
This is the peer reviewed version of the following article: “Vidal, T., Crainic, T. G., Gendreau, M., & Prins, C.

(2015). Timing problems and algorithms: Time decisions for sequences of activities. Networks, 65(2), 102–128”,

which has been published in final form at https://doi.org/10.1002/net.21587. It is also the final version of

the technical report named “A unifying view on timing problems and algorithms”. This article may be used for

non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.

Timing problems and algorithms:

Time decisions for sequences of activities

Thibaut Vidal*
CIRRELT & Département d’informatique et de recherche opérationnelle,
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Abstract

Timing problems involve the choice of task execution dates within a predetermined processing se-
quence, and under various additional constraints or objectives such as time windows, time-dependent
costs, or flexible processing times, among others. Their efficient resolution is critical in branch and
bound and neighborhood search methods for vehicle routing, project and machine scheduling, as well
as in various applications in network optimization, resource allocation and statistical inference. Timing
related problems have been studied for years, yet research on this subject suffers from a lack of consen-
sus, and most knowledge is scattered among operations research and applied mathematics domains.
This article introduces a classification of timing problems and features, as well as a unifying multi-
disciplinary analysis of timing algorithms. In relation to frequent application cases within branching
schemes or neighborhood searches, the efficient resolution of series of similar timing subproblems is also
analyzed. A dedicated formalism of re-optimization “by concatenation” is introduced to that extent.
The knowledge developed through this analysis is valuable for modeling and algorithmic design, for
a wide range of combinatorial optimization problems with time characteristics, including rich vehicle
routing settings and emerging non-regular scheduling applications, among others.
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1 Introduction

Time-related constraints and objectives appear in a variety of flavors within scheduling, project man-
agement, data transmission, routing, network optimization and numerous other fields. The related
combinatorial optimization problems, e.g. vehicle routing or machine scheduling, often require the
arrangement of activities under time requirements, such as tasks, visits to customers, production of
objects, and so on. Several combined decisions are required: the allocation of resources to activities,
activities sequencing, and finally the adjustment – timing – of activity execution dates, speed and idle
time, within the chosen sequence. To solve these combinatorial optimization problems, most heuristic
and exact approaches perform a search through a large number of sequence and resource allocation
alternatives, and use repeatedly a timing algorithm to produce adequate execution dates, filter fea-
sible solutions and evaluate costs. The timing solution method is thus called extensively, such that
its complexity impacts dramatically the performance of the solution method, potentially making the
difference between successful algorithmic approaches and failure.

Timing algorithms are the cornerstone of complex algorithms for difficult combinatorial optimiza-
tion problems, but the literature dedicated to this subject remains is scarce and scattered. In fact,
most developments on timing are inherent to a specific field, such as project planning, shortest path,
routing, scheduling, and statistical inference, which bring into play, quite unexpectedly, the same for-
mulations. Few relationships between domains have been actually exploited and, thus, close concepts
and solution methods are independently developed within different formalisms, being rarely assessed in
a more general context. In addition, real-life settings bring forth a large number of challenging timing
variants with different constraints and objectives, such as target execution dates, penalized idle time,
(possibly multiple) time windows on activities, penalized lateness and earliness, speed decisions, time-
dependent activity durations and costs, congestion, learning issues, and so on. Even if efficient timing
algorithms have been designed for some of these characteristics taken separately, problems involving
combinations of characteristics become much more complex, and there is generally no systematic way
to extend concepts developed for the separate problems into a methodology for the new ones.

To address these challenges, this paper contributes to the timing field, by means of a multidisci-
plinary review and analysis of timing features, problems, and algorithmic approaches. A large assort-
ment of problems, often treated independently in the literature under various names, are identified and
classified in relation to their structure. Successful solution methods and solving concepts are invento-
ried and analyzed. In the most noticeable cases, this analysis led to identify more than 26 algorithms
from different research fields as similar implementations of three main general approaches. Not only
does this review gather the keys for a stand-alone resolution of a large variety of timing problems, but
it also analyzes the efficient resolution of timing problems within the context of global search methods,
e.g. neighborhood-based heuristics and branch-and-bound-based approaches for rich vehicle routing
and scheduling problems. For these applications, managing global information through the successive
resolution of similar timing instances can lead to dramatic reductions of the overall computational
effort. To this extent, a re-optimization framework is introduced in the second part of this paper. The
body of knowledge developed in this paper is critical for both modeling work and algorithmic design,
enabling to point out relationships between problems and their respective complexities. A portfolio of
state-of-the-art timing algorithms is identified, which will prove useful to build more generalist solvers
for many variants of difficult combinatorial optimization problems. To our knowledge, no such unifying
review and methodological analysis of this rich body of issues has been performed in the past.

The remainder of this paper is organized as follows: Section 2 formally defines timing problems,
while Section 3 presents examples of applications. Section 4 provides a detailed classification of the
main timing features encountered in the literature as well as notations. Our methodological analysis
of timing problems and their independent resolution is then organized in Sections 5 and 6 relatively to
the previous classification. Section 7 finally introduces a re-optimization framework that encompasses



state-of-the-art approaches for solving series of related timing instances. Section 8 highlights a number
of challenging avenues of research in the timing field and presents the conclusions of this paper.

2 Problem statement

In this paper, the term activities is used to represent, independently of the field of application, ele-
mentary operations that must be managed. The term date always stands for a point in time, whereas
the words duration or time are employed for relative values (e.g., processing time). Without loss of
generality, objective minimization is considered. The notation a+ stands for max{a, 0}.

Definition 1 (General timing problem). Let A = (a1, . . . , an) be a sequence of n activities with
processing times p1, . . . , pn. The execution dates of these activities t = (t1, . . . , tn) are required to follow
a total order with respect to the subscripts, such that ti + pi ≤ ti+1 for i ∈ {1, . . . , n-1}. Additional
problem features F x, for x ∈ {1, . . . ,m}, provide the means to address particular settings with either
a role as objective, F x ∈ Fobj, or as constraint F x ∈ Fcons. Any feature F x is characterized by a
set of mx functions fxy (t) for y ∈ {1, . . . ,mx}. The general timing problem aims to find a feasible
timing solution t, respecting order constraints (Equation 2), features constraints (Equation 3), and
minimizing the weighted sum of contributions from all feature objectives (Equation 1).

min
t=(t1,...,tn)∈<n+

∑
Fx∈Fobj

αx
∑

1≤y≤mx

fxy (t) (1)

s.t. ti + pi ≤ ti+1 1 ≤ i < n (2)

fxy (t) ≤ 0 F x ∈ Fcons , 1 ≤ y ≤ mx (3)

The feature deadlines D, for example, involves a latest execution date di for each activity i, and
characteristic functions fDi (t) = (ti − di)+ for i ∈ {1, . . . , n}. When D takes the role of a constraint,
fDi (t) = (ti−di)+ ≤ 0⇔ ti ≤ di yields the standard formulation of deadlines, while a role as objective
leads to standard tardiness optimization criteria.

Timing problems can be viewed as shifting activity execution dates on a single resource, intro-
ducing idle time and optimizing activity speed, depending upon the features, without changing the
processing order. Most basic versions of timing are simple to address, while various features arising
from application cases can lead to dramatic increases in problem difficulty. It must also be noted
that features have been defined independently from their role as constraint or objective for two main
reasons. First, many algorithms are concerned with the effective calculation of some quantities, like
total duration for example, which enables related constraints or objectives to be tackled in the same
way. Secondly, since constraints can be transformed into objectives by Lagrangian relaxation, it is
sometimes artificial to discriminate problems involving a given feature either as constraint or objective.
Our study will thus be targeted on features, independently of their role, the latter being specified only
when relevant to the method. Finally, in the scheduling domain, some constraints and objectives, such
as due dates, are based on activity completion dates Ci = ti + pi. Without loss of generality, these
problems are reformulated to involve only execution dates.

To emphasize the relations with practical problem settings, Section 3 details major problems in
the fields of operations research and applied mathematics leading to underlying timing structures.

3 Timing issues and major application fields

Production and project scheduling. The development of just-in-time policies leads to challenging
non-regular scheduling settings for which earliness or idle times are a major concern. In the earliness
and tardiness (E/T) scheduling problem, a sequence of activities (a1, . . . , an) is given with target
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execution dates di and processing times pi, as well as penalty factors for earliness εi and tardiness
τi. The goal is to determine the sequence of activities and their execution dates on a single machine,
such that linear penalties incurred for early or late processing are minimized. This scheduling problem
is NP-hard in the strong sense [60] and most recent resolution methods consider branch and bound,
neighborhood search or other metaheuristic frameworks working on the activity sequence [5]. For every
sequence explored during the search, a timing algorithm is applied to compute the activity execution
dates and thus the sequence cost. The related problem is formulated in Equations (4-5).

min
(t1,...,tn)∈<n+

n∑
i=1

{εi(di − ti)+ + τi(ti − di)+} (4)

s.t. ti + pi ≤ ti+1 1 ≤ i < n (5)

This timing problem is known to be solvable in O(n log n) (Sections 5.3 and 5.4). Yet, as the
timing resolution is the main bottleneck for most (E/T) scheduling approaches, extensive research has
been conducted to solve series of timing instances more efficiently within neighborhood searches. The
use of global information through the search leads to timing “re-optimization” procedures working in
amortized O(log n) complexity, and even O(1) for some particular cases, as described in Section 7.

Network optimization and vehicle routing. Timing subproblems are also frequently encountered
in network optimization settings, e.g., resource-constrained shortest paths, delivery-man and minimum
latency, vehicle routing and scheduling [40, 42, 146]. Thus, for example, the vehicle routing problem
with time windows (VRPTW) consists in designing vehicle itineraries to service a set of geographically
scattered customers within allowed time intervals. This problem has been the focus of a significant
research effort focused for a large part on heuristic methods [18, 19, 61]. In particular, it is common
to consider solutions with penalized time-constraint violations to enhance the search [148]. Different
relaxation schemes can be applied, with lateness (Taillard et al. [140]), lateness and earliness (Ibaraki
et al. [86, 87]), “returns in time” (Nagata et al. [109]), or speed-increase (Vidal et al. [148]), leading to
different timing sub-problems for producing route schedules and evaluating penalties. Yet, the efficient
resolution of these sub-problems is critical, since it determines the complexity of the neighborhood-
search procedures, which are the bottleneck of many current metaheuristics.

One also observes a recent important focus on “richer” VRPs [68, 146], which explicitly take
into account various combined constraints and objectives issued from application cases. These com-
plex combinatorial optimization problems frequently involve temporal considerations, time-dependent
travel speed, crew costs, customer requirements in terms of visit times, employee breaks and duty
times, learning or fatigue effects, fair repartition of working time among employees, and so on. Such
characteristics must be directly managed within route evaluations in heuristics and exact methods,
thus leading to a large variety of timing subproblems.

