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1. Introduction 

The rapid advancements in computer and 
networking technologies coupled with the 
emergence of new classes of applications with 
significantly increased resource requirements tend 
to rapidly depreciate the value of state-of-the-art 
computer and networking equipments. Therefore, it 
has become increasingly important to maximize the 
utilization of the resources so that users can recoup 
their investment. This paper describes the design of 
an auction system that can be used for trading 
computational resources in a wide-area network. 
More specifically this paper proposes and analyzes 
several heuristics that can be used to select the 
“winning” bids in such an auction system. 

The real-time auctioning system for resource 
trading in wide-area networks that is developed as 
part of this study is called the Computation Market 
(CM) [ChM00]. The universal connectivity made 
available by the Internet provides an ideal setting 
for the deployment of a system such as the CM. The 
model provided by CM supports on-demand 
acquisition of resources for temporary use. A 
facility such as this is crucial for the deployment of 
next generation Internet services [GrW00].  

The CM architecture divides the wide-area 
network into regions called local markets. A local 
market has an auction server and manages the 
resource transactions in the given network vicinity. 
The first level of CM focuses on intra-market 
resource flows and the second level of CM handles 
the inter-market resource flows. The core of the CM 

system is a bidding protocol. In the CM system, the 
auction server receives bids for the available 
resources and uses some “profit” maximization 
strategy to select the set of bids that should receive 
the resources. Because the CM allows the users to 
bid on different combinations of resources, 
determining the winning bids becomes NP-
complete [San99]. To address this problem, we 
propose several heuristics. We evaluate the 
performance of the proposed heuristics through 
simulations. The heuristics are also compared with 
an upper bound of the optimal scheme. 

Section 2 reviews the related work in bid 
selection algorithms. Section 3 presents the system 
architecture and explains why a fast algorithm is 
needed for bid selection. Section 4 describes the 
proposed heuristics for selecting the winning set of 
bids in the combinatorial auction. The simulation 
results are examined in Section 5. 

2. Related Work 

Due to space limitations, we provide a very 
brief survey of the existing literature here. An 
extensive survey of the literature can be found in 
[ChM00]. Here we discuss auction-based resource 
management systems from wide-area computing 
and combinatorial auctioning systems. 

Spawn [WaH92] is an implementation of 
distributed computational economy that uses 
money, price, and auction as mechanisms for 
exchange of resources. Our approach is distinct 
from Spawn in four aspects. First, Spawn is not an 
Internet-based system. Second, Spawn uses Vickery 



 

(second-price sealed-price) auction, while CM uses 
English (first-price open-cry) auction. Third, in 
Spawn, each machine maintains an auction 
mechanism, while 0.CM uses a domain-based 
auction mechanism with each local market having 
its own auction server. In our approach, a user can 
bid for resources within a local market and 
resources flow from surplus to scarce markets.  

Mariposa [StA95] implements an economic 
paradigm for managing query execution and storage 
management in a wide-area distributed database 
system. To decide where to run a query, a 
distributed advertising service is designed to 
provide information for finding sites that might 
want to bid on a query or portions of a query. 
During the bidding process, two protocols could be 
involved. One is a two-phase based expensive bid 
protocol, and the other is a purchase order protocol. 
Our two-level bidding architecture is similar to the 
architecture in Mariposa in several aspects. Our 
scheme allows bidding on various combinations of 
resources, which is not present in Mariposa. 

Mark [WeM98, WeW98] is an ongoing project 
that uses market-based adaptive architectures for 
information survivability. Mark also implements an 
on-line market architecture, which is built on the 
top of a general purpose Internet auction server. 
The Java Market project [AmB98] is another 
working system that aims to transform the Internet 
into a metacomputing system. The Java Market 
allows the producers and consumers to access the 
Java Market web pages anywhere on the Internet by 
simply running secure Java Applets on the web 
browser. The major difference between their model 
and ours is that their model lacks a hierarchical 
structure, which limits the scalability. Also, their 
model is not developed to provide efficient 
aggregation of resources that are located in the 
same network neighborhood into clusters. 

