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Abstract. The partial digest problem consists in retrieving the positions of a set of points

on the real line from their unlabeled pairwise distances. This problem is critical for DNA

sequencing, as well as for phase retrieval in X-ray crystallography. When some of the distances

are missing, this problem generalizes into a “minimum distance superset problem”, which aims

to find a set of points of minimum cardinality such that the multiset of their pairwise distances

is a superset of the input.

We introduce a quadratic integer programming formulation for the minimum distance su-

perset problem with a pseudo-polynomial number of variables, as well as a polynomial-size

integer programming formulation. We investigate three types of solution approaches based on an

available integer programming solver: 1) solving a linearization of the pseudo-polynomial-sized

formulation, 2) solving the complete polynomial-sized formulation, or 3) performing a binary

search over the number of points and solving a simpler feasibility or optimization problem at

each step. As illustrated by our computational experiments, the polynomial formulation with

binary search leads to the most promising results, allowing to optimally solve most instances

with up to 25 distance values and 8 solution points.

Keywords. Partial digest problem, Minimum distance superset, Turnpike problem, Combina-

torial optimization, Integer programming

1 Introduction

Computing all pairwise distances from a set of n points on the real line is simple. In contrast,

from an unlabeled set of
(
n
2

)
pairwise distances, retrieving the positions of a set of n points on

the line is a much greater challenge, which has attracted a significant research effort in recent

years, as reviewed in details in Lemke et al. (2003). This problem is commonly known as the
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partial digest problem (PDP – Skiena and Sundaram 1994), and sometimes called turnpike

problem (Dakic, 2000), or chords’ problem (Daurat et al., 2002, 2005).

Remarkably, whether this problem can be solved in polynomial time remains a long-standing

open research question. An efficient backtracking algorithm, due to Skiena et al. (1990), achieves

a computational complexity of O(2nn log n) in the worst case and O(n2 log n) with probability

1 for a random problem instance. Zhang (1994) shows an instance on which the exponential

behavior occurs. Interestingly, this particular instance also turns out to be solvable in polynomial

time via a semi-definite programming algorithm due to Dakic (2000). If the points of the solution

have to be placed in a k-dimensional space, then the problem is known to be NP-hard (Skiena

et al., 1990).

The first known appearance of the PDP comes from phase retrieval in X-ray crystallography

(Patterson, 1935, 1944). Later on, the problem became of major importance due to its applications

for DNA sequencing (Skiena et al., 1990; Skiena and Sundaram, 1994). Indeed, a DNA molecule

can be viewed as a string of nucleotides {A, C, G, T}. A restriction enzyme is a chemical

that cuts DNA at specific sequence patterns of nucleotides, called restriction sites. A digestion

experiment is performed by allowing a restriction enzyme to digest several clones of DNA

molecule and measuring the lengths of the resulting fragments. Retrieving the original locations

of the restriction sites from the lengths of the fragments becomes an instance of PDP.

Experiments and measurements are also never perfect. Four main sources of errors of digest

experiments are discussed in (Cieliebak et al., 2005): additional fragments, missing fragments,

measurement errors and multiplicity detection. These errors complicate the task of retrieving

viable reconstructions of the molecule’s restriction sites. In particular, Skiena et al. (1990) proved

that the partial digestion problem is strongly NP-hard if additive error bounds are assigned

to each distance individually, while Cieliebak et al. (2003) proved that the problem variant

with missing fragments is NP-hard. Skiena and Sundaram (1994) generalized the backtracking

algorithm to address small measurement errors and inaccurate multiplicity detection. These

important variants of the PDP have been generally overlooked in the literature, and no efficient

algorithm has been proposed to solve problems with an arbitrarily high number of missing

fragments.

To fill this methodological gap, we investigate in this article the specific case of the PDP

with missing fragments. In this context, the goal of the reconstruction is to find the smallest set

of restriction sites locations which produces the input distances. We will refer to this problem

variant as the minimum distance superset problem (MDSP). A key challenge of this problem

relates to the high number of symmetrical feasible solutions, which cripples the performance of

tree search-based algorithms. Not only there usually exists several solutions that are equivalent

via translation and mirroring, but it is almost always possible to find similar solutions via

permutations of distances.

To solve the MDSP, we propose a quadratic programming formulation with a pseudo-

polynomial number of variables, which generalizes a quadratic PDP formulation from Dakic
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(2000), as well as some variable reductions and a reformulation-linearization of the model.

This approach is, however, only practicable when the number of distinct and non-negative

linear combinations of the input distances with coefficients in {−1, 0, 1} is relatively small. For

the general (NP-hard) problem, we introduce a new integer programming formulation with a

polynomial number of variables, as well as a decomposition technique for this formulation based

on binary search on the number of solution points. Our experimental analysis show that the

polynomial formulation can solve problems of realistic size for DNA sequencing applications,

with up to 25 distances and eventual missing fragments, laying a first foundation for the future

development of more advanced mathematical programming approaches.

2 Problem Statement

In the remainder of this paper, and unless specified, we will use the curly brackets {} to refer to

multisets (sets that allow possible repeated elements). Subtracting an element from a multiset

removes a single repetition, for example: {1, 1, 1, 3, 9, 12} − {1, 1, 3} = {1, 9, 12}. Repeated ele-

ments are taken into account in the cardinality and inclusion operators, e.g., {1, 3} ⊂ {1, 1, 3, 4}
but {1, 1, 3} 6⊂ {1, 3, 4}, and |{1, 1, 3}| = 3. Moreover, for a set P , we define as ∆(P ) the multiset

{q− p | p, q ∈ P, p < q} of pairwise distances of a set P . The minimum distance superset problem

(MDSP) can now be stated as follows:

MDSP: Given a multiset D = {d1, d2, . . . , dk} of k positive integers, find the smallest set

P ⊂ Z such that D ⊆ ∆(P ).

Denoting as n the size of the set P , we know that n ≤ k + 1, since it is always possible to

reconstruct k distances with k + 1 points. Moreover, |D| ≤ |∆(P )| and thus k ≤
(
n
2

)
, leading to

the following trivial bounds:

1/2 +
√

1/4 + 2k ≤ n ≤ k + 1. (1)

The MDSP generalizes the well-known partial digest problem (PDP), as an algorithm for

the former can solve the latter. More exactly, the PDP aims to verify whether the trivial lower

bound (and thus the equality k =
(
n
2

)
) is attained:

PDP: Given a multiset D = {d1, . . . , dk} of k =
(
n
2

)
positive integers, is there a set

P = {p1, . . . , pn} of n points on a line such that D = ∆(P )?

Note that both the PDP and MDSP can have more than one noncongruent solution set

P . Bloom’s distance set D = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 16, 17} (illustrated in Skiena

et al. 1990) is a good example, as two distinct reconstructions, illustrated in Figure 1, are

possible: P1 = {0, 1, 4, 10, 12, 17} and P2 = {0, 1, 8, 11, 13, 17} such that ∆(P1) = ∆(P2). It
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Figure 1: Two possible reconstructions for Bloom’s distance set

is also important to notice that these two solutions are not congruent, as there is no set of

rigid motions on the real line that can turn one solution into the other. For the PDP, Skiena

et al. (1990) proved that the maximum number of homometric reconstructions of an instance

of cardinality k = n(n− 1)/2 has an upper bound of 0.5n1.12334827. In contrast, in the case of

the MDSP, the number of non-congruent optimal reconstructions can grow exponentially. For

example, for D = {1, 2, 4, . . . , 2k−1}, there are at least k! optimal solutions of the form

P =

0,
∑
d∈S1

d, . . . ,
∑
d∈Sk

d

 with S1 ⊂ S2 ⊂ · · · ⊂ Sk and Sk = D. (2)

Such a high level of symmetry tends to complicate the resolution of the MDSP via branch-and-

bound based techniques.

3 Quadratic Formulation

This section introduces a quadratically constrained quadratic programming (QCQP) formulation

of the MDSP. QCQP is NP-hard in its general form, and plays an important role as a modeling

tool for various problems. Dakic (2000) used 0–1 QCQP to a large extent to solve the PDP, and

the formulation proposed in this section is a natural extension of this model.

First, let B be the sum of all distances in D. Without loss of generality, we can restrict our

search to MDSP solutions with points in {0, . . . , B}. Indeed, any optimal solution s containing

points with negative coordinates can be translated into an equivalent solution containing the

point 0 as well as other points with non-negative coordinates. Moreover, if we suppose the

existence of an optimal solution s containing the point 0 along with a point p > B, then the set

of points P (s) can be split into two disjoint subsets, such that P (s) = P1 ∪ P2, P1 ∩ P2 = ∅,

and ∆(P1) ∪∆(P2) = D. As a consequence, it is possible to translate all the points in P2 while

4



maintaining feasibility, until one point in P2 overlaps with one point of P1. This effectively

decreases the number of points in s by one, and contradicts its optimality. Based on these

observations, the MDSP can be formulated as:

min
B∑
i=0

xi (3)

s.t.
B−d∑
i=0

xixi+d ≥ mult(d) ∀d ∈ D′ (4)

x0 = 1 (5)

xi ∈ {0, 1} 0 ≤ i ≤ B (6)

In this formulation, D′ is the set of unique distances in D, and mult(d) is the multiplicity

of a distance d. Each binary variable xp represents an integer p between 0 and B, which is

valued to 1 if and only if the point p is used in the solution. Equation (3) seeks to minimize the

number of points, while Equation (4) imposes the number of occurrences of each distance d,

and Equation (5) finally ensures that the point 0 is used.

Despite its simplicity, this formulation has two essential drawbacks. First, the number

of variables depends on the sum of the distances B, and thus the size of this formulation is

pseudo-polynomial. Second, its constraints are not always convex, which is an issue for most

available quadratic programming solvers.

3.1 Variables Filtering

The number of variables of the previous formulation can be reduced in two ways. The first

way is to divide all integers in D by their greatest common divisor. This method, used for all

algorithms of this paper, is only effective when no pair of numbers in D are relatively prime,

as their greatest common divisor will be 1. The second one is to use the procedure shown in

Algorithm 1. It calculates all possible linear combinations of input distances, with the added

constraint that the only coefficients allowed are −1, 0 and 1. Then, it removes all negative

elements and returns the resulting set of points. This method can lead to a substantial decrease

in the size of the formulation, if the distances are sparse enough. However, the formulation

remains pseudo-polynomial, since Θ(min{B, 3k}) variables can still exist.

For example, with the input D = {5, 8, 13, 22, 29} the number of variables is reduced from 78

to 56 via Algorithm 1. On the other hand, the savings is very limited for D = {1, 1, 4, 15, 27, 40},
with 87 after filtering instead of 89 originally.
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Algorithm 1 Determines which points can be part of a solution. Note that C, T and P are
sets, with their usual operations.