Energy optimization. Norstad et al. [111] introduce a ship routing problem with convex speed
optimization, which presents two interlaced issues: the design of a ship itinerary, and the optimization
of arrival dates and speed to reduce fuel consumption. For a fixed sequence of visits, the latter
subproblem is formulated in Equations (6-9).

min
t,v

n−1∑
i=1

di,i+1 c(vi,i+1) (6)

s.t. ti + pi + di,i+1/vi,i+1 ≤ ti+1 1 ≤ i ≤ n− 1 (7)

ri ≤ ti ≤ di 1 ≤ i ≤ n (8)

vmin ≤ vi,i+1 ≤ vmax 1 ≤ i ≤ n− 1 (9)
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The decision variables are the travel speeds vi,i+1 for i ∈ {1, . . . , n − 1} for each port-to-port leg,
and the arrival dates at ports ti for i ∈ {1, . . . , n}. The objective is to minimize the fuel consumption
on all trips, while respecting time-window constraints [ri, di] on arrival dates, and maintaining the
speed in a feasible range [vmin, vmax]. The convex function c(v) describes the energy consumption per
mile as a function of speed. Let vopt be the minimum of c(v), let di,i+1 represent the leg distances
and pi stand for processing times at ports. Equations (7-9) ensure that port arrival and departure
dates are consistent with leg speeds, that time windows at port arrivals are respected, and finally that
speeds are within a feasible range.

This problem can be reformulated to rely exclusively on arrival dates by defining an extended
cost/speed function ĉ(v), which accounts for the fact that waiting times can be used in case of sub-
optimal low speed values (Equations 10-13).

min
t

n−1∑
i=1

di,i+1ĉ

(
di,i+1

ti+1 − ti

)
(10)

s.t. ti + pi +
di,i+1

vmax
≤ ti+1 1 ≤ i ≤ n− 1 (11)

ri ≤ ti ≤ di 1 ≤ i ≤ n (12)

with ĉ(v) =

{
c(vopt) if v ≤ vopt
c(v) otherwise

(13)

The latter model falls into the category of timing problems. It involves time-window features
characterized by functions fi(t) = (ti − di)+ + (ri − ti)+ with a role as constraints, as well as flexible
processing times characterized by convex functions fi(t) = ci(ti+1 − ti) in the objective, such that
ci(∆ti) = di,i+1ĉ(di,i+1/∆ti). Hvattum et al. [84] and Norstad et al. [111] introduced a strongly poly-
nomial Recursive Smoothing Algorithm (RSA) to solve the previous timing problem with a worst case
complexity of O(n2). A similar algorithm was then used in the context of a vehicle routing problem
with CO2 minimization (Demir et al. [36]). Other timing algorithms and re-optimization procedures
are known for these settings (Sections 6.3 and 7.5.5).

Statistical Inference. The isotonic regression problem under a total order (IRC) constitutes an
intensively studied particular case of our models. Given a vector N = (N1, . . . , Nn) of n real numbers,
IRC seeks a vector of non-decreasing values t = (t1, . . . , tn) as close as possible to N according to a
distance metric ‖ ‖ (generally the Euclidean distance), as in Equations (14-15).

min
t=(t1,...,tn)

‖t−N‖ (14)

s.t. ti ≤ ti+1 1 ≤ i < n (15)

As underlined by the seminal books of Barlow et al. [8] and Robertson et al. [126], IRC is the key
to performing many restricted maximum likelihood estimates in statistics, and is linked with various
applications such as image processing and data analysis. It appears here as a timing problem with
separable convex costs, similar to those encountered when solving vehicle routing problems with time
windows or (E/T) scheduling settings.

Other applications. Timing formulations arise in various other contexts. For example, the nested
resource allocation problem [47, 77, 149] is equivalent to a timing problem with flexible processing
times and deadlines on activity completion dates. Different names are also used, e.g., projection onto
order simplexes in Grotzinger and Witzgall [65]. Finally, some timing formulations constitute special
cases of several convex optimization problems with underlying network structures [2, 76].
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4 Features : classification and reductions

This section introduces a classification of the main timing features in the literature, and levers notations
for the related problems. Reduction relationships between features are then investigated.

4.1 Classification and notations

The features are here classified relatively to the structure of their characteristic functions. We rely
to that extent on a feature dimension measure ξ, which illustrates the links that a feature creates
between decision variables.

Definition 2 (Feature dimension). The dimension ξ(F x) of a feature F x is defined as the maximum
number of variables involved together in any characteristic function fxy (t) for y ∈ {1, . . . ,mx}.

Table 1 displays the most common features in the literature relatively to their dimension ξ. The
first column provides an abbreviation for each feature. The next columns describe the parameters,
characteristic functions and dimensions of these features. Finally, we report the most frequent roles
of each feature in the literature.

Table 1: Classification of timing features and notations
Symbol Parameters Char. functions ξ Most frequent roles

C Deadline tmax
on last activity

f(t) = (tn − tmax)+ 1 Deadline on last activity, lateness of
last activity, makespan

W Weights wi fi(t) = witi 1 Weighted execution dates
D Deadlines di fi(t) = (ti − di)+ 1 Deadline constraints, tardiness
R Release dates ri fi(t) = (ri − ti)+ 1 Release-date constraints, earliness.
TW Time windows

TWi = [ri, di]
fi(t) = (ti − di)+

+(ri − ti)+
1 Time-window constraints,

soft time windows.
MTW Multiple TW

MTWi = ∪[rik, dik]
fi(t) = min

k
[(ti − dik)+

+(rik − ti)+]

1 Multiple time-window constraints

Σccvxi (ti) Convex ccvxi (ti) fi(t) = ccvxi (ti) 1 Separable convex objectives
Σci(ti) General ci(t) fi(t) = ci(ti) 1 Separable objectives,

time-dependent activity costs

DUR Total dur. δmax f(t) = (tn − δmax − t1)+ 2 Duration or overall idle time
NWT No wait fi(t) = (ti+1 − pi − ti)+ 2 No wait constraints, min idle time
IDL Idle time ιi fi(t) = (ti+1−pi−ιi−ti)+ 2 Limited idle time by activity, min

idle time excess
P (t) Time-dependent

proc. times pi(ti)
fi(t) = (ti+pi(ti)− ti+1)+ 2 Processing-time constraints, min ac-

tivities overlap
TL Time-lags δij fi(t) = (tj − δij − ti)+ 2 Min excess with respect to time-lags
Σci(∆ti) General ci(t) fi(t) = ci(ti+1 − ti) 2 Separable functions of durations

between successive activities, flex.
processing times

Σci(ti, ti+1) General ci(t, t
′) fi(t) = ci(ti, ti+1) 2 Separable objectives or constraints

by successive pairs of variables
Σcij(ti, tj) General cij(t, t

′) fij(t)= ci(ti, tj) 2 Separable objectives or constraints
by any pairs of variables

c(t) General c(t) f(t) = c(t) – Any feature

Most of the features presented in Table 1 are well-known in the scheduling or vehicle routing liter-
ature. Features D, C, and W , can be qualified as regular, as they involve non-decreasing characteristic
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functions fxy (t). The set of active schedules “such that no operation can be made to start sooner by
permissible left shifting” (Giffler and Thompson [62]) is dominating for regular features. Solving the
timing problem is then straightforward by means of a minimum idle time policy (Section 5.1). How-
ever, these regular features present notably different behaviors with regards to re-optimization, thus
motivating a detailed study. Other features from Table 1 are non-regular. They lead to more complex
timing problems for which the insertion of idle time can improve the objective or the satisfaction of
constraints.

Single- and two-dimensional features are directly linked to physical quantities, execution dates and
durations, respectively. As seen in Table 1, such features are frequently encountered in timing formu-
lations. Higher-dimension features are more unusual in the literature, and can, by definition, lead to a
wide range of difficult problems. Indeed, any mathematical program can be viewed as a combination
of unary and binary mathematical operators of the form x = f(y, z), and thus can be reformulated
with constraints and objectives separable in groups of three variables. Hence, any problem on contin-
uous totally ordered variables can be viewed as a timing problem with three-dimensional features. A
reasonable delineation for timing problems is to consider, as in the present paper, only applications
and problems presenting explicitly the aspect of an activity sequence.

We introduce a notation specifying for each problem the features considered, as well as information
regarding their role. Each problem is tagged as a two-component string {O|C}, where O is a list of
features included in the objective and C is a list of features included as constraints. Separating features
in the field O with a comma indicates a weighted sum of objectives. The sign ∪ is used for multi-
objective problems and the sign > indicates an order of priority. Particular parameter characteristics
are reported in parentheses after the feature symbol. For example, problems with common deadlines
can be marked with (di = d), null processing times as (pi = 0), and so on.

To illustrate, consider the problem of speed optimization of Section 3. This problem presents a
separable and convex objective as a function of durations between successive activities, along with
time-window constraints. It can thus be categorized as {Σccvx(∆t)|TW}. The (E/T) timing problem
presents linear penalties around a target execution date. These penalties can be assimilated to relaxed
simultaneous release dates and deadlines, leading to the notation {R,D(ri = di)|ø}. Finally, the vehicle
routing literature includes problem settings with a hierarchical objective aiming first to minimize the
amount of time-window violations, then duration excess, and finally time-lag violations [12, 29]. Such
a problem setting can be characterized as {TW > D > TL|ø}.

4.2 Feature reductions

We use reduction relationships to illustrate the level of generality and complexity of timing features.
A rich body of polynomial reductions has been developed in the scheduling literature. Most timing
problems, however, are polynomially solvable, and the use of polynomial reduction relationships leads
to consider most problems in the same class of equivalence. We thus seek stronger reduction properties
to distinguish them. We also aim to build relationships between features instead of complete problems,
leading to the following definition of feature reductions:

Definition 3 (Reducibility among timing features). A feature F is said to be reducible to feature
F ′ if any timing problem T involving F and other features {F 1, . . . , F k} admits a linear many-one
reduction to a timing problem T ′ involving F ′ ∪ {F 1, . . . , F k}.

An overview of feature reductions is given in Figure 1, where an arrow from feature F i to F j

indicates that feature F i can be reduced to F j . Four different categories of features are identified by
different shades of gray. On the left, we present features involving at most one decision variable (the
first part of Table 1) and separable costs. Progressing to the right, the next gray shade represents
two-dimensional features that involve only pairs of consecutive activities, then features involving any
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pair of activities, and finally other features. We also demarcate the area of “NP-hard” features, which
alone are sufficient to lead to NP-hard timing problems.

Figure 1: Hierarchy of timing features

The hierarchy of reductions presented in Figure 1 gives an indication on the level of generality
of the features. Some features, such as Σccvxi (ti), Σci(ti), Σci(∆ti), and TL, generalize many other
features while remaining polynomially solvable. An algorithm addressing such general features can
tackle many problems, while specialized algorithms for simpler combinations of features may be more
efficient. Both specialized and general algorithms are critical for practical applications. Thus, this
methodological review is ordered by increasing generality, starting with the most simple cases of
single-dimensional features in Section 5, and following with two-dimensional features in Section 6.

5 Single-dimensional features

Problems with single-dimensional features are analyzed according to their difficulty and generality,
starting with simple regular features, following with time-window TW features, separable convex
costs Σccvxi (ti) and, finally, general separable costs Σci(ti). The latter feature encompasses multiple
time windows MTW and generalizes all problems in this category.

5.1 Makespan, deadlines and weighted execution dates

Maximum execution dates C, deadlines D, and weighted execution dates W features lead to well-
documented objectives in the scheduling literature, aiming to minimize makespan, tardiness, lateness
or weighted completion time among others [64, 121]. W as an objective also arises in various routing
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settings, such as the delivery-man problem [55], the minimum latency problem [17], and the cumulative
TSP or VRP [16, 110], where the goal is to service a set of customer as early as possible. These features
are regular, as any backward shift of execution date is beneficial for both feasibility and objective value.
A very simple algorithm follows, which will be referred to as the “minimum idle time policy”: For each
activity ai of A in the sequence order, schedule ai at its earliest possible execution date. If ai cannot
be scheduled, declare problem infeasibility and stop. If all activities have been successfully scheduled,
declare problem feasibility. An optimal solution is thus retrieved in n searches of the earliest feasible
execution date, leading to a O(n) complexity.