A search algorithm for optimally selecting a 
subset of winning bids is presented in [San99]. The 
search algorithm consists of four preprocessing 
steps and the main search. A special bid tree is used 
in the main search. The bid tree is a binary tree with 
the bids inserted at the leaves. The algorithm also 
uses an iterative deepening A* search strategy to 
speedup the main search. Similar to their algorithm, 
CM also uses heuristics to solve the winner 
determination problem in combinatorial auctions. 
However, our problem is more general because we 
can have multiple units for a particular item.  

Combinatorial auction multi-unit search 
(CAMUS) [LeS00] introduces a branch-and-bound 
technique for selecting the bids. Their search 
procedure also uses some heuristics ideas similar to 
the ones used in this paper. Another work that also 
uses a branch-and-bound technique to solve the 
multi-unit combinatorial auction problem is 
presented in [GoL00]. Their experiments show that 
the branch-and-bound techniques require both an 
upper bound for the value of best allocation and a 
good criterion to decide which bids are to be tried 
first. They suggest making use of average price per 
unit or an average price per unit related criteria in a 
branch-and-bound algorithm, which is quite similar 
to the use of rate to rank the bids in our bidding 
selection algorithm. A future study will compare 
our heuristics that are optimized for speed against 
the above algorithms. 

3. System Architecture 

The CM is an interconnection of several local 
markets. A local market is made up of an auction 
server (AS), local brokers (LBs), supplier agents 
(SAs), and consumer agents (CAs). The SAs 
represent machines that provide resources such as 
CPU, memory, disk while the CAs represent clients 
that are willing to pay in some currency for those 
resources. 

The resources are described using key 
performance attributes such as CPU speed, memory 
size, disk capacity, and I/O bandwidth and platform 
attributes such as operating system and compiler 
support. Users may specify the attributes of the 
desired resource using attribute-value pairs 
[RaL98]. To make the bid selection process 
manageable, we group the resources into a 
predefined set of hierarchical classes based on their 
attributes [ChM00]. 

Three major functions are offered by the AS: 
(a) a virtual market for local clients; (b) trading 
services in the global market; and (c) selection of 
the winning bids. The AS earns its revenue from 
three sources: (a) transaction fees charged on SAs 
and CAs; (b) profit made by selling cheap remote 
resources in the local market; and (c) profit made 
by selling surplus local resources in the global 
market. The goal of the AS is to maximize the 
profits from the services it offers. The LBs examine 
the bid post requests from the suppliers and 
determine whether different bid posts for 
independently managed but co-located resources 
could be grouped together to form clusters. The 



 

aggregation of resources in this manner provides an 
efficient solution to the co-allocation problem 
[FoK99]. The combining performed by the local 
brokers does not enforce the resources to be 
allocated as a block, i.e., the AS can “unbundle” the 
resources. The SAs and CAs are responsible for 
handling the submission and consumption of 
resources, respectively. The SA sets the reserved 
price (the lowest acceptable price) for the resource 
and the lowest acceptable increment between two 
bid prices for the resource. The CA is responsible 
for generating the bids taking the performance and 
desirability of the resources into consideration. 

In the CM, we use the English (first price open 
out-cry) auction. For a resource, the AS only 
accepts bids from a CA that are higher than the 
reserved price. Each CA bids iteratively for an item, 
it’s required that each subsequent bid should be 
higher than the current highest bid. The auction 
closes at a predefined time and the winning bids are 
determined by the AS. In CM, we may have 

kn resources of class k, where 1>>kn . In this 
situation, multiple bids will be accepted for such 
resource or resource combinations. The per-unit 
price for such resource classes are set at the lowest 
price out of the accepted bids.  

