

On Bid Selection Heuristics for Real-Time Auctioning
for Wide-Area Network Resource Management*

Chunming Chen, Muthucumaru Maheswaran, and Michel Toulouse

Advanced Networking Research Laboratory

Department of Computer Science
University of Manitoba

Winnipeg, MB R3T 2N2
Canada

* This research is supported by a TRLabs Scholarship.

1. Introduction

The rapid advancements in computer and
networking technologies coupled with the
emergence of new classes of applications with
significantly increased resource requirements tend
to rapidly depreciate the value of state-of-the-art
computer and networking equipments. Therefore, it
has become increasingly important to maximize the
utilization of the resources so that users can recoup
their investment. This paper describes the design of
an auction system that can be used for trading
computational resources in a wide-area network.
More specifically this paper proposes and analyzes
several heuristics that can be used to select the
“winning” bids in such an auction system.

The real-time auctioning system for resource
trading in wide-area networks that is developed as
part of this study is called the Computation Market
(CM) [ChM00]. The universal connectivity made
available by the Internet provides an ideal setting
for the deployment of a system such as the CM. The
model provided by CM supports on-demand
acquisition of resources for temporary use. A
facility such as this is crucial for the deployment of
next generation Internet services [GrW00].

The CM architecture divides the wide-area
network into regions called local markets. A local
market has an auction server and manages the
resource transactions in the given network vicinity.
The first level of CM focuses on intra-market
resource flows and the second level of CM handles
the inter-market resource flows. The core of the CM

system is a bidding protocol. In the CM system, the
auction server receives bids for the available
resources and uses some “profit” maximization
strategy to select the set of bids that should receive
the resources. Because the CM allows the users to
bid on different combinations of resources,
determining the winning bids becomes NP-
complete [San99]. To address this problem, we
propose several heuristics. We evaluate the
performance of the proposed heuristics through
simulations. The heuristics are also compared with
an upper bound of the optimal scheme.

Section 2 reviews the related work in bid
selection algorithms. Section 3 presents the system
architecture and explains why a fast algorithm is
needed for bid selection. Section 4 describes the
proposed heuristics for selecting the winning set of
bids in the combinatorial auction. The simulation
results are examined in Section 5.

2. Related Work

Due to space limitations, we provide a very
brief survey of the existing literature here. An
extensive survey of the literature can be found in
[ChM00]. Here we discuss auction-based resource
management systems from wide-area computing
and combinatorial auctioning systems.

Spawn [WaH92] is an implementation of
distributed computational economy that uses
money, price, and auction as mechanisms for
exchange of resources. Our approach is distinct
from Spawn in four aspects. First, Spawn is not an
Internet-based system. Second, Spawn uses Vickery

(second-price sealed-price) auction, while CM uses
English (first-price open-cry) auction. Third, in
Spawn, each machine maintains an auction
mechanism, while 0.CM uses a domain-based
auction mechanism with each local market having
its own auction server. In our approach, a user can
bid for resources within a local market and
resources flow from surplus to scarce markets.

Mariposa [StA95] implements an economic
paradigm for managing query execution and storage
management in a wide-area distributed database
system. To decide where to run a query, a
distributed advertising service is designed to
provide information for finding sites that might
want to bid on a query or portions of a query.
During the bidding process, two protocols could be
involved. One is a two-phase based expensive bid
protocol, and the other is a purchase order protocol.
Our two-level bidding architecture is similar to the
architecture in Mariposa in several aspects. Our
scheme allows bidding on various combinations of
resources, which is not present in Mariposa.

Mark [WeM98, WeW98] is an ongoing project
that uses market-based adaptive architectures for
information survivability. Mark also implements an
on-line market architecture, which is built on the
top of a general purpose Internet auction server.
The Java Market project [AmB98] is another
working system that aims to transform the Internet
into a metacomputing system. The Java Market
allows the producers and consumers to access the
Java Market web pages anywhere on the Internet by
simply running secure Java Applets on the web
browser. The major difference between their model
and ours is that their model lacks a hierarchical
structure, which limits the scalability. Also, their
model is not developed to provide efficient
aggregation of resources that are located in the
same network neighborhood into clusters.

