesS1,S2, . . . ,Sl

induced respectively from problem instancesP1, P2, . . . , Pl satisfy the relation

Sl ⊂ Sl−1 ⊂ · · · ⊂ S1 ⊂ S0. (3)

During theinitial search phase, an approximationel of the optimal solution for
Pl is computed, using some search algorithm. During therefinement phase, a
solutionsi ∈ Si is derived, byinterpolatingthe values of the decision variables in
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Figure 1: Trends in single-level & multilevel search methods

Pi from the solutionei+1, that is an approximate optimum of the problem instance
Pi+1. The interpolated solutionsi serves as an initial solution to a search heuristic
that optimizes overPi. The refinement phase interpolates and refines feasible
solutions until the values of the decision variables of the original problemP0 can
be interpolated from the best approximatione1 of coarsened problem instanceP1.
This last interpolation is the initial solution for the search heuristic optimizingP0.

The multilevel exploration of the solution space helps search heuristics like
tabu search to cope with challenges arisen from the optimization of large prob-
lem instances. One of these challenges is the confinement of the exploration to
a particular region of the solution space. As pictured in Figure 1a, the function
plotting the value of each current solution of a search heuristic such as tabu search
against its respective iteration number is often an exponential. This exponential
can be divided into two segments: a downhill (or uphill) segment and a plateau
segment. Each segment represents a distinctive phase of the exploration of the
solution space [7, 16]. The downhill (or uphill) segment corresponds to a phase
where rapid improvements in the value of the solutions attract the exploration in
a confined region of the solution space; the plateau segment corresponds to ‘side-
walks’ of the search in this confined region of the solution space. Note that the
restrictions imposed by the tabu tenure in tabu search often resulted in sequences
of iterations where the cost of each successor solutions′ is greater of equal to the
cost of the current solution. Such sequence, wherec(s′) ≥ c(s) for each iteration,
allows the exploration to overcome some uphill barriers in the landscape of the
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cost function. Nonetheless, in the broader context of the exploration, search tech-
niques rarely can overcome large uphill barriers such as those corresponding to
downhill segments. Consequently, in a large solution space, search is often con-
fined to a specific region of solution space predetermined by the initial solution of
the search.

Several strategies have been proposed to attenuate the impact of confinement,
multilevel search can be seen as one of them. Multilevel search re-initializes the
search through a sequence of plateau segments, each having the capacity to steer
away a search heuristic from the confined region of the solution space associated
to the very first initial solution. Figure 1b represents the typical trend in the value
of the current solutions against their respective iteration number in a multilevel
search. This trend is a sequence of exponential functions, one for each level.
The downhill segment of each exponential at a given leveli corresponds to rapid
improvements made on the value of initial solutionsi, which has been interpolated
from ei+1, the best solution of previous leveli + 1. These rapid improvements
stem from assigning values to decision variables inPi that do not appear in the
definition of the problem instancePi+1.

Each downhill segment ends with a plateau. The cost function of coarsened
problem instances, particularly at the highest levels, is smoother in comparison to
the original problem instanceP0 [25]. The confinement of tabu search to specific
regions of a search space is not as definitive because uphills in the landscape
of coarsened search spaces can be overcome. As a result, sidewalk explorations
cover more broadly the search space of coarsened problem instances, enabling
search at leveli − 1 to ‘break away’ from the search at leveli + 1. (Search at
level i− 1 breaks away from the search at leveli + 1 if the approximate solutions
ei+1 andei cannot be found in the downhill or plateau segments of a single-level
search ofS0.) Through interpolations and sidewalk explorations, multilevel not
only re-invents the initial solution of the search at each level, but it does so by
taking hints from the optimization process performed at the (immediate) previous
level.

Dimensionality reduction of problem instances during the coarsening phase
also provides computational advantages to a search heuristic such as tabu search.
Solutions in smaller search spaces have fewer neighbors. Consequently, the cost
for applying the pivoting rule in each iteration is reduced significantly in coars-
ened search spaces, where the neighborhoods are substantially smaller. Under
certain conditions, it is expected that tabu search, while optimizing the smallest
search spaces of the multilevel search structure, can find approximations that are
very close to the cost of the optimal solutions of each corresponding search space.
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The multilevel approach is naturally suitable to subset problems such as the
feature selection problem. It is even more so for feature selection applied to
biomedical data, where the cardinality of the desired subset is usually very small
in comparison with the total number of features in the problem instances, i.e.,
|S| << |F |. It is likely that the reduction of the number of decision variables
during the coarsening phase will not destroy too much relevant information with
respect to near optimal subsets in the original feature space. Finally, we suspect
that coarsened search spaces will be resistant to overfitting, which will help to
improve the generalization capabilities of classifiers.