1: function valid points(distances)
2: C = {0}
3: for d ∈ distances do
4: T = {}
5: for p ∈ C do
6: T = T ∪ {p− d, p + d}
7: C = C ∪ T
8: P = {p | p ∈ C, p ≥ 0}
9: return P

3.2 Reformulation-Linearization Technique

Available QCQP solvers are usually designed for problems in which all quadratic constraints are

convex. This means that the constraint set can be written in the form xTQix + aix ≤ bi for

i ∈ {1, . . . ,m}, where each matrix Qi is positive-definite. However, this is not the case because

of Equation (4). In this situation, two main families of techniques are usually employed to

reformulate the problem: changing the offending matrices to achieve positive definiteness, or

linearizing the formulation. We explored both options in preliminary research, and the second

option turned out to be the more successful.

The reformulation-linearization technique (RLT) is a family of techniques which is used to

produce relaxations of non-convex problems. The resulting relaxation can be tighter at the

expense of a larger number of variables and constraints. In the case of a quadratic 0–1 program,

it is possible to linearize the problem while maintaining integrality constraints on the variables,

hence leading to an ILP. A thorough description of RLT along with several applications in

discrete and continuous non-convex optimization can be found in Sherali and Adams (2013),

while a more concise presentation can be found in Anstreicher (2009).

A simple application of RLT for a QCQP involves formulating the products of the original

xi variables as new variables yij , and deriving valid linear inequalities on these variables. In the

formulation of Equations (3–6), the product xixj appears only if |i− j| = d, for some d ∈ D′,

such that it is unnecessary to generate all combinations. Each xi is a binary variable, hence

subject to the constraints xi ≥ 0 and xi ≤ 1. Combining these constraints for i and j, and

replacing each term xixj by a new variable yij leads to {yij ≥ 0, yij −xi−xj ≥ −1, yij −xi ≤ 0,

and yij − xj ≤ 0}. Note that the integrality of the xi implies the integrality of the yij , such that

it is unnecessary to set integrality constraints on all variables. Overall, the following linearized

formulation of the MDSP is obtained:

min
B∑
i=0

xi (7)
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s.t.

B−d∑
i=0

yi,i+d ≥ mult(d) ∀d ∈ D′ (8)

yij − xi − xj ≥ −1 0 ≤ i, j ≤ B (9)

yij − xi ≤ 0 0 ≤ i, j ≤ B (10)

yij − xj ≤ 0 0 ≤ i, j ≤ B (11)

yij ≥ 0 0 ≤ i, j ≤ B (12)

xi ∈ {0, 1} 0 ≤ i ≤ B (13)

The main advantage of this formulation relates to the availability of a wide range of

commercial software to solve it, in contrast to the less available quadratic constrained and

nonlinear program solvers. On the other hand, some implicit information contained in the

original formulation has been lost, which could have been used to strength the model. The

performance of this model will be evaluated in Section 5.

4 Integer Formulation

The main disadvantage of the quadratic model of Section 3 comes from the use of a binary

variable for each possible position in {0, . . . , B}. In this section, we propose an alternative ILP

formulation which does not rely on a pseudo-polynomial number of binary position variables,

but instead uses k + 1 integer variables (p0, . . . , pk) ∈ Zk+1, one for the position of each point,

as well as distance-to-points assignment variables.

First, in order to reduce symmetry, we impose a predefined order on the positions and make

sure that no two points overlap. This can be done via the following constraint:

pi + 1 ≤ pj , 0 ≤ i < j ≤ k (14)

The next step is to introduce variables that can represent distances. Since any distance in D

can be assigned between any two points pi and pj , we introduce a binary variable xdij for each

d ∈ D′ and each index-pair (i, j) such that 0 ≤ i < j ≤ k + 1. This binary variable will be set to

1 if and only if the distance d is used between vertices i and j. Evidently, no more than one

distance should be used between any pair of vertices, leading to the constraint:∑
d∈D′

xdij ≤ 1, 0 ≤ i < j ≤ k, (15)

and each unique distance d ∈ D′ must be used exactly mult(d) times:

k−1∑
i=0

k∑
j=i+1

xdij = mult(d), ∀d ∈ D′. (16)
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Now, if any variable xdij is equal to 1, then the distance between pi and pj should be equal

to d. This can be achieved via the constraints

pj ≤ pi + d + B(1− xdij), 0 ≤ i < j ≤ k, d ∈ D′ (17)

pj ≥ pi + dxdij , 0 ≤ i < j ≤ k, d ∈ D′. (18)

As seen in Section 3, B is the sum of all distances in D, moreover we can restrict the search

to the space of solutions such that the pairwise distance between two points is at most B.

Equation (17) forces pj ≤ pi + d when xdij equals one, and does not restrain the positions of

these points otherwise. Likewise, Equation (18) imposes pj ≥ pi + d if xdij equals one, and does

not additionally restrain the positions of pi and pj when xdij is zero.

Finally, the goal of the problem is to minimize the number of points. To model this objective,

we introduce a set of binary variables zi ∈ {0, 1} for 0 ≤ i ≤ k. Each variable zi is set to 1 if

and only if the vertex pi is used in the solution. Since p0 is fixed at the origin and it is always

in the solution, z0 can be fixed as 1. To reduce symmetry, we also impose all active points to be

consecutive as follows:

zi ≥ zi+1, 0 ≤ i < k. (19)

Furthermore, if xdij = 1 for some d, then pi and pj must be part of the solution and zi = zj = 1.

This can be achieved via a modification of Equation (15):∑
d∈D′

xdij ≤ zj , 0 ≤ i < j ≤ k, (20)

allowing a distance to be used between pi and pj if and only if zj = 1. Moreover zj = 1 implies

that zi = 1 for i < j as a consequence of Equation (19).

Finally, the objective is to minimize the number of active vertices – and thus the number of

points such that zi = 1. This leads to the following ILP formulation of the MDSP:

min
k∑

i=0

zi (21)

s.t.
∑
d∈D′

xdij ≤ zj 0 ≤ i < j ≤ k (22)

k−1∑
i=0

k∑
j=i+1

xdij = mult(d) d ∈ D′ (23)

pj ≥ pi + dxdij 0 ≤ i ≤ k, d ∈ D′ (24)

pj ≤ pi + d + B(1− xdij) 0 ≤ i ≤ k, d ∈ D′ (25)

pi + 1 ≤ pj 0 ≤ i < j ≤ k (26)

zi ≥ zi+1 0 ≤ i < k (27)

xdij ∈ {0, 1} 0 ≤ i < j ≤ k, d ∈ D′ (28)
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pi ∈ Z 0 ≤ i ≤ k (29)

zi ∈ {0, 1} 0 ≤ i ≤ k. (30)

This integer linear programming formulation is clearly more intricate than the quadratic

formulation of Equations (3–6). Still, it has the merit to have a polynomial number of constraints

and variables.

Note that the size of this ILP model can still grow fairly large, with 1/2(k(k + 1))|D′| binary

variables, k + 1 integer variables, and k(k + 1)(1 + |D′|) + k + |D′| constraints. In the worst

case, when all distances in D are unique, this models has a cubic number of variables and

constraints. For example, if |D| = |D′| = 20 and all distances are unique, there will be a total of

4200 variables and 8860 constraints, while if |D| = |D′| = 100, this number grows up to 505000

variables and 1020300 constraints. For this reason, we considered two variations of resolution

approach, based on a binary search over the number of active points and two different forms for

the subproblems (optimization or feasibility) without the zi decision variables. These approaches

are described in the following.

4.1 Binary Search Method

The integer linear formulation presented in the previous section has a polynomial number of

variables and constraints, but this number can grow fairly large as the size of the input increases.

To deal with this issue, we propose two solution methods, based on a binary search on the

number of points in the optimal solution, without need of the zi variables.

Indeed, the solutions of the MDSP with up to t + 1 points are all contained in the region

described by the following equations:

t−1∑
i=0

t∑
j=i+1

xdij = mult(d) d ∈ D′ (31)

∑
d∈D′

xdij ≤ 1 0 ≤ i < j ≤ t (32)

pj ≥ pi + dxdij 0 ≤ i ≤ t, d ∈ D′ (33)

pj ≤ pi + d + B(1− xdij) 0 ≤ i ≤ t, d ∈ D′ (34)

pi + 1 ≤ pj 0 ≤ i < j ≤ t (35)

xdij ∈ {0, 1} 0 ≤ i < j ≤ t, d ∈ D′ (36)

pi ∈ Z 0 ≤ i ≤ t (37)

This formulation does not use zi variables and considers that all points as part of the solution,

even points that use no distances whatsoever. Finding a feasible solution of Equations (31–37)

means that it is possible to assign all distances in D as distances between t + 1 points in Z. If
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this region is empty, then there is no way to assign those distances as the distances between

t + 1 integer points or less.

These observations lead to Algorithm 2, a binary search on the number of points in the

solution. Recall that the lower bound for any instance of size k is d1/2 +
√

1/4 + 2k e and a

trivial upper bound of k + 1 (Equation 1). These bounds provide an initial interval for the

binary search. The binary search iteratively solves the model of Equations (31–37) with t = tmid

representing the middle of the current search interval. If a feasible solution is found, then the

upper bound is set to tmid, since now it is known that a solution with that many points can

exist, but it is not known if a solution with less points exists yet. If no feasible solution is found,

then the lower bound is updated to tmid + 1, as there cannot exist any solution with less than

tmid + 1 points. After the loop, the algorithm simply outputs the last solution found. This is

sufficient, as the final iteration of the binary search already proved that any solution with one

less point cannot exist.

Algorithm 2 Binary search algorithm.

1: function bs-mdsp(D)
2: k = length(D)

3: tlb =
⌈

1
2 +

√
1
4 + 2k

⌉
4: tub = k + 1
5: while tlb < tub do
6: tmid = b(tlb + tub)/2c
7: Solve the formulation for D with t = tmid
8: if a feasible MDSP solution was found then
9: Save the solution

10: tub = tmid
11: else
12: tlb = tmid + 1

13: Output the latest solution found

The feasibility model of Equations (31–37) can be further transformed into an optimization

formulation that relies on distributing as many distances as possible among a fixed number of

points, instead of checking if a region is empty or not. Such a model can be described as follows:

max
∑
d∈D

t−1∑
i=0

t∑
j=i+1

xdij (38)

s.t.
t−1∑
i=0

t∑
j=i+1

xdij ≤ mult(d) d ∈ D′ (39)

Equations (32–37) (40)

In this formulation, the constraints on the variables pi remain identical. The key difference

is that Equation (16) is replaced by Equation (39), which does not impose to use all distances
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anymore. The objective of this model is to maximize the number of distances that can be placed

among t+ 1 points. This model can also be used within Algorithm 2. Finding a feasible solution

for the MDSP is equivalent to finding a solution of Equations (38–40) with a value equal to

the size of the input. If the cardinality of the input is k and the value of the optimal solution

of Equations (38–40) is strictly smaller than k, then we can conclude that it is impossible to

distribute that many distances among t + 1 points. Otherwise, if the optimal solution has a

value of k, then the variables pi define a feasible solution of the MDSP, but a smaller one may

exist.