A search algorithm for optimally selecting a
subset of winning bids is presented in [San99]. The
search algorithm consists of four preprocessing
steps and the main search. A special bid tree is used
in the main search. The bid tree is a binary tree with
the bids inserted at the leaves. The algorithm also
uses an iterative deepening A* search strategy to
speedup the main search. Similar to their algorithm,
CM also uses heuristics to solve the winner
determination problem in combinatorial auctions.
However, our problem is more general because we
can have multiple units for a particular item.

Combinatorial auction multi-unit search
(CAMUS) [LeS00] introduces a branch-and-bound
technique for selecting the bids. Their search
procedure also uses some heuristics ideas similar to
the ones used in this paper. Another work that also
uses a branch-and-bound technique to solve the
multi-unit combinatorial auction problem is
presented in [GoL00]. Their experiments show that
the branch-and-bound techniques require both an
upper bound for the value of best allocation and a
good criterion to decide which bids are to be tried
first. They suggest making use of average price per
unit or an average price per unit related criteria in a
branch-and-bound algorithm, which is quite similar
to the use of rate to rank the bids in our bidding
selection algorithm. A future study will compare
our heuristics that are optimized for speed against
the above algorithms.

3. System Architecture

The CM is an interconnection of several local
markets. A local market is made up of an auction
server (AS), local brokers (LBs), supplier agents
(SAs), and consumer agents (CAs). The SAs
represent machines that provide resources such as
CPU, memory, disk while the CAs represent clients
that are willing to pay in some currency for those
resources.

The resources are described using key
performance attributes such as CPU speed, memory
size, disk capacity, and I/O bandwidth and platform
attributes such as operating system and compiler
support. Users may specify the attributes of the
desired resource using attribute-value pairs
[RaL98]. To make the bid selection process
manageable, we group the resources into a
predefined set of hierarchical classes based on their
attributes [ChM00].

Three major functions are offered by the AS:
(a) a virtual market for local clients; (b) trading
services in the global market; and (c) selection of
the winning bids. The AS earns its revenue from
three sources: (a) transaction fees charged on SAs
and CAs; (b) profit made by selling cheap remote
resources in the local market; and (c) profit made
by selling surplus local resources in the global
market. The goal of the AS is to maximize the
profits from the services it offers. The LBs examine
the bid post requests from the suppliers and
determine whether different bid posts for
independently managed but co-located resources
could be grouped together to form clusters. The

aggregation of resources in this manner provides an
efficient solution to the co-allocation problem
[FoK99]. The combining performed by the local
brokers does not enforce the resources to be
allocated as a block, i.e., the AS can “unbundle” the
resources. The SAs and CAs are responsible for
handling the submission and consumption of
resources, respectively. The SA sets the reserved
price (the lowest acceptable price) for the resource
and the lowest acceptable increment between two
bid prices for the resource. The CA is responsible
for generating the bids taking the performance and
desirability of the resources into consideration.

In the CM, we use the English (first price open
out-cry) auction. For a resource, the AS only
accepts bids from a CA that are higher than the
reserved price. Each CA bids iteratively for an item,
it’s required that each subsequent bid should be
higher than the current highest bid. The auction
closes at a predefined time and the winning bids are
determined by the AS. In CM, we may have

kn resources of class k, where 1>>kn . In this
situation, multiple bids will be accepted for such
resource or resource combinations. The per-unit
price for such resource classes are set at the lowest
price out of the accepted bids.

A CA can bid up to the maximum number of
available items. We assume “universal”
connectivity within a local market (i.e.,
communication cost is uniform irrespective of the
source and destinations). An extension of this
model is to include non-uniform intra-market
connectivity and add “anonymous” remote market
resources. The bidding process within a local
market has is a two-step process.

i) The CAs bid on combinations of items that
are posted at the AS with a price higher
than the current price.

ii) The highest bidding price is reflected at the
AS. The CAs can query the current highest
price at the AS and review their bid if
necessary.