4 The multilevel feature selection algorithm

As input, we are given a biomedical datasetV = {V1, V2, . . . , Vk} consisting ofk
feature vectors (wherek is the number of observed samples). Each feature vector
Vi is a set(Vi1 , Vi2 , . . . , ViL) of real numbers whereVij is thejth measured feature
value for the corresponding sampleVi. Coordinates of theL-dimensional feature
space are represented by the feature vectorF = (f1, f2, . . . , fL) of sizeL.

Our algorithm seeks a feature subsetS of F of pre-defined cardinalitym,
consisting of the features that best enable the classification of the given biomedical
dataset. The decision to select a feature inF to be a member of a subsetS is
expressed using an arrayx of Boolean variables. Featurefj ∈ F is mapped to a
decision variablex[j]. When an entryx[j] is set to ‘1’ during a selection process,
the corresponding featurefj ∈ F is included in the desired subset; otherwise
whenx[j] is set to ‘0’, the corresponding featurefj is excluded. The values of the
decision variables are set by a decision process which, in the multilevel feature
selection technique, is an underlying search heuristic.

4.1 Coarsening phase

For the feature selection problem, the coarsening phase recursively generates a
hierarchy of feature subspaces. Across the hierarchy, a coarse feature subspace
consists of features generated from the immediate, less coarse subspace and the
dimensionality of the subspaces reduces with increasing coarseness. Given an
original feature setF0 = F , the coarsening phase combines a coarsening strategy
with parameters such as thereduction factorrf and the number of levelsl to
generate feature setsF1, F2, . . . , Fl such thatFl ⊂ Fl−1 ⊂ · · · ⊂ F0, wherel is
an implicitly or explicitly defined parameter that determines the number of levels
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in the hierarchy, andrf , the reduction factor, is the ratio of the dimensionality of
the given feature subspace to the dimensionality of the immediate coarser feature
subspace, i.e.,rf = |Fi|

|Fi+1| . In the present implementation of multilevel search
to feature selection, we only consider reduction factors that are constant at each
level.

4.1.1 Coarsening strategies

Research on multilevel algorithms suggests two general strategies that can be ap-
plied during the coarsening phase to reduce the dimensionality of the feature sub-
spaces:clusteringof decision variables [12] and fixing the state of some decision
variables, i.e.,decision variables pre-setting[5].

The first approach involves merging a collection of features and then repre-
senting the merged features by a single decision variable. This clustering approach
can be used to combine features and to generate feature subspaces as follows: for
a given leveli, the feature subspaceFi is coarsened by aggregating groups of fea-
tures inFi such that an approximated form of each group represents a new feature
that is an element of a new feature space at the immediate next coarse levelFi+1

in the multilevel hierarchy. For a given subspace, the groups of features that are
approximated to constitute the next coarser subspace can be created using cluster-
ing algorithms that identify the possible correlations that may exist amongst the
features in the given subspace. For instance, for biomedical datasets wherein cor-
relations exist amongst adjacent features, the groups can be created by selecting
consecutive features within predefined window(s) and a statistics (e.g., median,
average) of the features within the window can represent an approximation for
each group.

Typically, the coarsened feature subspaces generated using the clustering ap-
proach are synthetic, i.e., they consist of features that literally may not exist in the
original feature space. Furthermore, the characteristics of the features can vary for
each subspace in the multilevel hierarchy. Therefore, the task of relating the solu-
tions generated from the synthetic feature subspaces to the desired solution in the
original problem instance and to the subsequent interpretation of the desired solu-
tion can be quite challenging. This challenge may not be prominent for biomedical
datasets such as MRS data, wherein evident correlation typically exists amongst
adjacent features, since the resulting clusters in the synthetic subspaces do not
necessarily compromise the interpretation of the original features that constitute
the clusters. However, for datasets, such as microarray data, wherein such corre-
lation may not exist, the clusters are usually not approximate representations of
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the constituent original features with respect to interpretation; therefore, the final
near-optimal solution selected for such dataset can impair diagnosis and progno-
sis. A means of addressing the challenge of retaining the originality of features
in the feature clustering coarsening approach requires tracking in a subspace the
features that are combined to form new features in the coarser subspaces.