A CA can bid up to the maximum number of 
available items. We assume “universal” 
connectivity within a local market (i.e., 
communication cost is uniform irrespective of the 
source and destinations). An extension of this 
model is to include non-uniform intra-market 
connectivity and add “anonymous” remote market 
resources. The bidding process within a local 
market has is a two-step process. 

i) The CAs bid on combinations of items that 
are posted at the AS with a price higher 
than the current price.   

ii) The highest bidding price is reflected at the 
AS. The CAs can query the current highest 
price at the AS and review their bid if 
necessary. 

Steps i) and ii) may be iterated until bid closing. A 
CA may use some “utility” function to determine 
whether they should out bid other CAs. The two-
phase iterative bidding protocol can be 
communication intensive depending on the number 
of iteration performed until closing the bids. 

In CM, the AS closes the auctions periodically. 
The period in between two auction closings is 
called an auction session. Once the AS closes an 
auction session, it needs to decide the winning CAs. 
The time available for selecting the winners is 
constrained by the start time of the next auction 
session and the “available” times of the resources. 
When SAs advertise their resources in advance, the 
AS might be able to use computationally expensive 
bid selection algorithms that are closer to optimal. 
However, if the auctions are proceeding 
continuously with periodic closings, the bid 
selections should be done fast or the auctions 
should continue without the knowledge of the 
previous assignments. This may affect the trading 
behavior of the CAs and SAs.  

During an auction session, a local market may 
have higher demand than supply resulting in higher 
prices whereas another local market may have 
higher supply than demand resulting in lower 
prices. If remote resources can be consumed by at 
least some CAs, then inter-market resource flows 
should be carried out to even the supply and 
demand disparities. This paper, however, does not 
focus on inter-market resource flows [ChM00]. 

4. Bid Selection Heuristics 

The bid selection algorithm uses a bid tree [San99] 
that is essentially a binary tree with its depth equals 
to the number of resource classes. Our bid tree 
(simple example shown in Figure 1) is different 
from that of [San99] because in our system each 
resource class can have multiple units. Assume 
three resource classes with {20, 50, 30} number of 
resources in each class and with a five history 
average selling price of {3.5, 2.3, 0.6}, i.e., average 
selling price for the items over the previous five 
auction closings. These prices are used to compute 
the rate. The rate is defined value of bid based on 
the offered price divided by the value of the bid 
based on the five history average price. The bids 
submitted to the auction are shown in Table 1 

. The bids are inserted in the leaves of the bid tree. 
The path from the root to a leaf represents the 
classes of resources in a bid at the leaf. From any 
node, the left branch leads to a bid that includes the 
corresponding class of resource and the right branch 
otherwise. 

 
 



 

Table 1: An example list of bids submitted to the AS. 

Bid no. Bidder No. of items Prices Rate 
1 3 {5, 10, 0} {3.2, 2.3, 0} 0.963 
2 5 {3, 5, 0} {3.5, 2.3, 0} 1 
3 1 {8, 0, 12} {3.3, 0, 0.6} 1.012 
4 6 {2, 0, 0} {4, 0, 0} 1.143 
5 12 {6, 0, 0} {3.5, 0, 0} 1 
6 4 {0, 10, 0} {0, 2.3, 0} 1 
7 8 {0, 5, 0} {0, 2.4, 0} 1.043 
8 2 {0, 8, 0} {0, 2.5, 0} 1.087 
9 10 {0, 30, 20} {0, 2.3, 0.6} 1 

10 7 {0, 5, 10} {0, 2.4, 0.6} 1.087 
11 9 {0, 0, 5} {0, 0, 0.6} 1 
12 11 {0, 0, 30} {0, 0, 0.65} 1.083 

 

1
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Figure 1: The bidtree data structure for the bid in Table 1. 

The algorithm uses two stages in selecting the 
winning bids: the primary and secondary phases. 
We assume that the resource classes are arranged in 
descending order by their expected price. The 
primary phase starts with class 1 resources and adds 
bids until it can’t find any such bids or they cannot 
be included due to resource exhaustion. Then it 
adds class 2 resource and so on. 