5.2 Release dates and time windows

Release-date and time-window features appear frequently in vehicle routing and scheduling applica-
tions. Time-window features generalize release dates R and deadlines D, as any release date ri or
deadline di can be transformed into a time window with an infinite value on the right [ri,+∞] or
the left [−∞, di]. Two main issues are often considered regarding these features. The first involves
stating on the feasibility of a sequence of activities under time-window constraints, whereas the second
problem involves the minimization of infeasibility with respect to the time windows, and thus involves
characteristic functions fi(t) = (ti − di)+ + (ri − ti)+ in the objective.

Feasibility problem. Solving the feasibility problem {ø|TW} is straightforward, as the minimum
idle time policy, presented in Section 5.1, is dominating in this respect. For a sequence of n activities
(a1, . . . , an), the algorithm starts with t1 = r1, then chooses each subsequent activity execution date to
minimize idle time: ti+1 = max(ti + pi, ri+1). Hence, feasibility can be checked in O(n) from scratch.
Yet, more efficient feasibility checking procedures are available to solve series of timing instances in
local-search context (Section 7).

Infeasibility minimization. Many real-case applications allow lateness or earliness, the so-called
soft time-window settings, as a way to gain flexibility. Several contributions, such as Taillard et al.
[140] and Cordeau et al. [30], focus on the problem {D|R}, where late activities are allowed with
penalties, but not early activities. This case falls within the scope of regular features (Section 5.1),
and choosing for each activity the earliest execution date is optimal. The problem can thus be solved
with linear complexity O(n).

However, when early activities are allowed, as in {TW |ø} [5, 6, 60, 86, 100], the objective function is
no longer non-decreasing. Supposing that activity ai is finished earlier than the beginning of the time-
window of ai+1, a choice must be made whether to insert idle time to reach ai+1, or pay a penalty to
better satisfy the time windows of remaining activities. The resulting timing problem becomes more
complex. As an example, Appendix A shows that the problem of minimizing the number of time-
window infeasibilities {TW (unit)|ø} generalizes the Longest Increasing Subsequence Problem (LISP).
LISP admits a computational lower bound of Ω(n log n) in the comparison tree model [59]. Sections
5.3 and 5.4 provide efficient algorithms to address these problems, leading to an O(n log n) algorithm
for soft time-window relaxations.

5.3 Separable convex costs

Separable convex costs Σccvxi include a wide range of problem settings as particular cases. The
feature TW , and thus R, D, and C, can be reduced to Σccvxi (ti) as any time-window constraint can
be formulated as a piecewise convex cost by associating arbitrary large costs to both sides of the
feasibility interval. This feature also encompasses various other settings such as earliness-tardiness
scheduling [5], isotonic regression problems with respect to a total order [8, 126], extensions of team
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orienteering problems [52] in which the profit value can decrease with time [50], various convex penalty
functions for time-window infeasibility [86, 89, 133, 134] and time-dependent convex processing costs
[139], among others. The timing problem {Σccvxi (ti)|ø} is formulated in Equations (16-17). Functions
ccvxi (ti) are supposed to take infinite value for ti < 0.

min
(t1,...,tn)∈<n

n∑
i=1

ccvxi (ti) (16)

s.t. ti + pi ≤ ti+1 1 ≤ i < n (17)

Many methods have been proposed for this setting. We study, in this subsection, approaches spe-
cially designed for separable convex cost functions. Dynamic programming based algorithms, relying
on fundamentally different concepts, are grouped in Section 5.4.

We base our analysis of algorithms for {Σccvxi (ti)|ø} on a set of optimality conditions using the
active set formalism of Best and Chakravarti [14], Chakravarti [23] and Best et al. [15]. The necessary
and sufficient conditions provided below are more general than those previously developed in the
literature, being applicable to any set of proper convex cost functions, including non-smooth cases.

Definition 4 (Blocks). A block B is defined as a sequence of activities (aB(1), . . . , aB(|B|)) processed
consecutively such that ti+pi = ti+1 for all i ∈ {B(1), . . . , B(|B|)−1}. For k ∈ {B(1), . . . , B(|B|)−1},
we also define the prefix block Bk = (aB(1), . . . , ak). Let pij for 1 ≤ i ≤ j ≤ n be the cumulative
processing duration of activities (ai, . . . , aj). The execution cost CB of a block B as a function of its
first activity execution date tB(1) is given in Equation (18).

CB(tB(1)) = cB(1)(tB(1)) +

B(|B|)∑
i=B(1)+1

ci(tB(1) + pB(1),i−1) (18)

When the costs are proper convex functions, the set of execution dates for the first activity with
minimum block execution cost is an interval [T−∗B , T+∗

B ].

The following necessary and sufficient optimality conditions are obtained (c.f. Appendix B). Con-
ditions 2 and 3 are direct consequences of the primal and the dual feasibility, respectively.

Theorem 1. Let costs ci(ti) for i ∈ {1, . . . , n} be proper convex, possibly non-smooth, functions. A
solution t∗ = (t∗1, . . . , t

∗
n) of {Σccvxi (ti)|ø} is optimal if and only if there exists blocks (B1, . . . , Bm)

such that the three following conditions are satisfied:

1. Blocks are optimally placed, t∗Bi(1) ∈ [T−∗Bi , T
+∗
Bi

] for each block Bi;

2. Blocks are strictly spaced, t∗Bi(1) + pBi(1),Bi(|Bi|) < t∗Bi+1(1) for each pair of blocks (Bi, Bi+1);

3. Blocks are consistent, T+∗
Bki
≥ t∗Bi(1) for each block Bi and prefix block Bk

i .

Surveying the literature, we distinguish two main categories of methods: those who maintain pri-
mal feasibility, and those who maintain dual feasibility. These algorithms are issued from various
domains. In the case of isotonic regression in particular, only precedence constraints among decision
variables are considered (pi = 0 for all i), yet the associated methods can be extended to solve prob-
lems with processing times with only minor modifications. We illustrate all algorithms on a simple
problem, for which the cost functions and the processing times are given in Figure 2.

Primal methods. A first category of methods is based on respecting the primal feasibility conditions
and iteratively restoring the dual conditions. The first method of this kind, called Minimum Lower
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Figure 2: Illustrative example with six activities: cost functions and durations

Set (MLS ) algorithm, has been proposed by Brunk [21] for isotonic regression problems. The MLS
algorithm starts with a single big block, then iteratively finds for each block B the biggest prefix
block Bk violating dual conditions. If no such violation is found, this block is optimal, otherwise the
current block is split in two and the procedure is recursively called on each sub-block until no dual
conditions violation may be found. The algorithm can be implemented in O(n2) unimodal function
minimizations.

Later on, Best and Chakravarti [14] introduced a primal feasible algorithm for IRC in O(n) uni-
modal function minimizations. Again, activities are sequentially examined in each block to find the
first violation of dual conditions (and not the most important violation). If such a violation exists, the
block under consideration is split at this place. The leftmost block has an earlier optimal starting date,
and thus can possibly be merged with one or several previously scheduled blocks to reach an optimal
execution date. In the presence of quadratic costs, a closed form exists for the function minimums,
and the complexity of this algorithm becomes O(n) elementary operations.

The method of Garey et al. [60], originally designed for (E/T) scheduling, iterates on activities in
the sequence order and yields at any step i an optimal solution to the subproblem containing only
the first i activities. Each new activity is inserted at the end of the schedule, to be left-shifted and
possibly merged with previous activity blocks until no improvement may be achieved. The algorithm
can be implemented in O(n log n) for the case of (E/T) scheduling.

Figure 3: Comparison between Garey et al. [60] algorithm (left part of the figure), and Best and
Chakravarti [14] algorithm (right part of the figure)

Figure 3 illustrates the algorithms of Best and Chakravarti [14] and Garey et al. [60] on the
example of Figure 2. The problem is solved in six steps, illustrated from top to bottom along with the
incumbent solutions, representing activities as rectangles with a length proportional to the processing
time. The activity blocks in presence are very similar. These two algorithms can be viewed as two
variations of the same underlying primal feasible method, with the exception that Garey et al. [60]
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considers non-inserted activities as non-existing in the current solution, whereas Best and Chakravarti
[14] maintains these non-scheduled activities in one final block which does not respect Condition 3.

The method of Garey et al. [60] was extended by Lee and Choi [101] and Pan and Shi [115] to
address (E/T) scheduling problems with distinct penalty weights for earliness and tardiness, that is
{D,R(di = ri)|ø}, in O(n log n) elementary operations. Szwarc and Mukhopadhyay [138] and Feng
and Lau [53] also proposed to identify the tasks that are necessarily processed without idle time (in
the same block) before solving. Chrétienne and Sourd [26] applied the algorithm to project schedul-
ing with piecewise convex cost functions, and Hendel and Sourd [75] to timing problems with convex
piecewise linear or quadratic costs. These algorithms work in a linear number of unimodal function
minimizations, but differ in terms of the data structures used to represent the functions and thus on
the complexity of the function minimizations. When the cost functions are Piecewise Linear (PiL), the
method of Hendel and Sourd [75] attains a complexity of O(ϕc log n), where ϕc is the total number of
pieces in the activity cost functions of the sequence. Finally, Davis and Kanet [34] proposed another
primal method for (E/T) scheduling similar to Garey et al. [60], and generalized to PiL convex costs
by Wan and Yen [151]. Activities are iteratively added to the solution in reverse sequence order. Each
activity is scheduled at date 0, and then shifted onwards (while possibly merging blocks), until no
improvement can be achieved.

Dual feasible methods. Simultaneously with the MLS algorithm, another seminal method for IRC
was proposed by Ayer et al. [4] under the name of Pool Adjacent Violators (PAV ). Starting with
an initial solution consisting of n separate blocks, one for each activity, successive pairs of blocks
(Bi, Bi+1) not satisfying primal conditions are iteratively identified. Such blocks are merged, and the
next iteration is started. The order in which these block couples are identified does not affect the final
result of the algorithm. An illustration of the method on the previous example is given in Figure 4.
The algorithm iteratively merges the first pair of blocks that does not verify primal conditions. We
notice that the optimal solution is reached after three merges (at Step 3).

Figure 4: The PAV algorithm illustrated on timing problems

Chakravarti [23] proved that PAV is a dual feasible method for the linear problem when the distance
considered is ‖ ‖1 (c(t) = Σ|ti − Ni|), while Grotzinger and Witzgall [65] and Best and Chakravarti
[14] showed that PAV is a dual algorithm for IRC with quadratic costs (Euclidean distance).

The PAV algorithm was also generalized to convex functions by Best et al. [15] and Ahuja and
Orlin [1], achieving a complexity of O(n) unimodal minimizations. It is noteworthy that, under a
totally different formalism, an equivalent algorithm was discovered by Dumas et al. [46] for a general
vehicle routing setting with convex time-dependent service costs. For IRC with the ‖ ‖1 distance, the
PAV algorithm can be implemented in O(n log2 n) elementary operations using balanced search trees
[117], or O(n log n) complexity using scaling techniques [1]. Finally, O(n) algorithms are known for
quadratic objectives [46, 65, 116].
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5.4 Separable costs and multiple time windows

Without the previous convexity assumption, the timing problems {Σci(ti)|ø} become more complex,
and many authors have focused on separable PiL costs. The feature MTW especially [27, 144] can
also be linearly reduced to a {Σci(ti)|ø} problem when a closed form representation of the multiple
time windows, such as a list of feasible intervals, is available.