Steps i) and ii) may be iterated until bid closing. A
CA may use some “utility” function to determine
whether they should out bid other CAs. The two-
phase iterative bidding protocol can be
communication intensive depending on the number
of iteration performed until closing the bids.

In CM, the AS closes the auctions periodically.
The period in between two auction closings is
called an auction session. Once the AS closes an
auction session, it needs to decide the winning CAs.
The time available for selecting the winners is
constrained by the start time of the next auction
session and the “available” times of the resources.
When SAs advertise their resources in advance, the
AS might be able to use computationally expensive
bid selection algorithms that are closer to optimal.
However, if the auctions are proceeding
continuously with periodic closings, the bid
selections should be done fast or the auctions
should continue without the knowledge of the
previous assignments. This may affect the trading
behavior of the CAs and SAs.

During an auction session, a local market may
have higher demand than supply resulting in higher
prices whereas another local market may have
higher supply than demand resulting in lower
prices. If remote resources can be consumed by at
least some CAs, then inter-market resource flows
should be carried out to even the supply and
demand disparities. This paper, however, does not
focus on inter-market resource flows [ChM00].

4. Bid Selection Heuristics

The bid selection algorithm uses a bid tree [San99]
that is essentially a binary tree with its depth equals
to the number of resource classes. Our bid tree
(simple example shown in Figure 1) is different
from that of [San99] because in our system each
resource class can have multiple units. Assume
three resource classes with {20, 50, 30} number of
resources in each class and with a five history
average selling price of {3.5, 2.3, 0.6}, i.e., average
selling price for the items over the previous five
auction closings. These prices are used to compute
the rate. The rate is defined value of bid based on
the offered price divided by the value of the bid
based on the five history average price. The bids
submitted to the auction are shown in Table 1

. The bids are inserted in the leaves of the bid tree.
The path from the root to a leaf represents the
classes of resources in a bid at the leaf. From any
node, the left branch leads to a bid that includes the
corresponding class of resource and the right branch
otherwise.

Table 1: An example list of bids submitted to the AS.

Bid no. Bidder No. of items Prices Rate
1 3 {5, 10, 0} {3.2, 2.3, 0} 0.963
2 5 {3, 5, 0} {3.5, 2.3, 0} 1
3 1 {8, 0, 12} {3.3, 0, 0.6} 1.012
4 6 {2, 0, 0} {4, 0, 0} 1.143
5 12 {6, 0, 0} {3.5, 0, 0} 1
6 4 {0, 10, 0} {0, 2.3, 0} 1
7 8 {0, 5, 0} {0, 2.4, 0} 1.043
8 2 {0, 8, 0} {0, 2.5, 0} 1.087
9 10 {0, 30, 20} {0, 2.3, 0.6} 1

10 7 {0, 5, 10} {0, 2.4, 0.6} 1.087
11 9 {0, 0, 5} {0, 0, 0.6} 1
12 11 {0, 0, 30} {0, 0, 0.65} 1.083

1

Rate: 1
{3, 5, 0}

{3.5,2.3,0}

Rate:1.102
{8,0,12}

{3.3,0,0.6}

Rate:1.143
{2, 0, 0}

{4.0, 0, 0}

Rate: 1
{6, 0, 0}

{3.5, 0, 0}

Rate:1.029
{0, 5, 10}

{0, 2.4, 0.6}

Rate: 1.0
{0, 30, 20}

{0, 2.3, 0.6}

Rate:1.083
{0. 0, 30}

{0, 0, 0.65}

Rate: 1.0
{0, 0, 5}
0, 0, 0.6}

Rate: 1.0
{0, 10, 0}
{0, 2.3, 0}

Rate:1.043
{0, 5, 0}

{0, 2.4, 0}

Rate:1.087
{0, 8, 0}

{0, 2.5, 0}

Rate:0.963
{5, 10, 0}

{3.2, 2.3, 0}

0

1

1 0

0

1 0

1 0

1 0

Figure 1: The bidtree data structure for the bid in Table 1.