Algorithm 2 can work with both models presented in this section. The major difference is

that the model of Equations (38–40) is never infeasible, as setting all xdij to zero and all pi = i is

always a feasible solution. Therefore, tub is set to tmid only if the optimal solution of the current

model has value k, and a smaller solution needs to be found or proven to be nonexistent. If the

optimal solution value is less than k, then tlb is set to tmid + 1. This goes on until a solution is

proven to be optimal, i.e., when tlb > tub, or when a predefined time limit is attained.

5 Computational Experiments

In this section, we discuss all our computational experiments with the models and solution

approaches of Sections 3 and 4. All algorithms described in this paper have been implemented

in C++. The integer and quadratic programming models have been solved using CPLEX 12.6.3,

with default settings. All experiments were done on a server with an Intel Xeon 3.07GHz

processor, running Linux.

Our first experiment consists in comparing a direct resolution of the quadratic Model (3–

6) with the resolution of the linearized Model (7–13). As mentioned in Section 3, we first

tested a convexification of the offending matrices for the quadratic formulation, which did not

yield satisfying solutions. Yet, CPLEX also recently made available a feature to perform the

convexification of a non-convex QCQP by applying the first approach of Billionnet and Elloumi

(2007). As this latter approach was more successful, the tests presented in this article for the

quadratic formulation use directly the convexification provided by CPLEX library. Then, we

compare these results with those of the compact integer programming formulation of Equations

(21–30), as well as Algorithm 2 using Model (31–37), and Algorithm 2 using Model (38–40).

5.1 Instances

Four different types of instances were randomly generated to conduct these tests. Most of

the instances were generated by creating a set of points in a line (with a maximum distance

between consecutive points), calculating all pairwise distances and then making appropriate

modifications. Instance sizes were chosen to test the models and algorithms presented in the

previous sections and to determine their performance limit, i.e., when they begin to fail solving

the problem within a reasonable CPU time budget.
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A total of 210 instances were generated to be used among all tests. Each instance was named

following the convention type-constants-id, where the constants are the numbers used to generate

the instance, and the identifier is a sequential number. The instances are defined as follows:

• Full instances: these are PDP instances, that is, instances of size k = n(n− 1)/2 for some

n ∈ N, with optimal solution P of cardinality n. They are complete instances, in the

sense that no distances are missing. These instances were generated by sampling n− 1

integers between 1 and m as the distances between consecutive points on the line, and

calculating all pairwise distances. Five of these instances were generated for each pair

between n = 5, 6, 7, 8, 9, 10 and m = 15, 30, for a total of 40 instances. These instances are

named following the pattern full-n-m-id.

• Missing distance instances: these instances contain a number of distances which is halfway

between that of a full instance with either n− 1 or n points. Each instance was generated

by randomly removing (k2 − k1)/2 distances from a Full instance with n points, where

k1 = n(n− 1)/2 and k2 = n(n + 1)/2. The optimal solution value is known, being equal

to n. Five instances were generated for each pair of n = 5, 6, 7, 8, 9, 10 and m = 15, 30 (for

the underlying full instance), leading to a total of 40 instances. These instances are named

according to the pattern miss-(n + 1)-m-l-id.

• Joint instances: these are the concatenation of two full instances generated from pair

of integers (n1,m1) and (n2,m2). By construction, we can infer an upper bound of

n1 + n2 − 1. Three of these instances were generated for each pair between (n1, n2) =

(5, 5), (6, 5), (7, 5), (8, 5), (9, 5), (10, 5) and (m1,m2) = (15, 15), (30, 30), for a total of 24

instances. These instances are named following the pattern joint-n1-m1-n2-m2-id.

• Random instances: the instances consist of k integers uniformly sampled in [1, d]. The

distances d were chosen as approximations to the maximum distances found in the previous

distances. The upper bound for these instances is k. Three instances were generated for

each pair between k = 5, 7, 10, 15, 20, 25 and d = 75, 110, 200 for a total of 36 instances.

These instances are named following the pattern drand-k-d-id.

The choice of these instance types was driven by the necessity of having a diversified testbed,

with upper bounds that differ by construction. We also note that specialized PDP algorithms

could solve the “Full” instances efficiently, but not the other cases. As the goal of these

experiments is to study solution algorithms for the MDSP, these instances are mainly used as

an extreme case, in which the solutions are very “dense”: all pairwise distances between points

being used.

5.2 Comparison of MDSP methods

The MDSP mathematical programming formulations compared in this computational exper-

iment are: the quadratic programming model with filtered variables (3–6), its linearization-
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reformulation (7–13), the integer programming model (21–30), Algorithm 2 using Model (31–37)

and Algorithm 2 using Model (38–40). These methods will be referred to as QP, RLT, IP, FEAS

and MAX, respectively. Each method was given 3600 seconds to run each instance a single time.

All methods use the information about the trivial upper bound from Equation (1). This means

that for all methods, a trivial feasible solution was provided to the solver.

A summary of the results, aggregated for each group of instances with the same size and

characteristics, is presented in Table 1. From left to right, the columns present the trivial average

gap, obtained from the trivial lower and upper bounds, as well as the average gap and time of

each method. Some runs which did not reach the time limit of 3600 seconds and nevertheless

have not obtained the optimal solution raised an “out of memory” exception. When this is

the case for a given instance, we considered its running time as the time limit (3600 seconds).

Furthermore the detailed results for all instances are presented in Appendix A, in Tables 3-6.

Trivial QP RLT IP FEAS MAX

Set Size Gap Gap Time Gap Time Gap Time Gap Time Gap Time

full 5 54.5% 5.0% 3286.0 0.0% 1964.9 0.0% 0.7 0.0% 0.3 0.0% 0.6
6 62.5% 37.0% 3600.0 12.5% 3600.0 0.0% 20.0 0.0% 12.4 0.0% 11.3
7 68.2% 61.2% 3600.0 50.7% 3600.0 0.0% 953.3 0.0% 378.6 0.0% 351.3
8 72.4% 72.4% 3600.0 72.4% 3600.0 46.1% 3600.0 28.5% 3300.3 23.2% 3558.8
9 75.7% 75.7% 3600.0 75.7% 3600.0 52.6% 3600.0 39.8% 3600.0 47.0% 3600.0
10 78.3% 78.3% 3600.0 78.3% 3600.0 62.5% 3600.0 48.5% 3600.0 50.1% 3600.0

miss 5 44.4% 0.0% 3102.7 0.0% 1251.1 0.0% 0.2 0.0% 0.2 0.0% 0.2
6 57.1% 24.3% 3600.0 30.7% 3600.0 0.0% 10.4 0.0% 4.6 0.0% 10.9
7 63.2% 42.3% 3600.0 43.8% 3600.0 3.0% 908.9 3.0% 743.0 3.0% 954.1
8 69.2% 69.2% 3600.0 69.2% 3600.0 30.2% 3017.8 27.1% 3404.0 27.9% 3287.8
9 72.7% 72.7% 3600.0 72.7% 3600.0 51.7% 3600.0 40.4% 3600.0 37.3% 3600.0
10 76.2% 76.2% 3600.0 76.2% 3600.0 60.9% 3600.0 48.0% 3600.0 51.7% 3285.2

joint 5 66.7% 50.3% 3600.0 42.2% 3600.0 18.3% 2417.7 18.3% 1821.4 15.0% 1987.3
6 69.2% 66.5% 3600.0 64.8% 3600.0 31.2% 3600.0 21.1% 3469.5 25.1% 3107.1
7 71.9% 71.9% 3600.0 71.9% 3600.0 38.1% 3600.0 33.1% 3600.0 30.2% 3600.0
8 74.4% 74.4% 3600.0 74.4% 3600.0 47.7% 3600.0 43.5% 3600.0 40.7% 3600.0
9 76.6% 76.6% 3600.0 76.6% 3600.0 66.2% 3600.0 35.8% 3600.0 41.9% 3600.0
10 80.4% 80.4% 3600.0 80.4% 3600.0 72.2% 3600.0 52.4% 3600.0 61.1% 3600.0

drand 5 33.3% 0.0% 195.1 0.0% 2.0 0.0% 0.1 0.0% 0.1 0.0% 0.1
7 37.5% 29.2% 3600.0 27.9% 3600.0 0.0% 33.9 0.0% 32.4 0.0% 81.8
10 54.5% 47.7% 3600.0 47.0% 3600.0 2.5% 985.3 6.1% 612.0 6.1% 1182.6
15 62.5% 61.3% 3600.0 61.3% 3600.0 36.0% 3600.0 31.4% 3138.6 37.2% 3405.4
20 66.7% 66.7% 3600.0 66.7% 3600.0 55.1% 3600.0 50.0% 3600.0 45.6% 3600.0
25 69.2% 69.2% 3600.0 69.2% 3600.0 56.7% 3600.0 52.9% 3600.0 50.8% 3600.0

Average 64.3% 53.0% 3415.4 51.1% 3256.1 28.9% 2180.9 23.1% 2092.5 23.5% 2125.7
Solved 32 45 90 95 97

Table 1: Performance of the five MDSP solution methods

In these experiments, the quadratic programming model with filtered variables (3–6) and

its linearization-reformulation (7–13) were outperformed by the other methods. Out of the 210

instances, QP could solve only 32 instances, while this number rose up to 45 for RLT. QP was not

able to improve the trivial bounds for 140 instances, reaching an average gap of 53.0%. Similarly,

RLT did not improve the trivial bounds for 141 instances, reaching an average gap of 51.1%.
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These are only small improvements over the average trivial gap of 64.3%. Finally, RLT resulted

in an “out of memory” status for 10 instances, and QP did not reach this status.

Solving the proposed IP model, instead, allows to find optimal solutions for 90 out of the 210

instances. This is a clear improvement over the QP and RLT approaches. With an average gap of

28.9%, IP improved the trivial bounds on the majority of instances (all except 8). Moreover,

the use of a binary search as in Algorithm 2, using FEAS and MAX, allows to solve to optimality

a few additional instances. These methods were able to obtain the optimal solution for 95 and

97 instances, respectively. FEAS obtained an average gap of 23.1% and was not able to improve

over the trivial bounds on only 2 instances. MAX obtained an average gap of 23.5% and was

not able to improve over the trivial bounds only on 6 instances. For all three approaches, no

instance resulted in an “out of memory” status.

As highlighted by these experiments, the IP, FEAS and MAX approaches, based on the compact

formulation of Section 4, outperform the QP and RLT approaches. Moreover, the FEAS and MAX

approaches appear to provide better final gaps and solved to optimality a few more instances.

To confirm these observations, we conducted a Friedman test, considering the final gap of

each method on the 210 instances. This test confirms with high confidence (p < 10−16) that

significant differences of performance exist between the five proposed methods.