In the presence of non-negative and Lower Semi-Continuous (LSC) costs (ci(ti) ≤ limε→0 min{ci(ti+
ε), c(ti − ε)} at every discontinuity point), the timing problem {Σci(ti)|ø} can be efficiently solved by
dynamic programming. A large range of backward and forward approaches has thus been proposed in
the routing and scheduling literature by Hendel and Sourd [74], Ibaraki et al. [86], Sourd [135], Yano
and Kim [152] and Ibaraki et al. [87].

Solving {Σci(ti)|ø} by forward dynamic programming involves the forward minimum cost function
Fi(t), which evaluates the minimum cost to execute the sequence of activities (a1, . . . , ai) while starting
the last activity before or at time t (ti ≤ t). Fi(t) functions can be computed by means of Equation
(19), starting from the case i = 1 with a single activity where F1(t) = minx≤t c1(x). The optimal
solution value of the timing problem is z∗ = Fn(+∞), and the optimal activity execution dates can
be retrieved from the Fi(t) functions.

Fi(t) = min
0≤x≤t

{ci(x) + Fi−1(x− pi−1)} 1 < i ≤ n (19)

The symmetric way to solve this problem by backward programming involves the backward min-
imum cost function Bi(t), which evaluates the minimum cost to execute the sequence of activities
(ai, . . . , an), while executing the first activity ai after or at time t (ti ≥ t). Bi(t) functions are com-
puted by backward recursion, starting with Bn(t) = minx≥t cn(x) and using Equation (20). The
optimal solution value of the timing problem is z∗ = B1(−∞).

Bi(t) = min
x≥t
{ci(x) +Bi+1(x+ pi)} 1 ≤ i < n (20)

These methods can be implemented in O(nϕc), where ϕc stands for the total number of pieces in
the activity cost functions ci. When the costs are also convex, the use of efficient tree data structures
leads to a complexity of O(ϕc logϕc) [87], matching the best available approaches in O(n log n) for the
particular cases related to IRC, (E/T) scheduling, and soft time windows.

5.5 State-of-the-art: single-dimensional features

As illustrated by this section, single-dimensional features are related to many prominent problems
such as LISP and IRC, which have been the subject of extensive research. Various algorithms were
examined and state-of-the-art methods for each particular feature and problem were identified. In the
particular case of {Σccvxi (ti)|ø}, 26 methods from various fields such as routing, scheduling and isotonic
regression were classified into three main families: primal, dual, and dynamic programming methods.
Efficient linearithmic methods are known for a very general problem of this category, {Σccvxi (ti)|ø},
in the presence of either convex or LSC and piecewise linear cost functions. Still, as illustrated in
Section 7, the resolution of series of similar timing instances during a local search can be performed
more efficiently by means of re-optimization procedures.

6 Two-dimensional features

We now focus on the problems with two-dimensional features. These features are also often considered
in the presence of time-window TW constraints. The presentation is structured in relation to the
level of problem complexity and generality. Starting with the duration feature DUR, which involves
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exclusively the first and last activities together, we then examine two-dimensional features involving
successive activities: no-wait NWT , idle time IDL, and flexible ci(∆ti) or time-dependent P (t)
processing times. Finally, features involving any pair of activities, such as time-lags TL, and cost
functions separable by pairs of variables Σcij(ti, tj) are analyzed.

6.1 Total duration and total idle time

Accounting for total duration or idle-time is meaningful when one has the possibility to delay the
beginning of operations. Otherwise, considering the maximum execution date feature C is sufficient.
Whereas delaying the start of production is generally not an option in scheduling problems, it becomes
particularly relevant in routing, as real-life objectives and driver’s wages are frequently based on
duration. We mention Savelsbergh [132] for duration minimization under time-window and duration
constraints in VRPs, Cordeau et al. [31] that generalizes the previous approach for soft time-windows
and duration constraints, Desaulniers and Villeneuve [37] for shortest path settings with linear idle-
time costs and time windows, and Desaulniers et al. [38] and Irnich [91] for a general framework which
addresses duration and idle time features, among others, in various time-constrained routing and crew
scheduling problems. It should be noted that computing the total duration or the total idle time is
equivalent in the presence of fixed processing times. Therefore, without loss of generality we will focus
on duration in this section.

To manage duration features in {DUR|TW} and {ø|DUR, TW}, Savelsbergh [132] proposed to
first rely on a minimum idle time policy, and then shift activity execution dates forward to reduce the
total duration. The related amount of shift was introduced many years ago in the project scheduling
literature [105] as the latest processing date for an activity that does not cause a delay in the calendar.
It is also known in the VRP literature under the name of forward time slack [131, 132]. The following
quantities are computed for each activity ai: the earliest feasible execution date Ti, the cumulative idle
time Wi on the subsequence (a1, . . . , ai) according to these execution dates, and the partial forward
time slack Fi on the subsequence (a1, . . . , ai). These values are computed recursively by means of
Equations (21-23), starting with the case of a single activity where T1 = r1, W1 = 0 and F1 = d1− r1.

Ti = max(Ti−1 + pi−1, ri) 1 < i ≤ n (21)

Wi = Wi−1 + Ti − Ti−1 − pi−1 1 < i ≤ n (22)

Fi = min(Fi−1, di − Ti +Wi) 1 < i ≤ n (23)

The problem admits a feasible solution if and only if Ti ≤ di for all i. The execution date of the
first activity in an optimal solution is given by t∗1 = r1 + min{Fn,Wn}. The other dates are computed
using the minimum idle time policy. Both feasibility checking and duration minimization problems
are thus solved in O(n). Desaulniers and Villeneuve [37], Kindervater and Savelsbergh [97] and Irnich
[91] proposed different calculations of this optimal schedule. As pointed out in Parragh et al. [118],
all these approaches are equivalent.

Tricoire et al. [144] recently considered a more complex timing problem aiming to minimize du-
ration under MTW constraints {DUR|MTW}. Each activity ai is associated with a set of ki time
windows, MTWi = {[ri1, di1], . . . , [riki , diki ]}. The authors proposed a procedure that first removes
some unnecessary time-window segments, not suitable for any feasible solution, while detecting infea-
sible timing problems. In a second step, the procedure examines a subset of dominant schedules, such
that “no better solution exists with the same last activity execution date”. For a given execution date
tn of the last activity, a dominant schedule with minimum duration can be found using the backward
recursion of Equation (24).

ti−1 = max{t | t ≤ ti − pi−1 ∧ t ∈MTWi} (24)
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Starting from the dominant schedule t̄ with earliest completion time, the method iteratively iden-
tifies the last activity ai followed by idle time: t̄i + pi < t̄i+1. If activity ai does not admit a later time
window, the algorithm terminates. Otherwise, the execution date of activity ai is set to the beginning
of the next time window, and the execution dates of activities situated afterwards in the sequence are
re-computed with a minimum idle time policy. This leads to a dominant schedule which becomes t̄
in the next iteration. Tricoire et al. [144] proved that at least one dominant schedule explored in the
course of the algorithm is optimal. If each customer is associated to at least one time window, the
overall method can be implemented in O(nϕmtw), ϕmtw representing the number of time windows in
the problem.

Figure 5: Duration minimization under multiple time-window constraints

This algorithm is illustrated in Figure 5 on a small example with four activities. Activities are
represented from bottom to top with their time windows. The earliest completion date is computed
with a minimum idle time policy, illustrated in gray lines. The initial dominant schedule t̄0 , in black, is
then determined by backward recursion using Equation (24). This schedule presents waiting time after
activity a3, and thus the execution date of this activity is delayed to the next time window, leading to
a dominant schedule t̄1. Now the latest activity followed by waiting time is a2. Its execution date is
delayed, and leads to the dominant schedule t̄2. The latest activity followed by waiting time is a1. As
there is no later time window for this activity, the algorithm terminates. Among the three dominant
schedules explored by the method, the best solution with minimum duration has been reached by t̄2,
and is optimal.

6.2 No wait and idle time

No-wait NWT and idle-time IDL features appear in various settings involving, among others, deterio-
ration of products, maximum waiting times in passenger transportation, fermentation processes in the
food industry, and cooling in metal-casting processes. IDL reduces to NWT when the maximum idle
time is set to ιi = 0. No-wait constraints ti = ti+1 can also be addressed by problem reformulation,
merging unnecessary variables. When no waiting time is allowed on the entire activity sequence, the
timing problem becomes a minimization problem of a sum of single-variable functions. Two main
categories of problems have been considered in the literature for NWT and IDL: the feasibility prob-
lem under idle-time and time-window constraints, and the optimization problem when some of these
features appear in the objective function, treated in Section 6.3 in a more general context.

Feasibility checking under maximum idle time and time-window constraints has been frequently
studied in the routing literature. Hunsaker and Savelsbergh [82] designed an algorithm to check
the feasibility of itineraries in dial-a-ride settings. This algorithm contains a O(n) checking method
for the special case of {ø|IDL, TW}. The solution to {ø|IDL, TW} is found in two scans of the
activity sequence. The first pass considers the relaxed subproblem {ø|TW}, determining for each
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activity i the earliest feasible execution dates Ti complying with time-windows and processing times.
This calculation is performed by means of Equation (21). In a second pass, starting with T ′n = Tn,
the algorithm proceeds backwards in the sequence to determine the earliest feasible execution dates
T ′i = max(T ′i+1 − pi − ιi, Ti) and check idle-time constraints. The problem is declared infeasible if for
any i ∈ {1, . . . , n}, Ti > di or T ′i > di.

Figure 6: Feasibility checking under time-windows and idle-time constraints

The two passes are illustrated in Figure 6 for a small problem with four activities, represented
from bottom to top with their time windows. The first pass (Ti values) has been represented in gray,
while the backward scan, in black, provides the earliest feasible execution date for each activity T ′i . As
shown in the figure, this value exceeds the time window of activity a1 (T ′1 > d1), and thus the timing
problem illustrated is infeasible.

6.3 Flexible processing times

Time-resource trade-offs and project crashing problems have been thoroughly studied in the operations
research literature, since they are critical in many applications, including resource allocation, energy
optimization, project scheduling and crashing, optimization of search effort, portfolio selection, and
advertising, among others [85, 95, 111, 119, 141]. These problems have all in common that the activity
processing times can be increased or reduced at a cost. We refer to this feature as “flexible processing
times” Σci(∆ti). The characteristic function of this feature is a general separable function of successive
execution time differences ti+1 − ti. As such, it generalizes both NWT and IDL.

When only NWT, IDL, and Σci(∆ti) features are encountered, the timing problem {Σci(∆ti)|ø}
can be decomposed along ti+1 − ti values, and the independent minimization of every ci(∆ti) leads to
the optimal solution where ti+1 − ti = arg min∆ti Σci(∆ti).