A “selection mask” of size N is used to 
implement the primary phase. The n-th location of 
the mask corresponds to class n. A location in the 
mask has three states: “enabled,” “disabled,” and 
“any.” If a class’s corresponding mask value is 
“enabled,” the search space includes those bids that 
consist of this resource class. If a class’s 
corresponding variable is “disabled,” the search 

space excludes those bids that consist of this 
resource class. If a class’s corresponding variable is 
“any,” this resource class can be in or out of the 
search space. The primary phase algorithm is given 
below. 

1) The search starts with the first value “enabled” 
in the selection mask and others with “any.” For 
example, the selection mask values {“enabled,” 
“any,” “any”} search the bids that can be 
reached by traversing the paths {111, 110, 101, 
100}.  

2) The search determines the next bid to be added 
by considering the bid with the highest “fitness” 
in the search space. By choosing different 
parameters such as price, value, or rate, we can 
create a family of heuristics. If the available 



 

resources are enough to be allocated to the 
current highest rate bid, then move the bid to 
the solution list. 

3) Repeat step 2 until no bids can be added to the 
solution list.  

4) Change the “enabled” selection mask variable 
to “disabled” and set the next selection mask 
location to “enabled.” The search space changes 
due to the changes in the selection mask. 

5) Repeat step 2, 3, and 4 until all the selection 
mask locations are “disabled.” The primary 
phase terminates with a “disabled” selection 
mask. 

The solution obtained by the primary phase is 
improved by a secondary (refinement) phase. The 
algorithm records the minimum bid rate (β) in the 
solution list after the primary phase. During the 
refinement phase, we only consider those bids that 
remain in the bidtree with rates that are higher than 
β.  Those bids are moved from the bidtree to a 
back-list. The back-list can be sorted by rate, value, 
or price, depending on which parameter is used in 
the refinement phase.  Assume after the primary 
phase, the revenue is m. The following is a brief 
description of the refinement phase. 

The refinement phase examines the bids in the 
back-list starting at the top of the list. For each bid, 
it determines whether sufficient resources are 
available to accommodate the bid. If resources are 
found, the bid is inserted into a new solution list. 
Otherwise, bids are removed from the previous 
solution list to make room for the new bid. Once 
enough space is found, the bid from the back-list is 
inserted into the solution list. There may be some 
space for reinserting some of the removed bids or 
some more bids from the back-list into the solution 
list due to the removal of bids from the solution-list. 
A series of adds and removes may have been 
performed on the solution-list at this time. To 
determine the impact of these changes, the total 
revenue provided by the current version of the 

solution-list is evaluated. Let this revenue be p. This 
revenue is noted down in a history-list and if p > 
0.8*m, the search continues examining the rest of 
the bids on the back-list. 

The modifications performed to the solution 
list are tagged by the last known revenue and 
recorded in a history-list. Once the refinement 
phase terminates due to the revenue falling below 
0.8m or empty back-list, the history-list is used to 
roll-back to the best solution that was found during 
the refinement phase. 

5. Simulation Results and Discussion 

In this section, we present the results from the 
simulations that evaluate the performance of the bid 
selection heuristics under different scenarios. All 
heuristics are based on the primary and refinement 
phases explained in Section 4. In the first heuristic 
called the VR, we use the bid value (V) to order the 
entries at the leaves of the bidtree and then refine by 
the rate (R). The second heuristic (RV) uses rate for 
the primary phase and value for the refinement 
phase. Similarly, the third heuristic RP uses rate for 
the primary phase and price for the refinement 
phase. 

Table 2 shows the relative performance of the 
heuristics for test case A: 1000 bids, 500 mean 
items per bid, and 4 mean classes per bid. Table 3 
shows the relative performance of heuristics for test 
case B: 1000 bids, 100 mean items per bid, and 4 
mean classes per bid. Table 4 shows the relative 
performance of the heuristics for test case C: 1000 
bids, 100 mean items per bid, and 2 mean classes 
per bid. Each data point in the above tables is the 
average of 100 simulation runs. There were fifteen 
classes of resources in the simulations. The number 
of resources per class (i.e., number of machines per 
class) was set arbitrarily from the range (2000-
2250) and the reserve price for the resources was 
set from the range (0.5-4.5). 