Then, we used the post-hoc Wilcoxon-Nemenyi-McDonald-Thompson test (Hollander et al.,

2013) to perform pairwise comparisons between the methods. The p-values resulting from this

analysis are presented in Table 2. These statistical analyses confirm our previous observations:

the final gap values obtained by IP, FEAS and MAX are all significantly better than those of QP

and RLT (p < 0.00001 in all cases). FEAS and MAX perform better than IP (p ≈ 0.02), and no

significant difference can be highlighted, at least for the current instances, between FEAS and

MAX. In this sense, the choice of the model variant (feasibility or optimization) in the binary

search algorithm of Section 4.1 has a more minor impact.

QP RLT IP FEAS MAX

QP — 0.73684 < 0.00001 < 0.00001 < 0.00001
RLT — < 0.00001 < 0.00001 < 0.00001
IP — 0.00197 0.01919
FEAS — 0.96517
MAX —

Table 2: P-values obtained from the post-hoc analysis

Figure 2 completes this analysis with a graphical comparison of the average percentage gap

obtained by all approaches. Finally, Figure 3 compares the most frequently obtained solution

status for each method: instances solved to optimality are represented by a light gray color,

instances for which the approach was able to improve over the trivial bound are represented by

a medium gray color and instances which there was no improvement are represented by a dark

gray color. As visible in both figures again, FEAS and MAX outperform the other approaches.
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Figure 2: Comparison of the average percent optimality gap, for each method and instance set.
The larger the gap, the worse is the solution.
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(d) Random distance instances.

Figure 3: Solution statuses for each method and instance set. Instances solved to optimality are
represented by a light gray color, the ones for which there was an improvement over the trivial
bounds are represented by a medium gray color, and the ones which there was no improvement
are represented by a dark gray color.
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Finally, we observed that the proposed algorithms sometimes find different optimal so-

lutions. For example, for an instance with D = {16, 31, 40, 57, 57, 61, 65, 69, 69, 75}, the IP

method finds the solution PIP = {0, 4, 12, 16, 69, 73, 113, 144}, the FEAS method finds the

solution PFEAS = {0, 6, 14, 18, 31, 71, 75, 87} and the MAX method finds the solution PMAX =

{0, 2, 40, 59, 63, 71, 75, 128}.

6 Conclusions and Research Perspectives

In this work, we have proposed new mathematical programming formulations for the minimum

distance superset problem: a quadratically constrained 0− 1 formulation containing a pseudo-

polynomial number of variables (Section 3), and a compact integer formulation (Section 4).

For the first formulation, we investigated the use of a reformulation-linearization technique,

leading to an integer linear program which is solvable by a regular solver. For the second

compact formulation, two solution approaches involving binary searches on the number of points

in the solution were introduced. These approaches proved to be successful, as they generate

significantly better results in comparison to the other algorithms.

For future works, the research perspectives are numerous, we recommend to:

• Study the approximability of the MDSP. Such a result may exist, as Cieliebak has proven

it for a similar problem (Cieliebak et al., 2003).

• Study the symmetry in MDSP solutions. Symmetry breaking constraints may improve the

efficiency of all models considered in this work, by significantly reducing the search space.

• Improve Algorithm 1 or find a better substitute. Reducing the number of variables in the

quadratic 0− 1 model will drastically improve its efficiency, especially if it can be reduced

to a polynomial size on the input.

• Develop heuristics which can improve the trivial lower bounds for a given MDSP instance.

This should improve the efficiency of all presented models, especially the binary search

based methods.

• Keep on progressing towards more advanced mathematic programming techniques for the

resolution of Model (21)-(30).

• Investigate further the application of combinatorial algorithms, inspired by Skiena et al.

(1990), for the MDSP.
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A Detailed Results

In Tables 3-6, we present the trivial lower and upper bounds and, for each method, the lower and

upper bounds obtained, the remaining gap and its running time in seconds. We also indicate

with a “t” the entries which did not improve over the trivial lower bound. Furthermore, entries

which did not reach the time limit of 3600 seconds and nevertheless have not obtained the

optimal solution raised an out of memory exception. These instances are indicated with an “—”.
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Table 3: Results for full instances

Trivial QP RLT IP FEAS MAX

Instance LB UB Gap LB UB Gap Time LB UB Gap Time LB UB Gap Time LB UB Gap Time LB UB Gap Time

full-5-15-1 5 11 54.5% 5 5 0.0% 3600.0 5 5 0.0% 156.8 5 5 0.0% 1.0 5 5 0.0% 0.3 5 5 0.0% 0.2

full-5-15-2 5 11 54.5% 5 6 16.7% 3600.0 5 5 0.0% 2720.9 5 5 0.0% 0.5 5 5 0.0% 0.3 5 5 0.0% 0.3

full-5-15-3 5 11 54.5% 5 5 0.0% 3600.0 5 5 0.0% 3600.0 5 5 0.0% 0.6 5 5 0.0% 0.4 5 5 0.0% 0.5

full-5-15-4 5 11 54.5% 5 5 0.0% 3600.0 5 5 0.0% 217.1 5 5 0.0% 0.4 5 5 0.0% 0.2 5 5 0.0% 0.3

full-5-15-5 5 11 54.5% 5 5 0.0% 459.6 5 5 0.0% 5.0 5 5 0.0% 0.3 5 5 0.0% 0.2 5 5 0.0% 0.2

full-5-30-1 5 11 54.5% 5 5 0.0% 3600.0 5 5 0.0% 3600.0 5 5 0.0% 1.9 5 5 0.0% 0.6 5 5 0.0% 2.0

full-5-30-2 5 11 54.5% 5 6 16.7% 3600.0 5 5 0.0% 3600.0 5 5 0.0% 0.8 5 5 0.0% 0.3 5 5 0.0% 1.2

full-5-30-3 5 11 54.5% 5 6 16.7% 3600.0 5 5 0.0% 2072.0 5 5 0.0% 0.5 5 5 0.0% 0.3 5 5 0.0% 0.4

full-5-30-4 5 11 54.5% 5 5 0.0% 3600.0 5 5 0.0% 76.9 5 5 0.0% 0.2 5 5 0.0% 0.3 5 5 0.0% 0.6

full-5-30-5 5 11 54.5% 5 5 0.0% 3600.0 5 5 0.0% 3600.0 5 5 0.0% 0.7 5 5 0.0% 0.4 5 5 0.0% 0.5

full-6-15-1 6 16 62.5% 6 7 14.3% 3600.0 6 6 0.0% 3600.0 6 6 0.0% 6.6 6 6 0.0% 1.6 6 6 0.0% 11.1

full-6-15-2 6 16 62.5% 6 12 50.0% 3600.0 6 6 0.0% 3600.0 6 6 0.0% 3.5 6 6 0.0% 10.7 6 6 0.0% 7.8

full-6-15-3 6 16 62.5% 6 8 25.0% 3600.0 6 6 0.0% 3600.0 6 6 0.0% 5.0 6 6 0.0% 3.4 6 6 0.0% 4.1

full-6-15-4 6 16 62.5% 6 13 53.8% 3600.0 6 6 0.0% 3600.0 6 6 0.0% 5.9 6 6 0.0% 4.8 6 6 0.0% 7.9

full-6-15-5 6 16 62.5% 6 6 0.0% 3600.0 6 6 0.0% 3600.0 6 6 0.0% 5.8 6 6 0.0% 3.1 6 6 0.0% 3.7

full-6-30-1 6 16 62.5% 6 16 62.5% 3600.0 t 6 6 0.0% 3600.0 6 6 0.0% 77.2 6 6 0.0% 45.6 6 6 0.0% 11.5

full-6-30-2 6 16 62.5% 6 8 25.0% 3600.0 6 6 0.0% 3600.0 6 6 0.0% 8.5 6 6 0.0% 4.7 6 6 0.0% 4.8

full-6-30-3 6 16 62.5% 6 7 14.3% 3600.0 6 6 0.0% 3600.0 6 6 0.0% 5.3 6 6 0.0% 2.5 6 6 0.0% 1.6

full-6-30-4 6 16 62.5% 6 16 62.5% 3600.0 t 6 16 62.5% 3600.0 t 6 6 0.0% 59.0 6 6 0.0% 19.3 6 6 0.0% 29.0

full-6-30-5 6 16 62.5% 6 16 62.5% 3600.0 t 6 16 62.5% 3600.0 t 6 6 0.0% 23.0 6 6 0.0% 28.0 6 6 0.0% 31.4

full-7-15-1 7 22 68.2% 7 11 36.4% 3600.0 7 22 68.2% 3600.0 t 7 7 0.0% 58.0 7 7 0.0% 5.6 7 7 0.0% 8.2

full-7-15-2 7 22 68.2% 7 22 68.2% 3600.0 t 7 7 0.0% 3600.0 7 7 0.0% 384.6 7 7 0.0% 22.2 7 7 0.0% 295.7

full-7-15-3 7 22 68.2% 7 22 68.2% 3600.0 t 7 7 0.0% 3600.0 7 7 0.0% 192.5 7 7 0.0% 185.5 7 7 0.0% 154.8

full-7-15-4 7 22 68.2% 7 22 68.2% 3600.0 t 7 22 68.2% 3600.0 t 7 7 0.0% 1182.0 7 7 0.0% 875.0 7 7 0.0% 492.3

full-7-15-5 7 22 68.2% 7 10 30.0% 3600.0 7 10 30.0% 3600.0 7 7 0.0% 202.2 7 7 0.0% 101.7 7 7 0.0% 38.2

full-7-30-1 7 22 68.2% 7 22 68.2% 3600.0 t 7 22 68.2% 3600.0 t 7 7 0.0% 658.8 7 7 0.0% 1854.7 7 7 0.0% 694.9

full-7-30-2 7 22 68.2% 7 22 68.2% 3600.0 t 7 22 68.2% 3600.0 t 7 7 0.0% 2391.7 7 7 0.0% 64.9 7 7 0.0% 908.0

Continue on next page
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Table 3: Results for full instances – Continued from previous page