When the ci functions are convex and in the presence of an additional deadline tmax on the last
activity, the problem {Σci(∆ti)|C} can be reformulated (Equations 25-27) as a Resource Allocation
Problem (RAP) (Equations 28-30) by setting t0 = 0 and using the change of variables xi = ti+1 − ti.

min
t

n−1∑
i=1

ci(ti+1 − ti) (25)

s.t. tn − t1 ≤ tmax (26)

ti + pi ≤ ti+1 1 ≤ i < n (27)

⇔

min
t

n−1∑
i=1

ci(xi) (28)

s.t.

n−1∑
i=1

xi ≤ tmax (29)

xi ≥ pi 1 ≤ i < n (30)

Resource allocation problems with convex costs have been the subject of many articles. Lagrangian
methods [24, 51, 137] seek to iteratively progress towards the optimal value of the single dual variable
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associated to Equation (29) while respecting primal feasibility. Pegging algorithms [98, 102, 130] relax
the constraints of Equations (29-30), iteratively solving the relaxed problems and fixing the values
of variables that do not satisfy primal constraints. Dynamic programming can also be efficiently
applied [93]. {Σccvxi (∆ti)|C} with integer variables can be addressed in O(n log tmax

n ) [58, 77], and an
ε-approximate solution can be found in O(n log tmax

εn ) for the continuous version [77].
In the presence of polymatroidal constraints, convex resource allocation problems can be solved

to optimality by a greedy algorithm iteratively incrementing the least-cost variable. Hochbaum [77]
proposes a greedy algorithm with scaling for {Σccvxi (∆ti)|C,D}, which produces an ε-approximate
solution in O(n log n log tmax

εn ). This problem appears in various application contexts, such as lot sizing
[142], assortment with downward substitution [120], and telecommunications [113], among others.
Let m be the number of deadline constraints. The problem {Σccvxi (∆ti)|C,D} with continuous or
integer variables can be solved in O(n logm log tmax

ε ) and O(n logm log tmax
n ), respectively, with the

decomposition approach of Vidal et al. [149]. Finally, the quadratic {Σccvxi (∆ti)|C,D} with continuous
variables can be addressed in O(n log n) [78] or O(n logm) [149].

Adding time-window constraints to the model of Equations (25-27) leads to other timing set-
tings and resource allocation problems with non-polymatroidal constraints. In the special case of
Norstad et al. [111], a timing problem {Σccvxi (∆ti)|TW} is addressed with the objective z(t) =∑n

i=1 di,i+1c̄((ti+1 − ti)/di,i+1) and non-increasing and convex c̄(∆t) functions (independent of the
activity). In the presence of such functions, relaxing time-window constraints leads to an optimal so-
lution with constant ratio (ti+1− ti)/di,i+1 for all i, and thus constant speed on all legs. The recursive
smoothing algorithm (RSA) exploits this property by maintaining this ratio constant on subsequences
and progressively re-introducing violated time-window constraints. The overall method works in O(n2)
elementary operations once the minimum of each function c̄(∆t) is given. This method is a dual feasi-
ble algorithm based on the relaxation and re-introduction of window constraints. It is closely related
to the “string” methodology described in [33] and also discussed in [149].

Sourd [135] and Hashimoto et al. [70] have independently studied {Σci(∆ti),Σci(ti)|ø} (Equation
31) with piecewise linear functions in the context of (E/T) scheduling and vehicle routing, and report
its NP-hardness.

min
(t1,...,tn)∈<n+

n∑
i=1

ci(ti) +

n−1∑
i=1

c̃i(ti+1 − ti) (31)

When the functions ci and c̃i are PiL with integer breakpoints, a dynamic programming algorithm
is proposed to solve the problem in O(T 2), where T represents an upper bound on the schedule dura-
tions. This dynamic programming algorithm can be viewed as an extension of the resource allocation
algorithm of Karush [93]. The method can be implemented with a forward dynamic programming
function Fi(t) (Equations 32-33), which evaluates the minimum cost to process the subsequence of
activities (a1, . . . , ai), starting the last activity exactly at time t (ti = t). The resulting optimal cost
is given by z∗ = mint Fn(t).

F1(t) = c1(t) (32)

Fi(t) = ci(t) + min
0≤x≤t

{Fi−1(x) + c̃i−1(t− x)} 1 < i ≤ n (33)

A polynomial dynamic programming algorithm working in O(nϕc + nϕ̂c × ϕ̃c) exists for the case
where the functions c̃i(∆t) are PiL and convex [70, 135]. ϕc and ϕ̃c represent the total number of pieces
in the cost functions ci and c̃i, and ϕ̂c stands for the number of convex pieces in the cost functions ci.
Efficient re-optimization procedures have also been proposed (Section 7).

Finally, DUR involved in the objective can be seen as a special case of Σci(∆ti) where cduri (∆ti) =
∆ti. MTW is also reducible to Σci(ti), and thus the previous algorithm provides an alternative way to
solve {DUR|MTW} or {ø|DUR,MTW} in O(n+ nϕmtw), where ϕmtw represents the total number
of time windows.
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6.4 Time-dependent processing times

In several application settings, activity processing times may vary as a function of the execution
dates. In machine and project scheduling for example, learning, deterioration effects and other time-
dependencies can have a large impact [3, 25]. Network congestion is a major concern for vehicle routing
and data transmission [99, 145] and, thus, the time-dependent processing-time feature P (t) appears
in various network optimization problems: shortest path [28, 44, 67], traveling salesman [104], and
vehicle routing [11, 43, 71, 88, 103], among others.

The literature on the subject can generally be separated between discrete and continuous settings.
Discrete optimization models generally involve time-space networks which are less likely to present
the timing issues studied in this article, whereas several continuous models have led to explicit timing
problems with P (t) features, as in Donati et al. [43], Fleischmann et al. [56], Ichoua et al. [88], and
Hashimoto et al. [71]. These models involve constraints of the type ti + pi(ti) ≤ ti+1 within a timing
formulation with other additional features.

The FIFO assumption on functions pi is often valid. FIFO implies that any delay in an activity
execution date results in a delay in its completion date. The assumption is meaningful in several
settings, e.g. vehicle routing, as two vehicles that behave similarly on the same route are supposed to
remain in the same arrival order, whatever congestion happens [88].

FIFO assumption: ∀i x ≥ y =⇒ x+ pi(x) ≥ y + pi(y) (34)

Time-dependent processing-time features are generally assumed to result in more complex tim-
ing problems. However, one should clearly identify the source of the difficulty, which is frequently
imputable to the computation and access to pij(t) throughout the search, and not necessarily to the
timing problem resolution. Assuming that pij(t) can be evaluated in constant time and under FIFO,
{D|R,P (t)} is still solvable in O(n) by means of a minimum idle time policy [56] and the time-slack
approach of Savelsbergh [132] can still be applied [43] to {ø|TW,P (t)}. Still, dedicated methodologies
are necessary for other settings such as {DUR|TW,P (t)}.

The time-dependent timing problem {Σci(ti)|P (t)}, Equations (35-36), is addressed in Hashimoto
et al. [71]. All functions considered are PiL, non-negative and lower semicontinuous.

min
(t1,...,tn)∈<n+

n∑
i=1

ci(ti) (35)

s.t. ti + pi(ti) ≤ ti+1 1 ≤ i < n (36)

The authors propose a dynamic programming approach, which extends the method of Section 5.4. It
involves the functions Fi(t), which represent the minimum cost to process the subsequence of activities
(a1, . . . , ai) while starting the last activity before t (ti ≤ t). Under the assumption of Equation (37),
which is weaker than FIFO, the method can be implemented in O(nϕc + nϕp), where ϕc and ϕp are
the total number of pieces in cost and processing-time functions.

(HYI) assumption: ∀i x+ pi(x) = y + pi(y) =⇒ x+ pi(x) = z + pi(z) ∀z ∈ [x, y] (37)

This method for {Σci(ti)|P (t)} thus presents the same quadratic complexity as in the case without
time dependency (Section 5.4). When the previous assumption does not hold, the dynamic program-
ming method of Hashimoto et al. [71] is not polynomial, and the question remains open whether
{Σci(ti)|P (t)} is polynomially solvable.

6.5 Time lags

The two-dimensional features surveyed in the previous sections involved linking constraints and ob-
jectives between the first and last tasks, in the case of DUR, or between pairs of successive variables
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in the case of NWT and IDL. We now review the time-lag TL feature, which brings into play a
time difference tj − ti between any two activity execution dates ti and tj . This feature is thus a
generalization of NWT , IDL and DUR.

To the best of our knowledge, early research on time lags has been conducted by Mitten [107] for
flowshop scheduling problems. This feature has been used since to model many problem characteristics
in various domains, such as the deterioration of food or chemical products, glue drying, customer
requirements in some dial-a-ride problems, elevator dispatching, quarantine durations, and so on.
Time-lag scheduling problems on a single machine have also been shown by Brucker et al. [20] to
generalize all shop, multi-purpose machines, and multi-processor scheduling problems. Hence, timing
problems with TL are likely to be difficult.

The most basic problem with TL feature relates to feasibility checking under time-lag constraints
of the form ti + δij ≤ tj . When δij ≥ 0, the constraint is called positive time lag, and corresponds
to a minimum delay between activities ai and aj , whereas δij ≤ 0 corresponds to a negative time
lag, and involves a maximum delay of −δij between the activities aj and ai. Equality constraints
ti + δij = tj involve both positive and negative time lags. The resulting timing problem {ø|TL} can
be seen as a special case of project scheduling on a chain of activities, and the METRA potential
method (MPM) of Roy [128, 129] can be applied. In MPM, the time-lag constraints are represented
on a graph G = (V,A), where each activity ai is associated with a node vi ∈ V , and each arc (vi, vj),
associated with a weight wij , represents a temporal constraint of the form tj− ti ≥ wij . The feasibility
of {ø|TL} is equivalent to the non-existence of a positive length cycle in this graph [9, 35]. The
algorithm of Floyd-Warshall can be employed to solve this problem in O(n3), but the longest-path
procedure of Hurink and Keuchel [83], also in O(n3), is shown to provide faster results in practice.
Potts and Whitehead [122] also considered a coupled-operation scheduling problem with only n/2 time-
lag constraints, and timing feasibility is checked in O(n2). The authors underlined the computational
burden of such timing algorithms, which strongly degrades the performance of neighborhood searches
or branch and bound procedures.

Hunsaker and Savelsbergh [82] studied a case of {ø|TL, TW} timing in the context of dial-a-ride
problems. Activities represent customer requests on pick-up and deliveries services, which occur by
pairs, such that any pick-up always precedes its corresponding delivery in the sequence. Each such pair
of activities is linked by a single positive time-lag constraint. The total number of time-lag constraints
is thus n/2. The problem also involves time windows and maximum idle times for each activity. The
authors claim that the resulting feasibility problem can be solved in three passes on the sequence of
activities with linear complexity. Yet, the algorithm presents a small flaw, which is straightforward to
correct [143], but leads to a O(n log n) complexity [73]. A O(n) complexity is finally achieved in Firat
and Woeginger [54] by means of a reduction to a shortest path problem on a weighted interval graph.

The same setting is also addressed in Gschwind and Irnich [66]. The authors describe a labeling
procedure based on |Mi| resources for each pickup and each delivery activity ai. Mi stands for the
current number of open pickups at ai. This labeling procedure provides another way to check the fea-
sibility of a fixed activity sequence {ø|TL, TW} in O(n2). Furthermore, the feasibility of an extended
sequence with one additional activity an+1 can be evaluated in O(Mn+1) given the information on
the original sequence. Such forward extension function is critical when solving shortest path problems
with underlying timing features.