The algorithm uses two stages in selecting the
winning bids: the primary and secondary phases.
We assume that the resource classes are arranged in
descending order by their expected price. The
primary phase starts with class 1 resources and adds
bids until it can’t find any such bids or they cannot
be included due to resource exhaustion. Then it
adds class 2 resource and so on.

A “selection mask” of size N is used to
implement the primary phase. The n-th location of
the mask corresponds to class n. A location in the
mask has three states: “enabled,” “disabled,” and
“any.” If a class’s corresponding mask value is
“enabled,” the search space includes those bids that
consist of this resource class. If a class’s
corresponding variable is “disabled,” the search

space excludes those bids that consist of this
resource class. If a class’s corresponding variable is
“any,” this resource class can be in or out of the
search space. The primary phase algorithm is given
below.

1) The search starts with the first value “enabled”
in the selection mask and others with “any.” For
example, the selection mask values {“enabled,”
“any,” “any”} search the bids that can be
reached by traversing the paths {111, 110, 101,
100}.

2) The search determines the next bid to be added
by considering the bid with the highest “fitness”
in the search space. By choosing different
parameters such as price, value, or rate, we can
create a family of heuristics. If the available

resources are enough to be allocated to the
current highest rate bid, then move the bid to
the solution list.

3) Repeat step 2 until no bids can be added to the
solution list.

4) Change the “enabled” selection mask variable
to “disabled” and set the next selection mask
location to “enabled.” The search space changes
due to the changes in the selection mask.

5) Repeat step 2, 3, and 4 until all the selection
mask locations are “disabled.” The primary
phase terminates with a “disabled” selection
mask.

The solution obtained by the primary phase is
improved by a secondary (refinement) phase. The
algorithm records the minimum bid rate (β) in the
solution list after the primary phase. During the
refinement phase, we only consider those bids that
remain in the bidtree with rates that are higher than
β. Those bids are moved from the bidtree to a
back-list. The back-list can be sorted by rate, value,
or price, depending on which parameter is used in
the refinement phase. Assume after the primary
phase, the revenue is m. The following is a brief
description of the refinement phase.

The refinement phase examines the bids in the
back-list starting at the top of the list. For each bid,
it determines whether sufficient resources are
available to accommodate the bid. If resources are
found, the bid is inserted into a new solution list.
Otherwise, bids are removed from the previous
solution list to make room for the new bid. Once
enough space is found, the bid from the back-list is
inserted into the solution list. There may be some
space for reinserting some of the removed bids or
some more bids from the back-list into the solution
list due to the removal of bids from the solution-list.
A series of adds and removes may have been
performed on the solution-list at this time. To
determine the impact of these changes, the total
revenue provided by the current version of the

solution-list is evaluated. Let this revenue be p. This
revenue is noted down in a history-list and if p >
0.8*m, the search continues examining the rest of
the bids on the back-list.

The modifications performed to the solution
list are tagged by the last known revenue and
recorded in a history-list. Once the refinement
phase terminates due to the revenue falling below
0.8m or empty back-list, the history-list is used to
roll-back to the best solution that was found during
the refinement phase.

5. Simulation Results and Discussion

In this section, we present the results from the
simulations that evaluate the performance of the bid
selection heuristics under different scenarios. All
heuristics are based on the primary and refinement
phases explained in Section 4. In the first heuristic
called the VR, we use the bid value (V) to order the
entries at the leaves of the bidtree and then refine by
the rate (R). The second heuristic (RV) uses rate for
the primary phase and value for the refinement
phase. Similarly, the third heuristic RP uses rate for
the primary phase and price for the refinement
phase.