Table 2: Performance of the bid selection heuristics for test case A. 

 
 

Heuristics Upper 
bound 

Primary phase 
 

P-P as percent 
of upper bound 

Refinement 
phase 

Improvement 
through 
refinement 

Final result  
as percent of  
upper bound 

VR 98226 79557 80.99 % 84411 6.10  % 85.94 % 
RV 98226 84886 86.42 % 85388 0.60  % 86.93 % 
RP 98226 84886 86.42 % 87265 2.80  % 88.84 % 



 

Table 3: Performance of the bid selection heuristics for test case B. 

Heuristics Upper 
bound 

Primary phase 
 

P-P as percent 
of upper bound 

Refinement 
phase 
 

Improvement 
through 
refinement 
 

Final result  
as percent of  
upper bound 

VR 92001 79001 85.87 % 81847 3.60  % 88.96 % 
RV 92001 83795 91.08 % 84005 0.25  % 91.31 % 
RP 92001 93795 91.08 % 85231 1.71  % 92.64 % 

 

Table 4: Performance of the bid selection heuristics for test case C. 

Heuristics Upper 
bound 

Primary phase P-P as percent 
of upper bound 

Refinement 
phase 

Improvement 
through 
refinement 
 

Final result 
as percent of  
upper bound 

VR 102516 80870 78.88 % 87924 8.72  % 85.76 % 
RV 102516 88851 86.67 % 89532 0.77  % 87.33 % 
RP 102516 88851 86.67 % 92428 4.02  % 90.16 % 

 

The results show that bid value based primary 
phase has the worst results. For test cases A, B, and 
C, bid value based primary phase results are 
(80.99%, 85.87%, 78.88%) as comparing to 
(86.42%, 91.08%, 86.67%) for rate based primary 
phase. Particularly interesting is that observation 
that when average bid size is small (test case B), the 
primary phase yields better results than with bigger 
average bid sizes (test cases A and C). Further, the 
rate based primary phase combined with price 
based refinement performs the best in all test cases. 
This suggests that price (or price related factor such 
as rate) has the most impact on the revenue. The 
VR approach has the biggest refinement (6.10%, 
3.60%, 8.72%) in any of the test cases. It can be 
observed that bigger the bid size is the refinement 
phase benefits more. However, irrespective of the 
refinement improvement, the final results of VR are 
always worse than RV and RP. Intuitively, this 
suggests that considering the most promising bids 
in terms of producing the revenue first has a 
significant impact on the final result. 

6. Conclusion and Future Work 

This study focuses on the development of an 
auctioning based “on demand” resource acquisition 
and/or trading system for wide-area network 
computing systems called the Computation Market 
(CM). This paper, in particular, focuses on 
designing bid selection heuristics that can be used 
by the auctioning system that is part of CM. We 
consider a real-time auctioning system that 
periodically closes the bidding process and chooses 
the winners. To address the scalability, site 

autonomy, heterogeneity, and extensibility we 
organize the CM as an interconnection of local 
markets. A local market spans a limited network 
vicinity.  

Although auctioning has been studied in 
several contexts, only recently researchers have 
started examining the multi-unit combinatorial 
auctioning problem [GoL00, LeS00]. The 
combinatorial auctioning problem is NP-complete 
even for the single unit case [San99] and it is even 
harder to solve for the multi-unit case. Because we 
are examining the real-time variant of the problem, 
we need to solve the winner determination problem 
as soon as possible. Motivated by this need for a 
“speedy” solution, we present a class of fast 
heuristics in this paper.  

The heuristics presented are within 10-15% of 
an upper bound for the optimal solution. The 
heuristics have two phases. Depending on the time 
constraints, we could use the primary phase or both 
phases. From the simulation studies, we note that 
the refinement phase improves the solution obtained 
by the primary phase in all cases. However, the 
margin of improvement depends on what parameter 
was used for ordering the bids.  