Trivial QP RLT IP FEAS MAX

Instance LB UB Gap LB UB Gap Time LB UB Gap Time LB UB Gap Time LB UB Gap Time LB UB Gap Time

full-7-30-3 7 22 68.2% 7 22 68.2% 3600.0 t 7 22 68.2% 3600.0 t 7 7 0.0% 1157.3 7 7 0.0% 613.4 7 7 0.0% 15.1

full-7-30-4 7 22 68.2% 7 22 68.2% 3600.0 t 7 22 68.2% 3600.0 t 7 7 0.0% 2841.2 7 7 0.0% 34.0 7 7 0.0% 136.3

full-7-30-5 7 22 68.2% 7 22 68.2% 3600.0 t 7 22 68.2% 3600.0 t 7 7 0.0% 464.7 7 7 0.0% 29.1 7 7 0.0% 769.6

full-8-15-1 8 29 72.4% 8 29 72.4% 3600.0 t 8 29 72.4% 3600.0 t 8 14 42.9% 3600.0 8 8 0.0% 3082.4 8 10 20.0% 3600.0

full-8-15-2 8 29 72.4% 8 29 72.4% 3600.0 t 8 29 72.4% 3600.0 t 8 13 38.5% 3600.0 8 13 38.5% 3600.0 8 10 20.0% 3600.0

full-8-15-3 8 29 72.4% 8 29 72.4% 3600.0 t 8 29 72.4% 3600.0 t 8 11 27.3% 3600.0 8 8 0.0% 1815.8 8 8 0.0% 3554.3

full-8-15-4 8 29 72.4% 8 29 72.4% 3600.0 t 8 29 72.4% 3600.0 t 8 12 33.3% 3600.0 8 8 0.0% 2904.9 8 10 20.0% 3600.0

full-8-15-5 8 29 72.4% 8 29 72.4% 3600.0 t 8 29 72.4% 3600.0 t 8 12 33.3% 3600.0 8 10 20.0% 3600.0 8 13 38.5% 3600.0

full-8-30-1 8 29 72.4% 8 29 72.4% 3600.0 t 8 29 72.4% 3600.0 t 8 14 42.9% 3600.0 8 13 38.5% 3600.0 8 8 0.0% 3233.4

full-8-30-2 8 29 72.4% 8 29 72.4% 3600.0 t 8 29 72.4% 3600.0 t 8 25 68.0% 3600.0 8 18 55.6% 3600.0 8 10 20.0% 3600.0

full-8-30-3 8 29 72.4% 8 29 72.4% 3600.0 t 8 29 72.4% 3600.0 t 8 16 50.0% 3600.0 8 13 38.5% 3600.0 8 10 20.0% 3600.0

full-8-30-4 8 29 72.4% 8 29 72.4% 3600.0 t 8 29 72.4% 3600.0 t 8 23 65.2% 3600.0 8 13 38.5% 3600.0 8 13 38.5% 3600.0

full-8-30-5 8 29 72.4% 8 29 72.4% 3600.0 t 8 29 72.4% 3600.0 t 8 20 60.0% 3600.0 8 18 55.6% 3600.0 8 18 55.6% 3600.0

full-9-15-1 9 37 75.7% 9 37 75.7% 3600.0 t 9 37 75.7% 3600.0 t 9 14 35.7% 3600.0 9 16 43.8% 3600.0 9 16 43.8% 3600.0

full-9-15-2 9 37 75.7% 9 37 75.7% 3600.0 t 9 37 75.7% 3600.0 t 9 15 40.0% 3600.0 9 12 25.0% 3600.0 9 16 43.8% 3600.0

full-9-15-3 9 37 75.7% 9 37 75.7% 3600.0 t 9 37 75.7% 3600.0 t 9 23 60.9% 3600.0 9 16 43.8% 3600.0 9 16 43.8% 3600.0

full-9-15-4 9 37 75.7% 9 37 75.7% 3600.0 t 9 37 75.7% 3600.0 t 9 20 55.0% 3600.0 9 12 25.0% 3600.0 9 16 43.8% 3600.0

full-9-15-5 9 37 75.7% 9 37 75.7% 3600.0 t 9 37 75.7% 3600.0 t 9 13 30.8% 3600.0 9 12 25.0% 3600.0 9 12 25.0% 3600.0

full-9-30-1 9 37 75.7% 9 37 75.7% 3600.0 t 9 37 75.7% 3600.0 t 9 22 59.1% 3600.0 9 16 43.8% 3600.0 9 23 60.9% 3600.0

full-9-30-2 9 37 75.7% 9 37 75.7% 3600.0 t 9 37 75.7% 3600.0 t 9 18 50.0% 3600.0 9 16 43.8% 3600.0 9 16 43.8% 3600.0

full-9-30-3 9 37 75.7% 9 37 75.7% 3600.0 t 9 37 75.7% 3600.0 t 9 36 75.0% 3600.0 9 16 43.8% 3600.0 9 23 60.9% 3600.0

full-9-30-4 9 37 75.7% 9 37 75.7% 3600.0 t 9 37 75.7% 3600.0 t 9 24 62.5% 3600.0 9 16 43.8% 3600.0 9 23 60.9% 3600.0

full-9-30-5 9 37 75.7% 9 37 75.7% 3600.0 t 9 37 75.7% 3600.0 t 9 21 57.1% 3600.0 9 23 60.9% 3600.0 9 16 43.8% 3600.0

full-10-15-1 10 46 78.3% 10 46 78.3% 3600.0 t 10 46 78.3% 3600.0 t 10 42 76.2% 3600.0 10 19 47.4% 3600.0 10 28 64.3% 3600.0

full-10-15-2 10 46 78.3% 10 46 78.3% 3600.0 t 10 46 78.3% 3600.0 t 10 17 41.2% 3600.0 10 14 28.6% 3600.0 10 14 28.6% 3600.0

full-10-15-3 10 46 78.3% 10 46 78.3% 3600.0 t 10 46 78.3% 3600.0 t 10 20 50.0% 3600.0 10 14 28.6% 3600.0 10 19 47.4% 3600.0

full-10-15-4 10 46 78.3% 10 46 78.3% 3600.0 t 10 46 78.3% 3600.0 t 10 27 63.0% 3600.0 10 14 28.6% 3600.0 10 19 47.4% 3600.0
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Table 3: Results for full instances – Continued from previous page

Trivial QP RLT IP FEAS MAX

Instance LB UB Gap LB UB Gap Time LB UB Gap Time LB UB Gap Time LB UB Gap Time LB UB Gap Time

full-10-15-5 10 46 78.3% 10 46 78.3% 3600.0 t 10 46 78.3% 3600.0 t 10 21 52.4% 3600.0 10 19 47.4% 3600.0 10 14 28.6% 3600.0

full-10-30-1 10 46 78.3% 10 46 78.3% 3600.0 t 10 46 78.3% 3600.0 t 10 26 61.5% 3600.0 10 28 64.3% 3600.0 10 19 47.4% 3600.0

full-10-30-2 10 46 78.3% 10 46 78.3% 3600.0 t 10 46 78.3% 3600.0 t 10 26 61.5% 3600.0 10 28 64.3% 3600.0 10 19 47.4% 3600.0

full-10-30-3 10 46 78.3% 10 46 78.3% 3600.0 t 10 46 78.3% 3600.0 t 10 27 63.0% 3600.0 10 19 47.4% 3600.0 10 28 64.3% 3600.0

full-10-30-4 10 46 78.3% 10 46 78.3% 3600.0 t 10 46 78.3% — t 10 46 78.3% 3600.0 t 10 28 64.3% 3600.0 10 46 78.3% 3600.0 t

full-10-30-5 10 46 78.3% 10 46 78.3% 3600.0 t 10 46 78.3% — t 10 45 77.8% 3600.0 10 28 64.3% 3600.0 10 19 47.4% 3600.0

Average 7.5 26.8 68.6% 7.5 24.7 54.9% 3547.7 7.5 23.8 48.3% 3318.1 7.5 14.1 26.9% 1962.3 7.5 11.1 19.5% 1815.3 7.5 11.5 20.1% 1853.7

Solved 8 20 30 33 32

Trivial 41 39 1 0 1

Out of Memory 0 2 0 0 0

Table 4: Results for missing distance instances

Trivial QP RLT IP FEAS MAX

Instance LB UB Gap LB UB Gap Time LB UB Gap Time LB UB Gap Time LB UB Gap Time LB UB Gap Time

miss-5-15-2-1 5 9 44.4% 5 5 0.0% 3600.0 5 5 0.0% 375.3 5 5 0.0% 0.2 5 5 0.0% 0.1 5 5 0.0% 0.2

miss-5-15-2-2 5 9 44.4% 5 5 0.0% 6.2 5 5 0.0% 0.1 5 5 0.0% 0.1 5 5 0.0% 0.1 5 5 0.0% 0.1

miss-5-15-2-3 5 9 44.4% 5 5 0.0% 3600.0 5 5 0.0% 238.9 5 5 0.0% 0.2 5 5 0.0% 0.1 5 5 0.0% 0.1

miss-5-15-2-4 5 9 44.4% 5 5 0.0% 3447.0 5 5 0.0% 39.3 5 5 0.0% 0.2 5 5 0.0% 0.2 5 5 0.0% 0.2

miss-5-15-2-5 5 9 44.4% 5 5 0.0% 2373.9 5 5 0.0% 20.0 5 5 0.0% 0.2 5 5 0.0% 0.2 5 5 0.0% 0.2

miss-5-30-2-1 5 9 44.4% 5 5 0.0% 3600.0 5 5 0.0% 19.0 5 5 0.0% 0.1 5 5 0.0% 0.1 5 5 0.0% 0.2

miss-5-30-2-2 5 9 44.4% 5 5 0.0% 3600.0 5 5 0.0% 1018.2 5 5 0.0% 0.4 5 5 0.0% 0.2 5 5 0.0% 0.5

miss-5-30-2-3 5 9 44.4% 5 5 0.0% 3600.0 5 5 0.0% 3600.0 5 5 0.0% 0.4 5 5 0.0% 0.2 5 5 0.0% 0.4

miss-5-30-2-4 5 9 44.4% 5 5 0.0% 3600.0 5 5 0.0% 3600.0 5 5 0.0% 0.3 5 5 0.0% 0.3 5 5 0.0% 0.4

miss-5-30-2-5 5 9 44.4% 5 5 0.0% 3600.0 5 5 0.0% 3600.0 5 5 0.0% 0.3 5 5 0.0% 0.2 5 5 0.0% 0.2

miss-6-15-2-1 6 14 57.1% 6 13 53.8% 3600.0 6 11 45.5% 3600.0 6 6 0.0% 23.9 6 6 0.0% 7.6 6 6 0.0% 14.1

miss-6-15-2-2 6 14 57.1% 6 6 0.0% 3600.0 6 6 0.0% 3600.0 6 6 0.0% 1.1 6 6 0.0% 1.4 6 6 0.0% 1.9
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Table 4: Results for missing distance instances – Continued from previous page