Table 2 shows the relative performance of the
heuristics for test case A: 1000 bids, 500 mean
items per bid, and 4 mean classes per bid. Table 3
shows the relative performance of heuristics for test
case B: 1000 bids, 100 mean items per bid, and 4
mean classes per bid. Table 4 shows the relative
performance of the heuristics for test case C: 1000
bids, 100 mean items per bid, and 2 mean classes
per bid. Each data point in the above tables is the
average of 100 simulation runs. There were fifteen
classes of resources in the simulations. The number
of resources per class (i.e., number of machines per
class) was set arbitrarily from the range (2000-
2250) and the reserve price for the resources was
set from the range (0.5-4.5).

Table 2: Performance of the bid selection heuristics for test case A.

Heuristics Upper
bound

Primary phase

P-P as percent
of upper bound

Refinement
phase

Improvement
through
refinement

Final result
as percent of
upper bound

VR 98226 79557 80.99 % 84411 6.10 % 85.94 %
RV 98226 84886 86.42 % 85388 0.60 % 86.93 %
RP 98226 84886 86.42 % 87265 2.80 % 88.84 %

Table 3: Performance of the bid selection heuristics for test case B.

Heuristics Upper
bound

Primary phase

P-P as percent
of upper bound

Refinement
phase

Improvement
through
refinement

Final result
as percent of
upper bound

VR 92001 79001 85.87 % 81847 3.60 % 88.96 %
RV 92001 83795 91.08 % 84005 0.25 % 91.31 %
RP 92001 93795 91.08 % 85231 1.71 % 92.64 %

Table 4: Performance of the bid selection heuristics for test case C.

Heuristics Upper
bound

Primary phase P-P as percent
of upper bound

Refinement
phase

Improvement
through
refinement

Final result
as percent of
upper bound

VR 102516 80870 78.88 % 87924 8.72 % 85.76 %
RV 102516 88851 86.67 % 89532 0.77 % 87.33 %
RP 102516 88851 86.67 % 92428 4.02 % 90.16 %

The results show that bid value based primary
phase has the worst results. For test cases A, B, and
C, bid value based primary phase results are
(80.99%, 85.87%, 78.88%) as comparing to
(86.42%, 91.08%, 86.67%) for rate based primary
phase. Particularly interesting is that observation
that when average bid size is small (test case B), the
primary phase yields better results than with bigger
average bid sizes (test cases A and C). Further, the
rate based primary phase combined with price
based refinement performs the best in all test cases.
This suggests that price (or price related factor such
as rate) has the most impact on the revenue. The
VR approach has the biggest refinement (6.10%,
3.60%, 8.72%) in any of the test cases. It can be
observed that bigger the bid size is the refinement
phase benefits more. However, irrespective of the
refinement improvement, the final results of VR are
always worse than RV and RP. Intuitively, this
suggests that considering the most promising bids
in terms of producing the revenue first has a
significant impact on the final result.

6. Conclusion and Future Work

This study focuses on the development of an
auctioning based “on demand” resource acquisition
and/or trading system for wide-area network
computing systems called the Computation Market
(CM). This paper, in particular, focuses on
designing bid selection heuristics that can be used
by the auctioning system that is part of CM. We
consider a real-time auctioning system that
periodically closes the bidding process and chooses
the winners. To address the scalability, site

autonomy, heterogeneity, and extensibility we
organize the CM as an interconnection of local
markets. A local market spans a limited network
vicinity.

Although auctioning has been studied in
several contexts, only recently researchers have
started examining the multi-unit combinatorial
auctioning problem [GoL00, LeS00]. The
combinatorial auctioning problem is NP-complete
even for the single unit case [San99] and it is even
harder to solve for the multi-unit case. Because we
are examining the real-time variant of the problem,
we need to solve the winner determination problem
as soon as possible. Motivated by this need for a
“speedy” solution, we present a class of fast
heuristics in this paper.