The second coarsening approach, decision variables pre-setting, generates the
coarse feature subspaceFi+1 at leveli+1 from the immediate less coarse subspace
Fi by excluding some features from the feature subspace at leveli. A feature
fj ∈ Fi is excluded from leveli + 1 by fixing the state of the corresponding
Boolean variablex[j] to ‘0’ at level i + 1. Once a feature is excluded at a given
level, it cannot be included in the solutions of the solution space at coarser levels.
Fixing the decision variables in this way recursively reduces the dimensionality
of the feature subspaces in the multilevel hierarchy and therefore reduces the size
of the solution space of the original optimization problem progressively.

In order to create the coarse feature subspaces using the pre-setting approach,
there is need for a means of determining which decision variables have their state
fixed to ‘0’ at each level. We identify and investigate two strategies for this pur-
pose:biased selectionand random selection. For a given feature subspace, the
biased selection strategy determines the feature that belongs to the immediate
coarser subspace by examining the discriminatory capability of the features in the
given subspace. The discriminatory capability of the features can be determined
by applying a feature selection technique to explore the given feature subspace.
Any appropriate technique can be used for this purpose; a simple feature ranking
technique is used in the present implementation. For a given feature subspace, the
ranking technique sorts the features in descending order of discriminatory capa-
bility and the firstp features are selected, wherep is the cardinality of the next
coarser subspace. In the random selection strategy, the values of the decision vari-
ables that correspond to the features in a given feature subspace are set randomly
and recursively. A simple Gaussian random number generator is used to guide the
selection.

The above three coarsening strategies differ significantly either in the defini-
tion of what is a feature at each level (synthetic versus real features) or in the way
features are selected to constitute each level (random versus ranking). We per-
formed experiments to investigate whether those strategies have an impact on the
performance of the feature selection technique. In the experiment, we use three
instances of the multilevel algorithm that have the same configuration except for
the coarsening strategy, to find the near-optimal subset for 10 training dataset in-
stances. The coarsening phase of the multilevel algorithm instances differs in the
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Figure 2: The effect of the coarsening strategies on the multilevel feature selection
technique

coarsening strategy that underlies the algorithm; the first instance is based on the
clustering strategy, the second and third instances are based on the two versions
of the pre-setting strategy (i.e., random and biased selection pre-setting, respec-
tively). For the three multilevel algorithm instances, we compare the estimated
values of the classification error rate - CER, derived using leave-one-out cross
validation. Figure 2 show the results of the experiment.

As shown in Figure 2, varying the coarsening strategies using the aforemen-
tioned strategies does not have obvious influences on the overall performance of
the multilevel feature selection algorithm. The clustering and biased pre-setting
strategies require more computational resource than the random pre-setting strat-
egy. The clustering strategy requires additional computing resource to track the
features that are combined to constitute a coarser subspace at each level. The bi-
ased pre-setting strategy requires additional computing resource to determine the
features that are selected from a coarse subspace to a coarser subspace. There-
fore, the computational cost of the multilevel feature selection technique is higher
for both the clustering and the biased pre-setting approach compared to the ran-
dom pre-setting coarsening approach. We use the random pre-setting coarsening
strategy in the present implementations of the multilevel feature selection tech-
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nique, since this strategy requires the least computation cost and its influence on
the multilevel feature selection technique is comparable to the other strategies.

4.1.2 Reduction factor

The reduction factorrf = |Fi|
|Fi+1| is a second significant parameter in the coarsen-

ing phase. LetEi denote the best subset ofm features discovered by the search
procedure optimizing the feature subspace at leveli, and letSi denote the initial
solution at leveli that has been interpolated fromEi+1. Assume the coarsen-
ing strategy involves fixing at ‘0’ the state of some decision variables ofxi, the
Boolean vector representing the decision variables of problem instancePi. Fi-
nally, we definexi[j] as afreedecision variable ifxi[j] is not fixed at ‘0’ at level
i and the corresponding featurefj is not in the feature subspace of leveli + 1.