Cordeau and Laporte [29] and Berbeglia et al. [12] consider a dial-a-ride setting with an additional
duration constraint on the entire trip duration. The authors solve heuristically a Lagrangian relaxation
of the problem with a hierarchical objective. Total trip duration infeasibility is minimized, then
time-window infeasibility and, finally, time-lag infeasibility, that is the timing problem {DUR >
D > TL|R}. The algorithm first minimizes duration and time-window infeasibility as in Section
6.1, then iteratively delays some pick-up services to reduce time-lag infeasibility without increasing
any other violation. A computational complexity of O(n2) is achieved. It was observed in a private
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communication, however, that the previous approach only guarantees optimality under an additional
assumption that we call LIFO, which requires that for any 1 ≤ i < j < k < l ≤ n, no activities
ai, aj , ak, al present “entangled” time-lag constraints of the form tk − ti ≤ δik and tl − tj ≤ δjl. The
LIFO assumption is frequently enforced in the vehicle routing literature, especially when transporting
passengers, or in the presence of complex loading constraints. In this case, the last object or customer
received in the vehicle is the first one to leave. Without this assumption, the difficulty of many
problems with time lags strongly increases, and no specialized efficient algorithm is actually known
for {DUR > D > TL|R} and similar problems.

6.6 Separable costs by pairs of variables

Separable costs by pairs of variables Σcij(ti, tj) generalize all problems combining single or two-
dimensional features. The timing problem with this feature alone is NP-hard in the presence of
piecewise linear functions since it generalizes {Σci(ti),Σci(∆ti)|ø}. When the objective function is
convex, the problem {Σccvxij (tj − ti),Σccvxi (ti)|ø} is equivalent to the convex cost dual network flow
problem, and a weakly polynomial algorithm is provided in Ahuja et al. [2].

6.7 State-of-the-art : “stand-alone” timing methods

In contrast to single-dimensional features, which appeared as fairly well addressed in Section 5 by
means of a few algorithms and concepts, two-dimensional features lead to more diverse problem struc-
tures and algorithms. Several simple cases with duration minimization or time-dependent processing
times can be solved in linear time, but other problems with time-lag features actually require O(n3)
algorithms to be solved exactly. Although polynomial, the latter methods can be impracticable in the
context of local searches or branch-and-bound approaches.

Many practical timing settings result in models with linear constraints and linear or separable
convex objectives. For these problems, the linear and convex programming theory ensures weakly
polynomial resolvability, and provides general solution methods [79, 92, 96]. Some more general
problems, however, such as {Σci(ti),Σci(∆ti)|ø} with PiL functions, are NP-hard, while for other
problems, such as {Σci(ti)|P (t)} with general piecewise linear functions P (t), the existence or non-
existence of polynomial algorithm is still open. Timing settings thus lead to a rich variety of problem
structures and complexities.

In all these cases, whether polynomial algorithms are available or not, research is still open to
provide more efficient algorithms exploiting the particular structure of the features and problems at
hand. The present paper contributed by building a formalism, a classification of features, timing
problems and methods. We gathered the most efficient stand-alone timing approaches from various
fields of research to tackle both specialized timing settings, and more general features. The focus
can now be turned on filling the gaps that have been highlighted in this review, and which continue
to appear, following the rich variety of application cases with time constraints emerging nowadays.
Finally, important avenues of research target the efficient solving of series of timing problems, in the
particular context of neighborhood searches and branch-and-bound. Such approaches are presented
in the next section.

7 Timing re-optimization

In previous sections, we examined how to address timing problems as a stand-alone issue. Yet, most
neighborhood-search-based heuristics, metaheuristics, and some exact methods require to solve iter-
atively a large number of closely related timing instances. In this case, solving each timing problem
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“from scratch”, without exploiting any knowledge on previous resolutions, can result in losses of in-
formation and redundant computations.

Most local searches for routing and scheduling problems (see [81] for a presentation of local search)
rely on a neighborhood based on a limited number of sequence changes. One or several timing sub-
problems are solved for each neighbor to estimate its feasibility and cost. Figure 7 illustrates two
classical neighborhoods to change sequences of activities, 2-opt* which exchanges the tails of two
sequences of activities [123], and Or-opt to relocate a subsequence of consecutive activities [112].
It is noticeable that large subsequences of activities, SeqA, SeqB, SeqC and SeqD on the figure, are
shared by successive timing subproblems. Branch-and-bound procedures for problems with sequenc-
ing decisions can similarly involve timing subproblems at nodes of the search tree when evaluating
sequences of activities, during lower bound computation and branch pruning [80, 136]. The search
for improving columns, in column generation approaches, also frequently involves elementary shortest
paths with timing decisions and resource constraints [7, 41, 124].
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Figure 7: A 2-opt* local search move (left) and an Or-opt move (right)

In all these cases, numerous closely related timing problems must be solved, where long subse-
quences of consecutive activities remain unchanged, and only a minor proportion of problem param-
eters (reduced cost values for column generation) is impacted. Several authors thus propose to keep
meaningful data on the global search process to save computations and solve more efficiently these
series of similar timing problems. Neighborhood searches largely benefit from such techniques, as
move evaluations (and thus the resolution of timing problems) take the largest part of the computa-
tional effort. These re-optimization methodologies therefore can lead to significant reductions in the
computational burden of algorithms.

We now formally define serial timing problems in Section 7.1, and present a general framework
for re-optimization methods based on sequence concatenations in Sections 7.2-7.3. Links with related
re-optimization methodologies are analyzed in Section 7.4, before reviewing or introducing efficient
concatenation-based re-optimization methods for each major timing feature and related problems in
Section 7.5.

7.1 Problem statement: Serial timing

This section formally defines serial timing problems. Sequence-dependent processing times are also
considered, in relation to a large range of vehicle routing applications which rely extensively on re-
optimization methods.

Definition 5 (Serial timing). Let T be an incumbent timing problem with n activities (a1, . . . , an),
sequence-dependent processing-times pij, and additional features with characteristic functions, fxy (t),
separated into two sets Fobj and Fcons following their role as objective or constraint (Section 2). N
permutation functions σk : {1, . . . , n} → {1, . . . , n} for k ∈ {1, . . . , N}, are also given. The serial

20



timing problem involves to solve the timing subproblems T k of Equations (38-40), for k ∈ {1, . . . , N}.

(T k) : min
t=(t1,...,tn)∈<n+

∑
Fx∈Fobj

αx
∑

1≤y≤mx

fxy (t) (38)

s.t. tσk(i) + pσk(i),σk(i+1) ≤ tσk(i+1) 1 ≤ i < n (39)

fxy (t) ≤ 0 F x ∈ Fcons , 1 ≤ y ≤ mx (40)

To efficiently solve the previous problem, several types of re-optimization approaches have been
developed in the literature to take advantage of the information developed during the successive
subproblem solving. One such approach involves re-arranging previously developed schedules in re-
lation to the new settings. For network-flow or shortest-path formulations especially, re-optimization
methods related to a change of arcs or costs in the network have been studied over a long period
[57, 63, 106, 114]. Most timing problems can also be formulated as linear program. Sensitivity analy-
sis and warm start following a problem modification may be done by means of a primal-dual simplex
algorithm. Finally, a last methodology, on which we focus in the following, is based on the observation
that a permutation of activities can be assimilated to a concatenation of some subsequences of con-
secutive activities. Hence, managing information on subsequences (e.g., dynamic programming labels)
can lead to significant resolution speed ups [32, 97].

7.2 Breakpoints and concatenations

We first introduce some vocabulary, and then emphasize the links between operations on sequences of
activities, such as changes of precedence and activity relocations, and the properties of the resulting
permutation functions. These observations lead to efficient re-optimization approaches.

Definition 6 (Permutation breakpoints). Let σ : {1, . . . , n} → {1, . . . , n} be a permutation. Any
integer b such that σ(b) + 1 6= σ(b + 1) and 1 ≤ i < n is called a breakpoint of σ, and corresponds to
non-consecutive values in the permutation representation.

Let b(σ) denote the number of breakpoints of σ, and bσ1 , . . . , b
σ
b(σ) denote these breakpoints in

increasing order. For instance, the permutation σ0 : {1, 2, 3, 4, 5, 6} → {4,5,3, 1,2, 6} has three
breakpoints (indicated in boldface): bσ01 = 2, bσ02 = 3, and bσ03 = 5. We now show the links between
classical operations on activity sequences and the resulting permutation function properties in terms
of breakpoints. Two main operations can be considered. The first operation is a change of precedence
between two activities. For example, two precedences are changed on the left of Figure 7: activity
3 now precedes activity 9 instead of 4, and activity 8 precedes activity 4 instead of 9. The second
operation is the relocation of a sequence of activities. For example, on the right of the figure, the
sequence of activities {3, 4} is relocated between activities 6 and 7.

Lemma 1 (Precedence changes). Let A′ be an activity sequence obtained from A by changing l prece-
dence relations and σA→A′ the associated permutation function, then b(σA→A′) = l.

Lemma 2 (Activity relocations). Let A′ be an activity sequence obtained from A by relocating l
activities and σA→A′ the associated permutation function, then b(σA→A′) ≤ 3l.

Any change of the precedence relation results in exactly one breakpoint while any relocation of
activity can be assimilated to at most three changes of precedence relations, and thus yields three
breakpoints. Situations where k precedence relations are changed from one timing problem T to
another problem T ′ occur frequently in the context of neighborhood searches for combinatorial opti-
mization problems with sequence optimization, e.g., vehicle routing or machine scheduling. A timing
subproblem may need to be solved to evaluate the cost and feasibility of each new sequence in the
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presence of complicating time constraints. The interest of breakpoints is highlighted in the following
proposition. Although straightforward, it provides the basis of re-optimization methods working by
concatenation.

Proposition 1. Let σ : {1, . . . , n} → {1, . . . , n} be a permutation with breakpoints bσ1 , . . . , b
σ
b(σ). Let

A be a sequence of n activities. Then, A′ = σ(A) corresponds to the concatenation of exactly b(σ) + 1
subsequences of consecutive activities in A, as presented in Equation 41. A dummy breakpoint bσ0 = 1
stands for the beginning of the sequence.

A′ =
⊕

l=0,...,b(σ)−1

(aσ(bσl +1), . . . , aσ(bσl+1)) (41)

Any bounded number of operations transforming an activity sequence A into A′ (relocation of
activities, or changes of precedence relations) thus involves a permutation function with a bounded
number of breakpoints, such that A′ can be seen as a concatenation of a bounded number of subse-
quences of A. As shown in the following, the data, which is pre-processed from a bounded number of
subsequences, may be extended to their concatenation, thus enabling to solve the timing subproblems
more efficiently by exploiting existing knowledge.

7.3 Re-optimization “by concatenation”

Re-optimization by concatenation can be formalized by means of a set of four basic re-optimization
operators. Three of these operators, initialization, forward extension and backward extension
are used to build re-optimization data on subsequences of activities from the incumbent timing prob-
lem, while the last operator, evaluate concatenation, is specifically tailored to solve a new problem,
more efficiently, using the existing re-optimization data on its subsequences of activities.