The heuristics presented are within 10-15% of
an upper bound for the optimal solution. The
heuristics have two phases. Depending on the time
constraints, we could use the primary phase or both
phases. From the simulation studies, we note that
the refinement phase improves the solution obtained
by the primary phase in all cases. However, the
margin of improvement depends on what parameter
was used for ordering the bids.

Several aspects this problem needs further
examination. Because there aren’t any existing
systems like CM, our evaluation studies (for the
heuristics) were based on synthetic data. Recently, a
proposal has been made to develop a unified test
suite for combinatorial auctions [LeP00]. Suitability
of this test suite for the wide-area networking
problem domain will be studied in the future.
Further, our heuristics will be compared with

branch-and-bound based solutions [GoL00, LeS00]
for speed and quality.

References

[AmB98] Y. Amir, B. Awerbuch, and R. S.
Borgstrom, The Java Market:
Transforming the Internet into a
Metacomputer, Technical Report,
CNDS-98-1, Department of Computer
Science, John Hopkins University, 1998.

[ChM00] C. Chen, M. Maheswaran, and M.
Toulouse, Computation Market: An
Online Auction for Wide-Area Network
Computing Systems, Technical Report
TR-CS-01-10, Department of Computer
Science, University of Manitoba, 2000.

[FoK99] I. Foster and C. Kesselman, The Grid:
Blueprint for a New Computing
Infrastructure, Morgan Kaufmann, San
Fransisco, CA, 1999.

[GoL00] R. Gonen and D. J. Lehmann, “Optimal
olutions for multi-unit combinatorial
auctions: Branch and bound heuristics,”
ACM Conference on Electronic
Commerce, 2000, pp. 13-20.

[GrW00] S. D. Gribble, M. Welsh, R. von Behren,
E. A. Brewer, D. Culler, N. Borisov, S.
Czerwinski, R. Gummadi, J. Hill, A.
Joseph, R.H. Katz, Z.M. Mao, S. Ross,
and B. Zhao, “The Ninja Architecture for
Robust Internet-Scale Systems and
Services,” Computer Networks (Special
Issue on Pervasive Computing), 2000.

[LeP00] K. Leyton-Brown, M. Pearson, and Y.
Shoham, “Towards a Universal Test Suite
for Combinatorial Auctions,” 2000 ACM
Conference on Electronic Commerce
(EC'00), 2000.

[LeS00] K. Leyton-Brown, Y. Shoham, and M.
Tennenholtz, “An Algorithm for Multi-
Unit Combinatorial Auctions,” 17th
National Conference on Artificial
Intelligence, 2000.

[RaL98] R. Raman, M. Livny, and M. Solomon,
“Matchmaking: Distributed resource
management for high throughput
computing,” 7th IEEE International
Symposium on High Performance
Distributed Computing, 1998, pp. 28-31.

[San99] T. Sandholm, “An Algorithm for Optimal
Winner Determination in Combinatorial
Auctions,” International Joint
Conference on Artificial Intelligence
(IJCAI), 1999, pp. 542-547.

[StA95] M. Stonebraker, P. M. Aoki, A. Pfeffer,
A. Sah, J. Sidell, C. Staelin, and A. Yu,
“Mariposa: A wide-area distributed
database system,” VLDB Journal, Vol. 5,
No. 1, Jan. 1996, pp. 48-63.

[WaH92] C. A. Waldspurger, T. Hogg, B. A.
Huberman, J. O. Kephart, and W. S.
Stornetta, “Spawn: A Distributed
Computational Economy,” IEEE
Transaction on Software Engineering,
Vol. 18, No. 2, Feb. 1992.

[WeM98] M. P. Wellman, J. K. Mackie-Mason, and
S. Jamin, “Market-based adaptive
architectures for information
survivability,”
http://www.darpa.mil/ito/psu
m1998, 1998.

[WeW98] M. P. Wellman and P. R. Wurman, “Real
time issues for Internet auctions,” First
IEEE Workshop on Dependable and
Real-Time E-Commerce Systems (DARE-
98), June 1998.