Coarsening strategies based on small reduction factors produce similar adja-
cent feature subspaces. The downhill segment of tabu search at leveli can be
short, sinceSi, the initial solution at leveli interpolated fromEi+1, cannot be
substantially improved by assigning states to the free decision variables at level
i. Search is likely to yield a prolonged plateau segment at each level. Overall,
given that adjacent feature subspaces are similar, breakaways in the search be-
tween adjacent levels are less likely to occur. This increases the dependency of
the multilevel search on the initial conditions as defined by the search at levell.

On the other hand, coarsening strategies based on large reduction factors pro-
duce adjacent feature subspaces which differ substantially. Tabu search at each
level i is likely to yield a prolonged downhill segment, refining and improving the
value of the initial solutionSi by assigning states to a large set of free decision
variables at leveli. However, the refinement ofSi by assigning states to free de-
cision variables may create a situation where the best solutionEi at level i is a
local optimum of the downhill segment. In other words, the search in the plateau
segment is unable to find a solution better than the best solution in the downhill
segment. Again, adjacent levels fail to produce breakaways because the search at
a given level uniquely refines the best solution of the downhill segment from the
previous level.

We perform experiments to determine an appropriate value for the reduction
factor for a given problem. In the experiment, we use similar configurations (ex-
cept for the value of the reduction factor that varies with each instance) of the
multilevel feature selection algorithm to find the near-optimal subset for the same
biomedical datasets. The dimensionality of the original feature space is 1500 and
the number of levels in the multilevel algorithm instances is set to 3. We compare

15



Figure 3: The effect of the reduction factor on the multilevel feature selection
technique

the estimated values of the classification error rate CER using leave-one-out cross
validation for the multilevel algorithm instances with the reduction factor value
set to 2, 3, 4, 5, and 6. Figure 3 show the results of the experiment.

As shown in Figure 3, with reduction factor values of 2 and 3, the multilevel
feature selection algorithm consistently finds near-optimal subsets having lower
average error rate than for the other reduction factor values (i.e., 4, 5 and 6). Us-
ing the empirical results shown above, a reduction factor that coarsen a subspace
by 30% to 50% can be recommended for similar problem domain instances. This
recommendation agrees with the reduction factor of 2 that is used in most configu-
rations in the literature on multilevel search algorithms. A reduction factor of 3 is
used in the present implementations of the multilevel feature selection algorithm.

4.1.3 Number of levels

Thenumber of levelsparameter of multilevel search algorithms is a function of the
size of the original problem instanceP0, the targeted size of the feature subspace
at levell, and the reduction factorrf . As with rf , the appropriate value for the
number of levels cannot be determined theoretically. Rather, this parameter can
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Figure 4: The effect of the number of levels on the multilevel feature selection
technique

be explicitly predefined, based on empirical inferences, or implicitly defined as a
function of other parameters such as the reduction factor and the dimensionality
of the original problem instance. For example, if an exact search algorithm is used
to optimize the feature subspace at levell, then the number of features at levell
should be small enough to allow a rapid execution of the exact search. In this
context, assuming the reduction factor is predefined, the number of levels follows
directly from the size of the problem instancesP0 andPl. There is more flexibility
when heuristic search procedures are used at all levels.

We investigate the effect of the number of hierarchical levels on the perfor-
mance of the multilevel feature selection technique using experiments that com-
pare different instances of the technique having varying number of levels while
the other parameters are constant. Similar calibration experiments are performed,
using different instances of the multilevel feature selection algorithm, with the
number of levels set to 2, 3, 4, 5, and 6, while the other configurations remains
constant. Figure 4 show the results of the experiment. This figure shows that set-
ting the number of levels to 3 or 4 is appropriate for the given problem instance
since the algorithm maintains a competitive classification error rate.
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4.2 Search phase

The search phase involves finding a solution of the smallest problem instance.
This solution can be obtained using either an exact or an approximate search
method. Exact searches yield optimal solutions for the given feature subspace,
but there are strong limitations on the dimensionality of feature subspace that can
be solved feasibly. To apply an exact search, the coarsening process has to be
performed until a feature subspace with small dimensionality is obtained. In the
context of the feature selection problem, there is need to consider the relevance
of finding the optimal solution for the coarsest feature subspace to the quality of
the desired near-optimal subset for the original feature space. Using a wrapper-
based feature selection technique, a solution is usually optimal with respect to a
target classifier. That is, the optimal solution can differ for different classifiers.
Therefore, using an approximate solution at the coarsest feature subspace may
not necessarily impair the quality of the near-optimal subset desired at the original
feature space. Heuristic methods provide approximate solutions that are adequate,
irrespective of the dimensionality of the original feature space.