Initialization – Initialize the data D(A) of a sequence containing a single activity.
Forward extension – Given an activity ak and a sequence A = (ai, . . . , aj) with its data, deter-

mine the data D(A′) for the sequence A′ = (ak, ai, . . . , aj).
Backward extension – Given an activity ak and a sequence A = (ai, . . . , aj) with its data,

determine the data D(A′) for the sequence A′ = (ai, . . . , aj , ak).
Evaluate concatenation – Given L sequences of activities D(Al), l = 1 . . . l and their data, eval-

uate the feasibility and the optimal solution cost of the timing problem involving the concatenation
of these sequences.

The re-optimization approach illustrated in Algorithm 1 is based on these operators. Data is first
built on subsequences of the incumbent timing problem T , by means of the forward and backward
extension operators. Since there are O(n2) such subsequences of consecutive activities, preprocessing
can be achieved appending iteratively O(n2) times one activity at the sequences’ end (or beginning).
This preprocessing can be either performed before or during the search. The resulting data is then
exploited to solve the problems T k for k ∈ {1, . . . , N} by means of the concatenation operator.

Consider a neighborhood search for routing problems with time constraints on routes. In this
context, a local search improvement procedure based on sequence changes leads to a number of timing
subproblems proportional to the number of neighborhood solutions to explore. The number of derived
timing subproblems is usually N = Ω(n2), and the derived activity sequences do not involve the
concatenation of more than k = 2, 3 or 4 subsequences of the original problem.

The overall complexity of a neighborhood exploration, when solving each timing subproblem in-
dependently, is Nc(T ), c(T ) being the computational complexity of one stand-alone timing solution
procedure. A straightforward re-optimization approach consists in exhaustively computing the data
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Algorithm 1 Re-optimization

1: Build re-optimization data on subsequences of the incumbent timing problem T , using initialize,
and forward extension or backward extension.

2: For each timing subproblem T k, k ∈ {1, . . . , N};
3: Determine the breakpoints involved in the permutation function σk;
4: Evaluate the optimal cost of T k, as the concatenation of b(σ)+1 activity subsequences from
T (Equation 41).

for each of the n(n − 1) subsequences of consecutive activities from T , and then use it to evalu-
ate all moves. Data computation is straightforward to perform in O(n2c(I) + n2c(F/B)). c(I) and
c(F/B) stand for the computational complexity of initialization, and forward or backward exten-
sion, respectively. The overall complexity of the new neighborhood exploration procedure is thus
O(n2c(I) + n2c(F/B) + Nc(EC)), c(EC) being the complexity for evaluating the concatenation of
less than 4 subsequences. Assuming that N = Ω(n2), the computational complexity of neighborhood
evaluation becomes O(N [c(I) + c(F/B) + c(EC)]) for re-optimization methods instead of Nc(T ) for
independent solving. Re-optimization operators being less computationally complex than stand-alone
methods, the resulting approach is likely to lead to reduced computational effort. The efficiency of
Algorithm 1 thus directly relies on the potential to develop concatenation operations that are less
computationally complex than stand-alone methods.

Concatenation operators involving more than two sequences are not actually available or not
computationally suitable for efficient re-optimization for some settings such as {ø|MTW} and most
problems with two-dimensional features. In this case, forward and backward propagation may be
used along with concatenations of two subsequences only to perform the timing subproblem eval-
uations. Such an example is given by the lexicographic search of Savelsbergh [131], which can be
used to evaluate timing subproblems associated to some well-known neighborhoods for vehicle routing
problems exclusively by means of concatenation of two subsequence. Finally, if the concatenation of
many subsequences can be operated efficiently, but data creation constitutes the bottleneck in terms
of computational effort, the subset of subsequences involved can be restricted to O(n4/3) or O(n8/7),
using the hierarchical approach of Irnich [90].

The relevant data to compute can also be tailored relatively to the neighborhoods at play. For
example, the 2-opt* move presented in Figure 7 involves only the concatenation of subsequences
containing the first or last activity, which we call prefix or suffix subsequences. The number of such
subsequences requiring data computation is thus reduced to O(n).

7.4 General literature on the topic

A large range of vehicle routing and scheduling problems are addressed using local search on sequences.
Serial timing issues thus frequently arise in these fields.

Following the seminal work of Savelsbergh [131, 132], Kindervater and Savelsbergh [97] proposed a
framework to manage several constraints on vehicle routes, such as precedence constraints, time win-
dows, collection and deliveries under capacity constraints. Several of these constraints are explicitly,
or can be assimilated to, timing features. To perform efficient feasibility checking, the authors de-
velop global variables on partial routes, which are used in concatenation operations to evaluate moves
consisting of a constant number of edge exchanges. Move evaluations are performed in lexicographic
order to allow calculation of the global variables through the search.

Cordone [32] and Duhamel [45] report similar concepts of global data management on subsequences
and concatenation operators. Although these methodologies are essentially dedicated to the VRPTW,
they explore different possibilities related to the concept of macro-nodes. Indeed, when the information
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developed on subsequences has the same structure as the problem data on activities, subsequences of
activities can be replaced by equivalent single activities during timing resolution. In this case, the
size of the problem may be temporarily reduced by collapsing nodes into macro-nodes, leading to
algorithms based on aggregation of activities and multi-level approaches [10, 48, 150].

Campbell and Savelsbergh [22] presented a compilation of efficient insertion heuristics for many
vehicle routing problems with additional characteristics such as shift time limits, variable delivery
quantities, fixed and variable delivery times, and multiple routes per vehicle. These methods iteratively
create solutions by adding customers to the routes. The authors show that by managing global data
on the routes, the cost of feasibility of customer insertions can be evaluated in amortized O(1) for
many of these settings.

A rich body of dynamic programming-based timing algorithms is also presented in Hashimoto
[69], Hashimoto et al. [70, 71], Ibaraki et al. [86, 87], and Hashimoto et al. [72]. Forward and back-
ward propagation is used, with an additional “connect” operator to manage concatenation of two
subsequences, thus leading to efficient re-optimization approaches by concatenation for several timing
problems involving Piecewise Linear (PiL) functions.

The framework of Desaulniers et al. [38] models many constraints and objectives on sequences of
activities as resources that are subject to window constraints, and are extended from one activity to
the next by means of resource extension functions (REFs). This framework proved extremely efficient
to model many crew scheduling and routing problems and solve them by column generation [39]. It has
also been recently extended by Irnich [90, 91] to perform efficient neighborhood search under various
constraints on routes, such as load dependent costs, simultaneous pickup and deliveries, maximum
waiting and duty times. To that extent, REFs “generalized to segments” are built on subsequences
to characterize their resource consumption. Inverse REFs are defined to give an upper bound on the
resource consumptions that allow the sequence to be processed. This data on subsequences can be
used to evaluate efficiently the cost or feasibility of local search moves. This framework, however,
requires rather restrictive conditions: the existence of REFs that can be generalized to subsequences
and inversed. These conditions are satisfied only by a limited subset of the timing problems and
features introduced previously, such as {ø|TW}, {ø|MTW} or {DUR|TW}.

Several general methodologies thus exist in the literature to tackle timing problems within a neigh-
borhood search context. However, these approaches are restricted by the types of concatenations
allowed, the assumptions made on features, or the applicability of the models to a wide range of
constraints. The timing formalism we propose and its generalization to re-optimization procedures
by concatenation, following the concepts of Kindervater and Savelsbergh [97], is less specialized and
thus can encompass a wider range of timing settings and methods. As shown in the next sections, this
framework unifies previous successful concepts, and provides a line of thought for the development of
efficient algorithms for various timing problems. The forward, backward extension and concatenation
operations build upon dynamic programming and bi-directional search [125] concepts. Finally, this
framework can be viewed as a generalization of the approach of Irnich [90, 91] to timing problems.
Indeed, generalized REFs and their inverse provide, when they exist, the suitable re-optimization data.

7.5 Re-optimization algorithms

We now review and analyze re-optimization approaches for main timing features and problems. As
in the first part of this paper, the analysis is organized by increasing order of complexity and feature
dimensions. For each timing setting we describe the re-optimization data, as well as the operators that
can be used for forward and backward data computation and for evaluating the concatenation of several
subsequences. These operators can be used within Algorithm 1 to develop efficient re-optimization
approaches by concatenation.
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7.5.1 Constant activity costs and cumulative resources.

In the presence of constant activity costs or, more generally, with any cumulative resource such as
distance, load or time bounded by a global constraint, evaluating a solution from scratch would involve
to browse each activity and cumulate the resource, resulting in a O(n) complexity. To perform more
efficient evaluations, a well-known re-optimization approach involves preprocessing partial loads and
resource consumption on subsequences. This is equivalent to applying Algorithm 1 with the following
data and operators.

Data. Partial cost C(Ai) (or resource consumed) by each subsequence Ai.
Data computation. Cumulating the cost (or resource consumption) on the subsequence.
Evaluate concatenation. Cumulating the partial costs (or resource consumptions) on subse-

quences: C(A1 ⊕ · · · ⊕Ak) =
∑
C(Ai).

The evaluation of the concatenation of a bounded number of subsequences can thus be performed
in a bounded number of operations, leading to O(1) complexity for move evaluation when the data
is available. Data can be processed in amortized constant time for each move during a local search
procedure for many classic neighborhoods, using a lexicographic order [97] for move evaluation, or
developed in a preprocessing phase for a complexity of O(n2), which is usually dominated by the
neighborhood size.

7.5.2 Weighted execution dates and non-decreasing linear costs.

The feature W and, in general, non-decreasing linear time-dependent costs of the form ci(ti) = witi+ci
with wi ≥ 0 for i ∈ {1, . . . , n} can be addressed with the following re-optimization data and operators.

Data. Total processing time T (Ai) for all the activities of the sequence Ai but the last one.
Waiting cost W (Ai) related to a delay of one time unit in the sequence processing, and sequence cost
C(Ai) when started at time 0.

Data computation and evaluate concatenation. For a sequence A with a single activity,
T (A) = 0, W (A) = wA(1) and C(A) = cA(1). Equations (42-44) can be used to evaluate the cost of
concatenations and to compute the data for sequences with more activities by induction.

W (A1 ⊕A2) = W (A1) +W (A2) (42)

C(A1 ⊕A2) = C(A1) +W (A2)(T (A1) + pA1(|A1|),A2(1)) + C(A2) (43)

T (A1 ⊕A2) = T (A1) + pA1(|A1|),A2(1) + T (A2) (44)

These equations can also manage sequence-dependent processing times. It is remarkable that,
in this case, the re-optimization data is a simple generalization of single-activity characteristics to
sequences of activities, similar to the generalization to segments concepts of Irnich [91].

7.5.3 Time-windows feasibility check.

Savelsbergh [131] opened the way to efficient feasibility checking with regards to time windows in the
context of local search. In the subsequent work of Kindervater and Savelsbergh [97], the following
re-optimization data and operators are introduced.

Data. Total processing time T (Ai) for all the activities of the sequence Ai but the last one.
Earliest execution date E(Ai) of the last activity in any feasible schedule for Ai. Latest execution
date L(Ai) of the first activity in any feasible schedule for Ai. A record isFeas(Ai) valuated to true
if and only if a feasible schedule for Ai exists.

Data computation and evaluate concatenation. For a sequence A with a single activity,
T (A) = 0, E(A) = rA(1), L(A) = dA(1) and isFeas(A) = true. Equations (45-48) enable subsequence
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concatenations to be evaluated in O(1).