Trivial QP RLT IP FEAS MAX

Instance LB UB Gap LB UB Gap Time LB UB Gap Time LB UB Gap Time LB UB Gap Time LB UB Gap Time

miss-6-15-2-3 6 14 57.1% 6 6 0.0% 3600.0 6 6 0.0% 3600.0 6 6 0.0% 1.7 6 6 0.0% 3.4 6 6 0.0% 6.7

miss-6-15-2-4 6 14 57.1% 6 6 0.0% 3600.0 6 6 0.0% 3600.0 6 6 0.0% 9.1 6 6 0.0% 1.7 6 6 0.0% 2.9

miss-6-15-2-5 6 14 57.1% 6 7 14.3% 3600.0 6 6 0.0% 3600.0 6 6 0.0% 2.0 6 6 0.0% 1.7 6 6 0.0% 10.7

miss-6-30-2-1 6 14 57.1% 6 8 25.0% 3600.0 6 14 57.1% 3600.0 t 6 6 0.0% 5.1 6 6 0.0% 4.3 6 6 0.0% 39.1

miss-6-30-2-2 6 14 57.1% 6 7 14.3% 3600.0 6 9 33.3% 3600.0 6 6 0.0% 22.6 6 6 0.0% 14.7 6 6 0.0% 7.4

miss-6-30-2-3 6 14 57.1% 6 11 45.5% 3600.0 6 14 57.1% 3600.0 t 6 6 0.0% 8.8 6 6 0.0% 2.0 6 6 0.0% 2.5

miss-6-30-2-4 6 14 57.1% 6 14 57.1% 3600.0 t 6 14 57.1% 3600.0 t 6 6 0.0% 0.6 6 6 0.0% 1.5 6 6 0.0% 3.9

miss-6-30-2-5 6 14 57.1% 6 9 33.3% 3600.0 6 14 57.1% 3600.0 t 6 6 0.0% 29.1 6 6 0.0% 7.5 6 6 0.0% 19.5

miss-7-15-3-1 7 19 63.2% 7 9 22.2% 3600.0 7 7 0.0% 3600.0 7 7 0.0% 55.3 7 7 0.0% 13.5 7 7 0.0% 47.1

miss-7-15-3-2 7 19 63.2% 7 7 0.0% 3600.0 7 7 0.0% 3600.0 7 7 0.0% 297.1 7 7 0.0% 14.1 7 7 0.0% 119.2

miss-7-15-3-3 7 19 63.2% 7 9 22.2% 3600.0 7 11 36.4% 3600.0 7 7 0.0% 214.4 7 7 0.0% 35.8 7 7 0.0% 869.3

miss-7-15-3-4 7 19 63.2% 7 7 0.0% 3600.0 7 9 22.2% 3600.0 7 7 0.0% 188.5 7 7 0.0% 82.1 7 7 0.0% 30.4

miss-7-15-3-5 7 19 63.2% 7 19 63.2% 3600.0 t 7 19 63.2% 3600.0 t 7 7 0.0% 71.8 7 7 0.0% 100.5 7 7 0.0% 218.5

miss-7-30-3-1 7 19 63.2% 7 19 63.2% 3600.0 t 7 19 63.2% 3600.0 t 7 7 0.0% 721.8 7 7 0.0% 242.3 7 7 0.0% 706.0

miss-7-30-3-2 7 19 63.2% 7 19 63.2% 3600.0 t 7 19 63.2% 3600.0 t 7 7 0.0% 3451.0 7 10 30.0% 3600.0 7 10 30.0% 3600.0

miss-7-30-3-3 7 19 63.2% 7 19 63.2% 3600.0 t 7 19 63.2% 3600.0 t 7 7 0.0% 244.4 7 7 0.0% 1455.3 7 7 0.0% 1183.2

miss-7-30-3-4 7 19 63.2% 7 19 63.2% 3600.0 t 7 19 63.2% 3600.0 t 7 10 30.0% 3600.0 7 7 0.0% 1206.7 7 7 0.0% 167.4

miss-7-30-3-5 7 19 63.2% 7 19 63.2% 3600.0 t 7 19 63.2% 3600.0 t 7 7 0.0% 245.0 7 7 0.0% 679.6 7 7 0.0% 2600.3

miss-8-15-3-1 8 26 69.2% 8 26 69.2% 3600.0 t 8 26 69.2% 3600.0 t 8 13 38.5% 3600.0 8 12 33.3% 3600.0 8 8 0.0% 2011.0

miss-8-15-3-2 8 26 69.2% 8 26 69.2% 3600.0 t 8 26 69.2% 3600.0 t 8 14 42.9% 3600.0 8 17 52.9% 3600.0 8 17 52.9% 3600.0

miss-8-15-3-3 8 26 69.2% 8 26 69.2% 3600.0 t 8 26 69.2% 3600.0 t 8 8 0.0% 869.6 8 10 20.0% 3600.0 8 10 20.0% 3600.0

miss-8-15-3-4 8 26 69.2% 8 26 69.2% 3600.0 t 8 26 69.2% 3600.0 t 8 10 20.0% 3600.0 8 9 11.1% 3600.0 8 8 0.0% 3541.2

miss-8-15-3-5 8 26 69.2% 8 26 69.2% 3600.0 t 8 26 69.2% 3600.0 t 8 11 27.3% 3600.0 8 8 0.0% 1640.0 8 8 0.0% 2125.5

miss-8-30-3-1 8 26 69.2% 8 26 69.2% 3600.0 t 8 26 69.2% 3600.0 t 8 13 38.5% 3600.0 8 12 33.3% 3600.0 8 12 33.3% 3600.0

miss-8-30-3-2 8 26 69.2% 8 26 69.2% 3600.0 t 8 26 69.2% 3600.0 t 8 16 50.0% 3600.0 8 12 33.3% 3600.0 8 17 52.9% 3600.0

miss-8-30-3-3 8 26 69.2% 8 26 69.2% 3600.0 t 8 26 69.2% 3600.0 t 8 13 38.5% 3600.0 8 12 33.3% 3600.0 8 17 52.9% 3600.0

miss-8-30-3-4 8 26 69.2% 8 26 69.2% 3600.0 t 8 26 69.2% 3600.0 t 8 8 0.0% 508.7 8 10 20.0% 3600.0 8 12 33.3% 3600.0

Continue on next page

23



Table 4: Results for missing distance instances – Continued from previous page

Trivial QP RLT IP FEAS MAX

Instance LB UB Gap LB UB Gap Time LB UB Gap Time LB UB Gap Time LB UB Gap Time LB UB Gap Time

miss-8-30-3-5 8 26 69.2% 8 26 69.2% 3600.0 t 8 26 69.2% 3600.0 t 8 15 46.7% 3600.0 8 12 33.3% 3600.0 8 12 33.3% 3600.0

miss-9-15-4-1 9 33 72.7% 9 33 72.7% 3600.0 t 9 33 72.7% 3600.0 t 9 11 18.2% 3600.0 9 15 40.0% 3600.0 9 15 40.0% 3600.0

miss-9-15-4-2 9 33 72.7% 9 33 72.7% 3600.0 t 9 33 72.7% 3600.0 t 9 20 55.0% 3600.0 9 12 25.0% 3600.0 9 12 25.0% 3600.0

miss-9-15-4-3 9 33 72.7% 9 33 72.7% 3600.0 t 9 33 72.7% 3600.0 t 9 17 47.1% 3600.0 9 15 40.0% 3600.0 9 15 40.0% 3600.0

miss-9-15-4-4 9 33 72.7% 9 33 72.7% 3600.0 t 9 33 72.7% 3600.0 t 9 17 47.1% 3600.0 9 15 40.0% 3600.0 9 12 25.0% 3600.0

miss-9-15-4-5 9 33 72.7% 9 33 72.7% 3600.0 t 9 33 72.7% 3600.0 t 9 12 25.0% 3600.0 9 12 25.0% 3600.0 9 10 10.0% 3600.0

miss-9-30-4-1 9 33 72.7% 9 33 72.7% 3600.0 t 9 33 72.7% 3600.0 t 9 26 65.4% 3600.0 9 21 57.1% 3600.0 9 15 40.0% 3600.0

miss-9-30-4-2 9 33 72.7% 9 33 72.7% 3600.0 t 9 33 72.7% 3600.0 t 9 25 64.0% 3600.0 9 15 40.0% 3600.0 9 15 40.0% 3600.0

miss-9-30-4-3 9 33 72.7% 9 33 72.7% 3600.0 t 9 33 72.7% 3600.0 t 9 24 62.5% 3600.0 9 21 57.1% 3600.0 9 15 40.0% 3600.0

miss-9-30-4-4 9 33 72.7% 9 33 72.7% 3600.0 t 9 33 72.7% 3600.0 t 9 28 67.9% 3600.0 9 15 40.0% 3600.0 9 15 40.0% 3600.0

miss-9-30-4-5 9 33 72.7% 9 33 72.7% 3600.0 t 9 33 72.7% 3600.0 t 9 26 65.4% 3600.0 9 15 40.0% 3600.0 9 33 72.7% 3600.0 t

miss-10-15-4-1 10 42 76.2% 10 42 76.2% 3600.0 t 10 42 76.2% 3600.0 t 10 28 64.3% 3600.0 10 18 44.4% 3600.0 10 26 61.5% 3600.0

miss-10-15-4-2 10 42 76.2% 10 42 76.2% 3600.0 t 10 42 76.2% 3600.0 t 10 23 56.5% 3600.0 10 18 44.4% 3600.0 10 26 61.5% 3600.0

miss-10-15-4-3 10 42 76.2% 10 42 76.2% 3600.0 t 10 42 76.2% 3600.0 t 10 17 41.2% 3600.0 10 18 44.4% 3600.0 10 26 61.5% 3600.0

miss-10-15-4-4 10 42 76.2% 10 42 76.2% 3600.0 t 10 42 76.2% 3600.0 t 10 17 41.2% 3600.0 10 14 28.6% 3600.0 10 18 44.4% 3600.0

miss-10-15-4-5 10 42 76.2% 10 42 76.2% 3600.0 t 10 42 76.2% 3600.0 t 10 15 33.3% 3600.0 10 18 44.4% 3600.0 10 10 0.0% 452.2

miss-10-30-4-1 10 42 76.2% 10 42 76.2% 3600.0 t 10 42 76.2% 3600.0 t 10 32 68.8% 3600.0 10 26 61.5% 3600.0 10 26 61.5% 3600.0

miss-10-30-4-2 10 42 76.2% 10 42 76.2% 3600.0 t 10 42 76.2% 3600.0 t 10 42 76.2% 3600.0 t 10 18 44.4% 3600.0 10 18 44.4% 3600.0

miss-10-30-4-3 10 42 76.2% 10 42 76.2% 3600.0 t 10 42 76.2% — t 10 42 76.2% 3600.0 t 10 26 61.5% 3600.0 10 18 44.4% 3600.0

miss-10-30-4-4 10 42 76.2% 10 42 76.2% 3600.0 t 10 42 76.2% — t 10 40 75.0% 3600.0 10 26 61.5% 3600.0 10 42 76.2% 3600.0 t

miss-10-30-4-5 10 42 76.2% 10 42 76.2% 3600.0 t 10 42 76.2% — t 10 42 76.2% 3600.0 t 10 18 44.4% 3600.0 10 26 61.5% 3600.0

Average 7.5 23.8 63.8% 7.5 21.6 47.5% 3517.1 7.5 21.8 48.8% 3187.9 7.5 13.5 24.3% 1856.2 7.5 10.9 19.7% 1892.0 7.5 11.6 20.0% 1856.4

Solved 15 16 31 30 33

Trivial 37 40 3 0 2

Out of Memory 0 3 0 0 0
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Table 5: Results for joint instances