4.3 Refinement phase

For the multilevel feature selection technique, the coarsening phase produces a
hierarchy of coarse feature subspaces, such that the subspace at leveli is (explic-
itly or implicitly) a subset of the subspace at the next less coarse leveli − 1; the
search phase produces the starting solution, i.e., a solution of the coarsest fea-
ture subspace; the refinement phase improves upon the starting solution across
the feature subspaces in the hierarchy with decreasing coarseness. The refinement
phase improves upon the solutions by interpolating them at a coarse leveli onto
the immediate less coarse leveli − 1, and refining the projected solution in the
less coarse subspace.

The interpolation and refining processes depend on how the features in the
feature spaces are generated in the coarsening phase. When the coarse feature
subspace at leveli in the hierarchy consists of synthetic features generated from
clusters of features from the next less coarse subspace at leveli− 1, interpolating
the solution at leveli onto leveli − 1 can involve decomposing each synthetic
feature that belongs to the solution at leveli into the constituent features at level
i − 1. To refine the solution, the features that result from the projection can be
combined to form a subset of features wherein an initial solution can be selected
and used to initiate the search heuristics over the subspace at leveli− 1. We refer
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to the search heuristics that are used for the refinement processes asrefinement
heuristics. When the coarse feature subspaces consist of original features that
are selected using the feature pre-setting strategies, the interpolation can simply
consist of using the ‘best’ solution at leveli as an initial solution for the refinement
heuristics at leveli − 1. Then, once a solution has been interpolated from level
i, it can be improved by the refinement heuristics at leveli − 1. In the present
implementation of the multilevel feature selection technique, the later form of
interpolation is used since the coarsening is done using the random pre-setting
strategy.

Unlike the search phase, the set of heuristics that can be used in the refine-
ment phase is quite restricted. Search heuristics such as the greedy SFS, SBS, and
their variants cannot be used as refinement heuristics since these methods usually
create the ‘optimal’ feature subset from a sequence of addition or elimination of
features from a starting subset having a cardinality of 0 orL - the dimensionality
of the original feature space. In the present implementation of the multilevel fea-
ture selection technique, the tabu search (as implemented in [26]) is used as the
refinement heuristic.

To design the refinement phase of the multilevel feature selection technique,
we consider the possibility of influencing the behavior of the technique by vary-
ing the configurations of the refinement procedure. We investigate the effect of
varying the allocation of the refinement resource across the levels on the perfor-
mance of the technique. The refinement resource in this context refers to the cost
of computing the objective function values in order to determine the discrimina-
tory capability of an examined feature subset; the allocation of the resource is
based on the number of times the objective function is called during a refinement
procedure. Therefore, the allocation of resources directly relates to the number
of iterations of the refinement heuristics at each level. We perform experiments
to investigate three allocation possibilities: allocating equal amount of resource
to refine a solution at each level (i.e., constant resource allocation); increasing the
amount of allocated resources with decreasing coarseness of the feature subspaces
across the levels; and decreasing the amount of allocated resource with decreasing
coarseness of the feature subspaces across the levels. The decrement or increment
of the resource allocation across the levels is based on a simple arithmetic progres-
sion. The number of iterations for the level having the least amount of allocation
is set at a value (i.e., the basic number of iterations) and the subsequent levels
are increased progressively by a multiple of the basic number of iterations. In the
experiment, we create three instances of the multilevel feature selection algorithm
such that each instance is based on one of the allocation possibilities. We compare
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Figure 5: The effect of different refinement possibilities on the performance of the
multilevel feature selection technique

the classification error rate derived using the leave-one-out cross validation for the
three instances of the multilevel feature selection algorithm. Figure 5 shows the
effect of the three refinement scenarios on the performance of the multilevel fea-
ture selection technique.

As shown in Figure 5, when the number of iterations across the levels is varied
(decreasing or increasing), the multilevel feature selection algorithm finds subsets
with consistently smaller classification error than when a constant number of it-
eration is maintained across the levels. This can be attributed to a more flexible
exploration of the hierarchical search framework that is derivable by implicitly
allocating more resources to the search method at levels where highly discrim-
inatory subsets can be found. Besides, the configuration of the multilevel fea-
ture selection technique wherein the number of iteration increases as the coarse-
ness decreases across the levels enables an intensive search in the subspaces with
smaller dimensionality and a more diversified search in subspaces with larger di-
mensionality. This can explain the relatively stable near-optimal subset generated
by this configuration of the multilevel technique. In the present implementation,
the allocation of refinement resources increases as the coarseness of the subspaces
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decreases across the levels.