Several aspects this problem needs further 
examination. Because there aren’t any existing 
systems like CM, our evaluation studies (for the 
heuristics) were based on synthetic data. Recently, a 
proposal has been made to develop a unified test 
suite for combinatorial auctions [LeP00]. Suitability 
of this test suite for the wide-area networking 
problem domain will be studied in the future. 
Further, our heuristics will be compared with 



 

branch-and-bound based solutions [GoL00, LeS00] 
for speed and quality.  

 

References 

[AmB98] Y. Amir, B. Awerbuch, and R. S. 
Borgstrom, The Java Market: 
Transforming the Internet into a 
Metacomputer,  Technical Report, 
CNDS-98-1, Department of Computer 
Science, John Hopkins University, 1998. 

[ChM00] C. Chen, M. Maheswaran, and M. 
Toulouse, Computation Market: An 
Online Auction for Wide-Area Network 
Computing Systems,  Technical Report 
TR-CS-01-10, Department of Computer 
Science, University of Manitoba, 2000. 

[FoK99] I. Foster and C. Kesselman, The Grid: 
Blueprint for a New Computing 
Infrastructure, Morgan Kaufmann, San 
Fransisco, CA, 1999. 

[GoL00] R. Gonen and D. J. Lehmann, “Optimal 
olutions for multi-unit combinatorial 
auctions: Branch and bound heuristics,” 
ACM Conference on Electronic 
Commerce, 2000, pp. 13-20. 

[GrW00] S. D. Gribble, M. Welsh, R. von Behren, 
E. A. Brewer, D. Culler, N. Borisov, S. 
Czerwinski, R. Gummadi, J. Hill, A. 
Joseph, R.H. Katz, Z.M. Mao, S. Ross, 
and B. Zhao, “The Ninja Architecture for 
Robust Internet-Scale Systems and 
Services,” Computer Networks (Special 
Issue on Pervasive Computing), 2000. 

[LeP00] K. Leyton-Brown, M. Pearson, and Y. 
Shoham, “Towards a Universal Test Suite 
for Combinatorial Auctions,” 2000 ACM 
Conference on Electronic Commerce 
(EC'00), 2000. 

[LeS00] K. Leyton-Brown, Y. Shoham, and M. 
Tennenholtz, “An Algorithm for Multi-
Unit Combinatorial Auctions,” 17th 
National Conference on Artificial 
Intelligence, 2000. 

[RaL98] R. Raman, M. Livny, and M. Solomon, 
“Matchmaking: Distributed resource 
management for high throughput 
computing,” 7th IEEE International 
Symposium on High Performance 
Distributed Computing, 1998, pp. 28-31. 

[San99] T. Sandholm, “An Algorithm for Optimal 
Winner Determination in Combinatorial 
Auctions,” International Joint 
Conference on Artificial Intelligence 
(IJCAI), 1999, pp. 542-547. 

[StA95] M. Stonebraker, P. M. Aoki, A. Pfeffer, 
A. Sah, J. Sidell, C. Staelin, and A. Yu, 
“Mariposa: A wide-area distributed 
database system,” VLDB Journal, Vol. 5, 
No. 1, Jan. 1996, pp. 48-63. 

[WaH92] C. A. Waldspurger, T. Hogg, B. A. 
Huberman, J. O. Kephart, and W. S. 
Stornetta, “Spawn: A Distributed 
Computational Economy,” IEEE 
Transaction on Software Engineering, 
Vol. 18, No. 2, Feb. 1992. 

[WeM98] M. P. Wellman, J. K. Mackie-Mason, and 
S. Jamin, “Market-based adaptive 
architectures for information 
survivability,” 
http://www.darpa.mil/ito/psu
m1998, 1998. 

[WeW98] M. P. Wellman and P. R. Wurman, “Real 
time issues for Internet auctions,” First 
IEEE Workshop on Dependable and 
Real-Time E-Commerce Systems (DARE-
98), June 1998. 

 

 