Trivial QP RLT IP FEAS MAX

Instance LB UB Gap LB UB Gap Time LB UB Gap Time LB UB Gap Time LB UB Gap Time LB UB Gap Time

joint-5-15-5-15-1 7 21 66.7% 7 10 30.0% 3600.0 7 9 22.2% 3600.0 8 8 0.0% 1189.4 8 8 0.0% 33.3 8 8 0.0% 442.6

joint-5-15-5-15-2 7 21 66.7% 7 12 41.7% 3600.0 7 9 22.2% 3600.0 8 8 0.0% 2362.2 8 8 0.0% 64.1 8 8 0.0% 342.2

joint-5-15-5-15-3 7 21 66.7% 7 10 30.0% 3600.0 7 8 12.5% 3600.0 8 8 0.0% 154.6 8 8 0.0% 31.1 8 8 0.0% 339.1

joint-5-30-5-30-1 7 21 66.7% 7 21 66.7% 3600.0 t 7 21 66.7% 3600.0 t 7 13 46.2% 3600.0 7 10 30.0% 3600.0 7 10 30.0% 3600.0

joint-5-30-5-30-2 7 21 66.7% 7 21 66.7% 3600.0 t 7 21 66.7% 3600.0 t 7 9 22.2% 3600.0 7 10 30.0% 3600.0 7 10 30.0% 3600.0

joint-5-30-5-30-3 7 21 66.7% 7 21 66.7% 3600.0 t 7 19 63.2% 3600.0 7 12 41.7% 3600.0 7 14 50.0% 3600.0 7 10 30.0% 3600.0

joint-6-15-5-15-1 8 26 69.2% 8 26 69.2% 3600.0 t 8 26 69.2% 3600.0 t 8 10 20.0% 3600.0 9 9 0.0% 2817.1 8 12 33.3% 3600.0

joint-6-15-5-15-2 8 26 69.2% 8 17 52.9% 3600.0 8 14 42.9% 3600.0 8 9 11.1% 3600.0 8 10 20.0% 3600.0 9 9 0.0% 642.4

joint-6-15-5-15-3 8 26 69.2% 8 26 69.2% 3600.0 t 8 26 69.2% 3600.0 t 8 12 33.3% 3600.0 8 10 20.0% 3600.0 8 9 11.1% 3600.0

joint-6-30-5-30-1 8 26 69.2% 8 26 69.2% 3600.0 t 8 26 69.2% 3600.0 t 8 15 46.7% 3600.0 8 12 33.3% 3600.0 8 17 52.9% 3600.0

joint-6-30-5-30-2 8 26 69.2% 8 26 69.2% 3600.0 t 8 26 69.2% 3600.0 t 8 14 42.9% 3600.0 8 12 33.3% 3600.0 8 10 20.0% 3600.0

joint-6-30-5-30-3 8 26 69.2% 8 26 69.2% 3600.0 t 8 26 69.2% 3600.0 t 8 12 33.3% 3600.0 8 10 20.0% 3600.0 8 12 33.3% 3600.0

joint-7-15-5-15-1 9 32 71.9% 9 32 71.9% 3600.0 t 9 32 71.9% 3600.0 t 9 13 30.8% 3600.0 9 14 35.7% 3600.0 9 11 18.2% 3600.0

joint-7-15-5-15-2 9 32 71.9% 9 32 71.9% 3600.0 t 9 32 71.9% 3600.0 t 9 11 18.2% 3600.0 9 11 18.2% 3600.0 9 14 35.7% 3600.0

joint-7-15-5-15-3 9 32 71.9% 9 32 71.9% 3600.0 t 9 32 71.9% 3600.0 t 9 12 25.0% 3600.0 9 11 18.2% 3600.0 9 11 18.2% 3600.0

joint-7-30-5-30-1 9 32 71.9% 9 32 71.9% 3600.0 t 9 32 71.9% 3600.0 t 9 16 43.8% 3600.0 9 14 35.7% 3600.0 9 11 18.2% 3600.0

joint-7-30-5-30-2 9 32 71.9% 9 32 71.9% 3600.0 t 9 32 71.9% 3600.0 t 9 17 47.1% 3600.0 9 14 35.7% 3600.0 9 20 55.0% 3600.0

joint-7-30-5-30-3 9 32 71.9% 9 32 71.9% 3600.0 t 9 32 71.9% 3600.0 t 9 25 64.0% 3600.0 9 20 55.0% 3600.0 9 14 35.7% 3600.0

joint-8-15-5-15-1 10 39 74.4% 10 39 74.4% 3600.0 t 10 39 74.4% 3600.0 t 10 15 33.3% 3600.0 10 13 23.1% 3600.0 10 13 23.1% 3600.0

joint-8-15-5-15-2 10 39 74.4% 10 39 74.4% 3600.0 t 10 39 74.4% 3600.0 t 10 18 44.4% 3600.0 10 24 58.3% 3600.0 10 17 41.2% 3600.0

joint-8-15-5-15-3 10 39 74.4% 10 39 74.4% 3600.0 t 10 39 74.4% 3600.0 t 10 14 28.6% 3600.0 10 13 23.1% 3600.0 10 13 23.1% 3600.0

joint-8-30-5-30-1 10 39 74.4% 10 39 74.4% 3600.0 t 10 39 74.4% 3600.0 t 10 32 68.8% 3600.0 10 17 41.2% 3600.0 10 17 41.2% 3600.0

joint-8-30-5-30-2 10 39 74.4% 10 39 74.4% 3600.0 t 10 39 74.4% 3600.0 t 10 23 56.5% 3600.0 10 39 74.4% 3600.0 t 10 39 74.4% 3600.0 t

joint-8-30-5-30-3 10 39 74.4% 10 39 74.4% 3600.0 t 10 39 74.4% 3600.0 t 10 22 54.5% 3600.0 10 17 41.2% 3600.0 10 17 41.2% 3600.0

joint-9-15-5-15-1 11 47 76.6% 11 47 76.6% 3600.0 t 11 47 76.6% 3600.0 t 11 26 57.7% 3600.0 11 15 26.7% 3600.0 11 20 45.0% 3600.0

joint-9-15-5-15-2 11 47 76.6% 11 47 76.6% 3600.0 t 11 47 76.6% 3600.0 t 11 27 59.3% 3600.0 11 20 45.0% 3600.0 11 20 45.0% 3600.0

joint-9-15-5-15-3 11 47 76.6% 11 47 76.6% 3600.0 t 11 47 76.6% 3600.0 t 11 24 54.2% 3600.0 11 15 26.7% 3600.0 11 15 26.7% 3600.0
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Table 5: Results for joint instances – Continued from previous page

Trivial QP RLT IP FEAS MAX

Instance LB UB Gap LB UB Gap Time LB UB Gap Time LB UB Gap Time LB UB Gap Time LB UB Gap Time

joint-9-30-5-30-1 11 47 76.6% 11 47 76.6% 3600.0 t 11 47 76.6% 3600.0 t 11 47 76.6% 3600.0 t 11 20 45.0% 3600.0 11 20 45.0% 3600.0

joint-9-30-5-30-2 11 47 76.6% 11 47 76.6% 3600.0 t 11 47 76.6% — t 11 46 76.1% 3600.0 11 20 45.0% 3600.0 11 20 45.0% 3600.0

joint-9-30-5-30-3 11 47 76.6% 11 47 76.6% 3600.0 t 11 47 76.6% 3600.0 t 11 41 73.2% 3600.0 11 15 26.7% 3600.0 11 20 45.0% 3600.0

joint-10-15-5-15-1 11 56 80.4% 11 56 80.4% 3600.0 t 11 56 80.4% 3600.0 t 11 44 75.0% 3600.0 11 22 50.0% 3600.0 11 33 66.7% 3600.0

joint-10-15-5-15-2 11 56 80.4% 11 56 80.4% 3600.0 t 11 56 80.4% 3600.0 t 11 36 69.4% 3600.0 11 22 50.0% 3600.0 11 22 50.0% 3600.0

joint-10-15-5-15-3 11 56 80.4% 11 56 80.4% 3600.0 t 11 56 80.4% 3600.0 t 11 21 47.6% 3600.0 11 16 31.3% 3600.0 11 22 50.0% 3600.0

joint-10-30-5-30-1 11 56 80.4% 11 56 80.4% 3600.0 t 11 56 80.4% — t 11 56 80.4% 3600.0 t 11 22 50.0% 3600.0 11 33 66.7% 3600.0

joint-10-30-5-30-2 11 56 80.4% 11 56 80.4% 3600.0 t 11 56 80.4% — t 11 56 80.4% 3600.0 t 11 33 66.7% 3600.0 11 33 66.7% 3600.0

joint-10-30-5-30-3 11 56 80.4% 11 56 80.4% 3600.0 t 11 56 80.4% — t 11 56 80.4% 3600.0 t 11 33 66.7% 3600.0 11 33 66.7% 3600.0

Average 9.3 36.8 73.2% 9.3 35.7 70.0% 3600.0 9.3 35.4 68.4% 3600.0 9.4 23.0 45.6% 3402.9 9.4 16.1 34.1% 3281.8 9.4 17.0 35.7% 3249.1

Solved 0 0 3 4 4

Trivial 32 31 4 1 1

Out of Memory 0 4 0 0 0

Table 6: Results for random distance instances

Trivial QP RLT IP FEAS MAX

Instance LB UB Gap LB UB Gap Time LB UB Gap Time LB UB Gap Time LB UB Gap Time LB UB Gap Time

drand-5-75-1 4 6 33.3% 6 6 0.0% 211.3 6 6 0.0% 2.6 6 6 0.0% 0.2 6 6 0.0% 0.1 6 6 0.0% 0.2

drand-5-75-2 4 6 33.3% 5 5 0.0% 73.8 5 5 0.0% 1.1 5 5 0.0% 0.1 5 5 0.0% 0.0 5 5 0.0% 0.1

drand-5-75-3 4 6 33.3% 6 6 0.0% 148.3 6 6 0.0% 2.3 6 6 0.0% 0.1 6 6 0.0% 0.1 6 6 0.0% 0.2

drand-5-110-1 4 6 33.3% 5 5 0.0% 12.7 5 5 0.0% 0.3 5 5 0.0% 0.1 5 5 0.0% 0.0 5 5 0.0% 0.0

drand-5-110-2 4 6 33.3% 6 6 0.0% 53.6 6 6 0.0% 0.8 6 6 0.0% 0.1 6 6 0.0% 0.1 6 6 0.0% 0.1

drand-5-110-3 4 6 33.3% 6 6 0.0% 969.3 6 6 0.0% 5.8 6 6 0.0% 0.1 6 6 0.0% 0.1 6 6 0.0% 0.2

drand-5-200-1 4 6 33.3% 6 6 0.0% 89.3 6 6 0.0% 1.5 6 6 0.0% 0.1 6 6 0.0% 0.1 6 6 0.0% 0.2

drand-5-200-2 4 6 33.3% 6 6 0.0% 188.6 6 6 0.0% 2.9 6 6 0.0% 0.1 6 6 0.0% 0.1 6 6 0.0% 0.2

drand-5-200-3 4 6 33.3% 5 5 0.0% 9.0 5 5 0.0% 0.4 5 5 0.0% 0.0 5 5 0.0% 0.0 5 5 0.0% 0.0