5 Experimentation

In this section, we present empirical comparisons of the new multilevel feature
selection technique with other feature selection approaches. We provide descrip-
tions of the evaluation experiments, the biomedical datasets used, and a discussion
of the results.

5.1 Experimental dataset

The dataset used in the experiments is a MRS dataset of biomedical origin from
the National Research Councils Institute for Biodiagnostics (NRC-IBD). The dataset
consists of 337 labeled samples (175 in class ‘1’ and 129 in class ‘2’) with a fea-
ture space dimensionality of 1500 and the cardinality of the desired optimal subset
is set at 10. For each complete experimental run, the dataset is randomly parti-
tioned into training and test sets in the ratio 2:1 in a stratified form. That is, the
sample size of the training set is 203 (117 from class ‘1’ and 86 from class ‘2’)
and the sample size of the test set is 101 (58 from class ‘1’ and 43 from class ‘2’).
Thea priori class labels are used as the basis for the computation of the estimated
classification error rates for values, and the classification accuracies. For each
training/test set partition the test set is independent of the training set and the test
set is used only for external cross-validation.

5.2 Evaluation experiments

Using a synthetic dataset, Zhang and Sun [26] empirically compare the perfor-
mance of a tabu-search-based feature selection technique with other techniques
such asSFS, SBS, GSFS, GSBS, plus-l-take-away-r,SFFS, SBFSandGA. The
result of the comparison shows that SFS and SBS require the least computational
cost to obtain a solution, but these techniques obtain solutions with the worst qual-
ity in terms of the estimated error rate. On the other hand, the tabu-search-based
feature selection technique obtains better solutions than all the other techniques.
These inferences are used to set performance thresholds for our comparison ex-
periments.

Using the described real biomedical dataset, we compare the performance of
the new multilevel feature selection technique with the tabu-search-based one,
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the SFS technique, and a random method. The configuration of the tabu search
method underlying the multilevel feature selection technique and the tabu-search-
based feature selection technique is based on the recommendations in [26]. For
the feature selection problem form by the biomedical dataset, the tabu list size
is set to 30, the neighbourhood candidate list size to 100, and the initial solution
is randomly selected, based on a Gaussian random number generator. The SFS
technique is implemented as a deterministic greedy method. The computational
cost of this method is used as the upper limit of the computational requirement for
the other techniques. The random feature selection technique simply evaluates the
fitness of randomly selected feature subsets and the subset having the best eval-
uation is considered as the near-optimal subset. This technique is implemented
to appraise any claims that the other feature selection techniques select features
purely based on probabilistic chances.

To provide a common basis for evaluating the examined feature selection tech-
niques, an equivalent amount of computational cost is assigned to each technique.
The computational cost is based on the number of times the objective function
value is computed in a complete run of each technique. For instance, the compu-
tational cost for SFS can be determined as follows: Given an original feature set
F of cardinalityL and the cardinality of the desired near-optimal subset ism; the
computational costcSFS of the SFS technique is given as:

cSFS =

(
L

1

)
+

(
L− 1

1

)
+ · · ·+

(
L−m

1

)
. (4)

For the feature selection problem instance in context,L = 1500 andm = 10,
therefore,cSFS = 16445. A rather lesser amount of computational cost (cSFS =
15000) is allocated to the other feature selection techniques. For the multilevel
feature selection technique, the computational cost is shared amongst the refine-
ment heuristics according to the implemented refinement option (i.e., increasing
computational cost with decreasing coarseness across the multilevel hierarchy).
For the 3-level configuration of the multilevel technique, 25 basic iterations are
assigned to the coarsest subspace; the next less coarse subspace is assigned 50
basic iterations; and the least coarse subspace is assigned 75 basic iterations. For
each coarse subspace, the neighborhood size of the refinement heuristics (tabu
search) is set at 100 and this implies that the computational cost per basic iter-
ation is 100. Therefore, the total computational costc for the multilevel feature
selection technique is given as:

c = 25× 100 + 50× 100 + 75× 100 = 15000.
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Figure 6: The effect of the number of iterations on the multilevel feature selection
technique

The computation cost that is derived by assigning 25 basic iterations to the coars-
est subspace is within the range of refinement resource allocation wherein overfit-
ting is less likely to occur using the multilevel feature selection technique.

As shown in Figure 6, the classification error rate on independent test sets
begins to increase continually when the number of basic iterations at the coars-
est level is set at 35 and beyond. That is, using the near-optimal feature sub-
set selected by the multilevel technique as the underlying feature space in the
design of a classifier, the classification performance degrades due to overfitting
when the computational cost assigned to the multilevel technique is 21000 (i.e.,
c = 35 × 100 + 70 × 100 + 105 × 100 = 21000) and higher. For the tabu-
search-based feature selection technique, the number of basic iterations is set at
150; therefore the total computational costc is also given as:

c = 150× 100 = 15000.

For the random feature selection technique, the discriminatory capability of 15000
randomly selected subsets is examined and the optimal subset is the subset having
the best fitness or evaluation. Therefore, the computational cost for this technique
is also 15000.
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Some of the examined techniques (multilevel feature selection, tabu-search-
based feature selection, and random feature selection) have random components.
Examples of the random components are: the random selection of subsets; the
random generation of the initial solution and the random selection of candidate
sets of solutions from the neighborhood in the tabu search method underlying the
tabu-search-based and multilevel feature selection; and the random coarsening of
the feature subspaces in the multilevel feature selection. To normalize the ran-
domness in these techniques, the complete run is repeated on the same dataset
for a number of times that is predefined by a randomness factor. The average
of the evaluation parameters (i.e., the minimization objective function values, the
classification accuracies on the training datasets, and the classification accuracies
on the independent test datasets) is obtained and analyzed for the evaluated fea-
ture selection techniques. The value of the randomness factor is set at 5 for the
experiments implemented in this paper. To establish a trend in the comparison
of the evaluated feature selection techniques, we perform the experiments on 10
randomly partitioned pairs of training and test sets from the biomedical dataset
in order to establish a trend in the evaluation results. The techniques are imple-
mented using Java 2 SDK Standard Edition version 1.4.2 on Microsoft Windows
platform and the experiments are executed on a Dell high performance desktop
(Pentium 4 CPU 3.00GHz, 1.00GB of RAM) and IBM servers.

5.3 Experimental results and discussion

The results of the experiments are shown in Figures 7 and 8. Figure 7 compares
the training and test sets classification accuracies of a simple LDA classifier that is
designed using the near-optimal subsets selected by the various techniques. Figure
8 compares the standard deviation on training and test sets. Overall, the compar-
ison of the classification accuracies of the evaluated techniques over independent
test set instances shows that multilevel and tabu-search-based feature selection
techniques are better than the others feature selection techniques. Moreover, the
multilevel technique demonstrates better performance than the tabu-search-based
technique in terms of the three evaluation parameters (i.e., classification accuracy
on training set, and classification accuracy on independent test set and stability).
The performance of the better techniques can be attributed to the exploration strat-
egy of the underlying search method.
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Figure 7: Comparing the classification accuracies

Figure 8: Comparing standard deviations
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6 Conclusions & future work

Feature selection techniques for biomedical data are usually based on an underly-
ing search heuristic. We propose a new feature selection technique for biomedical
data that is based on a multilevel search algorithm. Using experimental results
from the implementation of the multilevel feature selection, a tabu-search-based
feature selection, sequential forward selection, and random feature selection, on
practical biomedical datasets, we compared the quality of the near-optimal subset
found by these techniques, given an equivalent amount of computational cost. The
results show tabu search and multilevel search as promising meta-heuristics for
finding near-optimal feature subsets in biomedical datasets. These meta-heuristics
consistently find near-optimal feature subsets having lower classification error rate
estimations (i.e., objective function values) and higher classification accuracies on
the training set than those found bySFSand the random feature selection. Also,
the meta-heuristics consistently produce relatively more stable classification accu-
racies than theSFSand the random feature selection, on independent test datasets,
a more relevant consideration.

In our future work, we will design and develop an enhanced version of the
multilevel feature selection technique and use it to identify biomarkers in biomed-
ical datasets. We will also investigate the strength of the coarsening strategy in
the multilevel technique in adapting to different forms of biomedical datasets.
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