Continue on next page
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Table 6: Results for random distance instances – Continued from previous page

Trivial QP RLT IP FEAS MAX

Instance LB UB Gap LB UB Gap Time LB UB Gap Time LB UB Gap Time LB UB Gap Time LB UB Gap Time

drand-7-75-1 5 8 37.5% 5 7 28.6% 3600.0 5 7 28.6% 3600.0 7 7 0.0% 5.6 7 7 0.0% 4.9 7 7 0.0% 7.1

drand-7-75-2 5 8 37.5% 5 7 28.6% 3600.0 5 6 16.7% 3600.0 6 6 0.0% 1.2 6 6 0.0% 0.5 6 6 0.0% 1.7

drand-7-75-3 5 8 37.5% 5 6 16.7% 3600.0 5 6 16.7% 3600.0 6 6 0.0% 1.6 6 6 0.0% 1.1 6 6 0.0% 2.6

drand-7-110-1 5 8 37.5% 5 7 28.6% 3600.0 5 7 28.6% 3600.0 7 7 0.0% 6.7 7 7 0.0% 4.9 7 7 0.0% 12.0

drand-7-110-2 5 8 37.5% 5 7 28.6% 3600.0 5 7 28.6% 3600.0 7 7 0.0% 6.3 7 7 0.0% 5.3 7 7 0.0% 10.4

drand-7-110-3 5 8 37.5% 5 7 28.6% 3600.0 5 7 28.6% 3600.0 7 7 0.0% 5.6 7 7 0.0% 5.9 7 7 0.0% 12.3

drand-7-200-1 5 8 37.5% 5 8 37.5% 3600.0 t 5 8 37.5% 3600.0 t 8 8 0.0% 136.2 8 8 0.0% 153.5 8 8 0.0% 382.5

drand-7-200-2 5 8 37.5% 5 8 37.5% 3600.0 t 5 8 37.5% 3600.0 t 8 8 0.0% 134.7 8 8 0.0% 112.2 8 8 0.0% 297.6

drand-7-200-3 5 8 37.5% 5 7 28.6% 3600.0 5 7 28.6% 3600.0 7 7 0.0% 7.7 7 7 0.0% 3.8 7 7 0.0% 10.0

drand-10-75-1 5 11 54.5% 5 9 44.4% 3600.0 5 7 28.6% 3600.0 7 7 0.0% 9.1 7 7 0.0% 12.3 7 7 0.0% 11.0

drand-10-75-2 5 11 54.5% 5 9 44.4% 3600.0 5 9 44.4% 3600.0 8 8 0.0% 536.0 8 8 0.0% 174.8 8 8 0.0% 293.2

drand-10-75-3 5 11 54.5% 5 8 37.5% 3600.0 5 8 37.5% 3600.0 7 7 0.0% 40.7 7 7 0.0% 16.4 7 7 0.0% 78.2

drand-10-110-1 5 11 54.5% 5 11 54.5% 3600.0 t 5 10 50.0% 3600.0 8 8 0.0% 567.3 8 8 0.0% 369.1 8 8 0.0% 1076.2

drand-10-110-2 5 11 54.5% 5 10 50.0% 3600.0 5 11 54.5% 3600.0 t 8 8 0.0% 1216.1 8 8 0.0% 422.9 8 8 0.0% 893.2

drand-10-110-3 5 11 54.5% 5 9 44.4% 3600.0 5 9 44.4% 3600.0 8 8 0.0% 676.6 8 8 0.0% 342.5 8 8 0.0% 777.8

drand-10-200-1 5 11 54.5% 5 11 54.5% 3600.0 t 5 11 54.5% 3600.0 t 8 8 0.0% 1919.9 8 8 0.0% 456.7 8 8 0.0% 1419.6

drand-10-200-2 5 11 54.5% 5 11 54.5% 3600.0 t 5 11 54.5% 3600.0 t 7 9 22.2% 3600.0 5 11 54.5% 3600.0 t 5 11 54.5% 3600.0 t

drand-10-200-3 5 11 54.5% 5 9 44.4% 3600.0 5 11 54.5% 3600.0 t 8 8 0.0% 302.3 8 8 0.0% 112.9 8 8 0.0% 2494.0

drand-15-75-1 6 16 62.5% 6 15 60.0% 3600.0 6 14 57.1% 3600.0 7 10 30.0% 3600.0 9 10 10.0% 3600.0 6 11 45.5% 3600.0

drand-15-75-2 6 16 62.5% 6 13 53.8% 3600.0 6 14 57.1% 3600.0 8 10 20.0% 3600.0 9 9 0.0% 1469.8 9 9 0.0% 3295.2

drand-15-75-3 6 16 62.5% 6 16 62.5% 3600.0 t 6 16 62.5% 3600.0 t 7 9 22.2% 3600.0 8 8 0.0% 1577.4 8 8 0.0% 2153.1

drand-15-110-1 6 16 62.5% 6 16 62.5% 3600.0 t 6 16 62.5% 3600.0 t 7 11 36.4% 3600.0 6 11 45.5% 3600.0 6 11 45.5% 3600.0

drand-15-110-2 6 16 62.5% 6 16 62.5% 3600.0 t 6 16 62.5% 3600.0 t 7 11 36.4% 3600.0 6 11 45.5% 3600.0 6 11 45.5% 3600.0

drand-15-110-3 6 16 62.5% 6 16 62.5% 3600.0 t 6 16 62.5% 3600.0 t 7 9 22.2% 3600.0 6 11 45.5% 3600.0 6 11 45.5% 3600.0

drand-15-200-1 6 16 62.5% 6 16 62.5% 3600.0 t 6 16 62.5% 3600.0 t 6 13 53.8% 3600.0 6 11 45.5% 3600.0 6 16 62.5% 3600.0 t

drand-15-200-2 6 16 62.5% 6 16 62.5% 3600.0 t 6 16 62.5% 3600.0 t 6 14 57.1% 3600.0 6 11 45.5% 3600.0 6 11 45.5% 3600.0

drand-15-200-3 6 16 62.5% 6 16 62.5% 3600.0 t 6 16 62.5% 3600.0 t 6 11 45.5% 3600.0 6 11 45.5% 3600.0 6 11 45.5% 3600.0

Continue on next page

27



Table 6: Results for random distance instances – Continued from previous page

Trivial QP RLT IP FEAS MAX

Instance LB UB Gap LB UB Gap Time LB UB Gap Time LB UB Gap Time LB UB Gap Time LB UB Gap Time

drand-20-75-1 7 21 66.7% 7 21 66.7% 3600.0 t 7 21 66.7% 3600.0 t 7 16 56.3% 3600.0 7 14 50.0% 3600.0 7 14 50.0% 3600.0

drand-20-75-2 7 21 66.7% 7 21 66.7% 3600.0 t 7 21 66.7% 3600.0 t 7 17 58.8% 3600.0 7 14 50.0% 3600.0 7 10 30.0% 3600.0

drand-20-75-3 7 21 66.7% 7 21 66.7% 3600.0 t 7 21 66.7% 3600.0 t 7 14 50.0% 3600.0 7 14 50.0% 3600.0 7 10 30.0% 3600.0

drand-20-110-1 7 21 66.7% 7 21 66.7% 3600.0 t 7 21 66.7% 3600.0 t 7 15 53.3% 3600.0 7 14 50.0% 3600.0 7 14 50.0% 3600.0

drand-20-110-2 7 21 66.7% 7 21 66.7% 3600.0 t 7 21 66.7% 3600.0 t 7 13 46.2% 3600.0 7 14 50.0% 3600.0 7 14 50.0% 3600.0

drand-20-110-3 7 21 66.7% 7 21 66.7% 3600.0 t 7 21 66.7% 3600.0 t 7 14 50.0% 3600.0 7 14 50.0% 3600.0 7 14 50.0% 3600.0

drand-20-200-1 7 21 66.7% 7 21 66.7% 3600.0 t 7 21 66.7% 3600.0 t 7 18 61.1% 3600.0 7 14 50.0% 3600.0 7 14 50.0% 3600.0

drand-20-200-2 7 21 66.7% 7 21 66.7% 3600.0 t 7 21 66.7% 3600.0 t 7 18 61.1% 3600.0 7 14 50.0% 3600.0 7 14 50.0% 3600.0

drand-20-200-3 7 21 66.7% 7 21 66.7% 3600.0 t 7 21 66.7% 3600.0 t 7 17 58.8% 3600.0 7 14 50.0% 3600.0 7 14 50.0% 3600.0

drand-25-75-1 8 26 69.2% 8 26 69.2% 3600.0 t 8 26 69.2% 3600.0 t 8 16 50.0% 3600.0 8 17 52.9% 3600.0 8 17 52.9% 3600.0

drand-25-75-2 8 26 69.2% 8 26 69.2% 3600.0 t 8 26 69.2% 3600.0 t 8 15 46.7% 3600.0 8 17 52.9% 3600.0 8 12 33.3% 3600.0

drand-25-75-3 8 26 69.2% 8 26 69.2% 3600.0 t 8 26 69.2% 3600.0 t 8 16 50.0% 3600.0 8 17 52.9% 3600.0 8 17 52.9% 3600.0

drand-25-110-1 8 26 69.2% 8 26 69.2% 3600.0 t 8 26 69.2% 3600.0 t 8 20 60.0% 3600.0 8 17 52.9% 3600.0 8 17 52.9% 3600.0

drand-25-110-2 8 26 69.2% 8 26 69.2% 3600.0 t 8 26 69.2% 3600.0 t 8 20 60.0% 3600.0 8 17 52.9% 3600.0 8 17 52.9% 3600.0

drand-25-110-3 8 26 69.2% 8 26 69.2% 3600.0 t 8 26 69.2% 3600.0 t 8 17 52.9% 3600.0 8 17 52.9% 3600.0 8 17 52.9% 3600.0

drand-25-200-1 8 26 69.2% 8 26 69.2% 3600.0 t 8 26 69.2% 3600.0 t 8 21 61.9% 3600.0 8 17 52.9% 3600.0 8 17 52.9% 3600.0

drand-25-200-2 8 26 69.2% 8 26 69.2% 3600.0 t 8 26 69.2% — t 8 24 66.7% 3600.0 8 17 52.9% 3600.0 8 17 52.9% 3600.0

drand-25-200-3 8 26 69.2% 8 26 69.2% 3600.0 t 8 26 69.2% 3600.0 t 8 21 61.9% 3600.0 8 17 52.9% 3600.0 8 17 52.9% 3600.0

Average 5.8 14.7 54.0% 6.1 14.2 45.7% 3032.5 6.1 14.1 45.4% 2989.0 7.0 11.0 25.0% 1969.9 7.0 10.4 23.4% 1830.5 6.9 10.2 23.3% 1978.3

Solved 9 9 26 28 28

Trivial 30 31 0 1 2

Out of Memory 0 1 0 0 0
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