T (A1 ⊕A2) = T (A1) + pA1(|A1|),A2(1) + T (A2) (45)

E(A1 ⊕A2) = max{E(A1) + pA1(|A1|),A2(1) + T (A2), E(A2)} (46)

L(A1 ⊕A2) = min{L(A1), L(A2)− pA1(|A1|),A2(1) − T (A1)} (47)

isFeas(A1 ⊕A2) ≡ isFeas(A1) ∧ isFeas(A2) ∧ (E(A1) + pA1(|A1|),A2(1) ≤ L(A2)) (48)

It should also be noted that the total duration to process the sequence is given by DUR(Ai) =
max{E(Ai)−L(Ai), T (Ai)}, and thus this approach enables to solve {ø|DUR, TW} and {DUR|TW}
serial timing problems in O(1).

7.5.4 Earliness, tardiness, soft time-windows, and separable costs.

Timing problems with tardiness {D|ø}, earliness and tardiness {R,D(ri = di)|ø}, or with soft time
windows {TW |ø} can be solved in a stand-alone way by means of a minimum idle time policy in
O(n), or variants of the PAV algorithm (Section 5.3) in O(n log n), respectively. Nevertheless, a better
complexity can be achieved by means of re-optimization approaches. Ibaraki et al. [87] considers the
efficient resolution of the serial timing problem {Σccvx(t)|ø}, and attains an amortized logarithmic
complexity per sub-problem when the activity costs are PiL non-negative, lower semicontinuous and
convex. The re-optimization data corresponds to the dynamic programming functions described in
Section 5.4. These functions are represented as segment pieces within a tree data structure, and
computed only on prefix and suffix subsequences that contain the first or the last activity of the
incumbent timing problem.

Data. Optimal cost F̄ (Ai)(t) of a schedule for Ai, when the first activity is executed before t, and
optimal cost B̄(Ai)(t) of a schedule for Ai, when the last activity is executed after t.

Data computation. F̄ (Ai)(t) and B̄(Ai)(t) are computed by means of forward and backward
dynamic programming (Equations 19-20), respectively. The use of tree structures for function repre-
sentations allows for forward and backward extensions in O(ϕc logϕc), where ϕc is the total number
of pieces in the cost functions of the timing subproblem.

Evaluate concatenation. Equation (49) returns the optimal cost Z∗(A1 ⊕ A2) of the timing
problem related to the concatenation of two sequences. This value can be computed inO(logϕc). When
the number of pieces of cost functions is linear in the number of activities, as in {D|ø}, {R,D(ri =
di)|ø} or {TW |ø} settings, a O(log n) complexity is attained. The concatenation of a bounded number
of subsequences can be also efficiently evaluated as in Ibaraki et al. [87].

Z∗(A1 ⊕A2) = min
t≥0
{F (A1)(t) +B(A2)(t+ pA1(|A1|),A2(1))} (49)

A similar approach can be used for the the more general case with separable PiL cost functions
and multiple time-windows, as in Ibaraki et al. [86] and Hendel and Sourd [74]. Simple linked lists
can be used in this case to store the functions, and concatenations are evaluated in O(ϕc) operations.

Finally, Ergun and Orlin [49] and Kedad-Sidhoum and Sourd [94] have reported methods with
an evaluate concatenation operator working in amortized O(1) for some specific problems, {D|ø} and
{D,R(di = ri)|NWT}, in the presence of particular types of permutation functions (neighborhood
search based on swap, insert as well as compound moves), and for sequence-independent processing
times. The cornerstone of these two approaches is that they call the functions B(A2)(t) associated to
subsequences by series of O(n) increasing values of t. The methodology requires some ordering, in a
pre-processing phase in O(n log n). This complexity is generally dominated by the number N of timing
subproblems. Whether this type of approach can be extended to more general problems, and whether
a O(1) re-optimization algorithm exists for {D|R} are two current open questions. Approximate
procedures may also be used when computational time is critical, as in Taillard et al. [140].
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7.5.5 Flexible processing times

The flexible processing time feature involves separable functions of successive activity execution dates.
Complex problems are raised when this feature is combined with time-window constraints as in
{Σci(∆ti)|TW} (Equations 50-51), or with separable activity execution costs. The total order con-
straints can be directly taken into account in the objective when, for ∆t < pij , cij(∆t) = +∞.

min
(t1,...,tn)∈<n+

n∑
i=1

cσiσi+1(tσi+1 − tσi) (50)

s.t. ri ≤ ti ≤ di 1 ≤ i ≤ n (51)

We first discuss a re-optimization approach for a particular shape of cost functions cij , introduced
by Nagata [108] in the context of VRP with time-windows as an alternative time relaxation. Instead
of allowing earliness or lateness with respect to time-window constraints, penalized processing time
reductions are allowed. The resulting cost functions are given in Equation (52). In this case, no limit
is fixed on the amount of processing time reduction, thus allowing negative processing times.

cij(∆t) =

{
0 if ∆t ≥ pij
α(pij −∆t) otherwise

(52)

Nagata et al. [109] and Hashimoto et al. [71] introduced forward and backward functions to ef-
ficiently evaluate the merge of two sequences as a result of some particular VRP neighborhoods.
We describe here the re-optimization approach of Vidal et al. [147], which considers any number of
concatenations and accounts for duration features. This approach is also related to the method of
Kindervater and Savelsbergh [97] for {ø|DUR} and {ø|DUR, TW}.

Data. Minimum duration D(Ai) to perform all the activities of Ai but the last one. Earliest
execution date E(Ai) of the first activity in any feasible schedule with minimum idle time for Ai. Latest
possible execution date L(Ai) of the first activity in any feasible schedule with minimum processing
time reduction for Ai. Minimum processing time reduction TW (Ai) in any feasible schedule for Ai.

Data computation and evaluate concatenation. For a sequence A with a single activity,
D(A) = TW (A) = 0, E(A) = rA(1) and L(A) = dA(1). Equations (53-58) can be used to obtain this
data for concatenated subsequences.

E(A1 ⊕A2) = max{E(A2)−D(A1) + TW (A1)− pA1(|A1|),A2(1), E(A1)} − δWT (53)

L(A1 ⊕A2) = min{L(A2)−D(A1) + TW (A1)− pA1(|A1|),A2(1), L(A1)}+ δTW (54)

D(A1 ⊕A2) = D(A1) +D(A2) + pA1(|A1|),A2(1) + δWT (55)

TW (A1 ⊕A2) = TW (A1) + TW (A2) + δTW (56)

with δWT = max{E(A2)−D(A1) + TW (A1)− pA1(|A1|),A2(1) − L(A1), 0} (57)

and δTW = max{E(A1) +D(A1)− TW (A1) + pA1(|A1|),A2(1) − L(A2), 0} (58)

Using this approach, the minimum necessary processing time reduction can be evaluated in O(1),
for a sequence resulting of a constant number of concatenations. From a computational complexity
viewpoint, the flexible processing time relaxation is a good option for local search methods. In contrast,
the best re-optimization methods for soft time-window relaxations {TW |P} or {D|R,P} attain a
complexity of O(log n) per sub-problem (Section 7.5.4).

For the more general case of flexible and sequence-dependent processing-times {Σci(∆ti),Σci(ti)|ø},
Sourd [135] and Hashimoto et al. [70] independently proposed a dynamic programming method similar
to Section 7.5.4. The method of Hashimoto et al. [70] is applicable when functions c̃σiσi+1(∆t) (Equa-
tion 31) are convex, and all functions are PiL, lower semicontinuous, non-negative and take infinite
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value for t < 0. For this setting, an amortized complexity of O(ϕc + ϕ̂c× ϕ̃c) for each concatenation is
attained, where ϕc and ϕ̃c are respectively the total number of pieces in cost functions cσi and c̃σiσi+1 ,
and ϕ̂c represents the number of convex pieces in cσi .

Finally, {DUR|MTW} and {ø|DUR,MTW} are special cases of {Σci(∆ti),Σci(ti)|ø}. The re-
optimization approach of Hashimoto et al. [70] can thus be applied, leading to an amortized complexity
of O(1+ϕmtw) per subproblem, ϕmtw being the total number of time windows. This is an improvement
over the previous procedure in O(n+ nϕmtw) (Section 6.1).

7.5.6 Time-dependent processing times.

Donati et al. [43] address the feasibility problem {ø|P (t), TW} with an extension of the method of
Savelsbergh [131]. Let gij(t) = t + pij(t) be the completion date of an activity i started at t, and
followed by activity j. Under the assumption that all gij(t) are continuous and strictly increasing (any
activity started strictly later will finish strictly later), the inverse function g−1

ij (t) can be defined and
the following re-optimization data and operators enable efficient feasibility checks to be performed.

Data. Earliest possible execution date E(Ai) of the last activity in any feasible schedule for Ai.
Latest possible execution date L(Ai) of the first activity in any feasible schedule for Ai.

Data computation. For a sequence A with a single activity, E(A) = rA(1), and L(A) = dA(1).
Equations (59-62) return the re-optimization data on prefix and suffix subsequences by forward and
backward dynamic programming.

E(A1 ⊕A) = max{rA(1), gA1(|A1|),A(1)(E(A1))} (59)

isFeas(A1 ⊕A) ≡ isFeas(A1) ∧ {E(A1 ⊕A) ≤ dA(1)} (60)

L(A⊕A2) = min{dA(1), g
−1
A(1),A2(1)(L(A2))} (61)

isFeas(A⊕A2) ≡ isFeas(A2) ∧ {L(A⊕A2) ≥ rA(1)} (62)

Evaluate concatenation. Equation (63) can be used to state on the feasibility of any concate-
nation of a pair of prefix and suffix subsequences.

isFeas(A1 ⊕A2) ≡ isFeas(A1) ∧ isFeas(A2) ∧ {E(A1) + pA1(|A1|),A2(1)(E(A1)) ≤ L(A2)} (63)

Assuming the existence of an oracle which evaluates function g−1(t) in O(1), the previous re-
optimization framework can be used to check the feasibility of a concatenation of two subsequences in
O(1). However, it does not allow to concatenate more than two subsequences, as opposed to the fixed
processing time setting treated in Section 7.5.3, thus limiting the range of local search moves that can
be evaluated efficiently without relying on a lexicographic search order.

Finally, Hashimoto et al. [71] proposed a dynamic programming approach to manage the general
case of PiL time-dependent (and sequence-dependent) processing times with separable execution costs
{Σci(ti)|P (t)}. Evaluations of concatenations of pairs of subsequences A1 and A2 are performed in
O(ϕc+ϕp), where ϕc and ϕp denote respectively the total number of pieces in the cost and processing-
time functions.

8 Conclusions and Perspectives

In this paper, a rich body of problems with time characteristics and totally ordered variables has
been identified and classified. Many algorithms from different research fields were analyzed to identify
key problem features and main solution concepts. As timing subproblems frequently arise in the
context of local search, both the stand-alone resolution of problems, and the efficient resolution of
series of problems by means of re-optimization approaches were analyzed. A general re-optimization
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framework based on decomposition and recombination of sequences was introduced, and links to other
re-optimization approaches were highlighted.

Table 2 is one key achievement of this analysis. It summarizes the complexity of stand-alone resolu-
tion and re-optimization operations for the main timing settings in the literature. The leftmost column
lists the problems, while the next block of columns present stand-alone approaches and their complex-
ity. Following to the right, the next columns are dedicated to re-optimization approaches, displaying
the complexity of forward and backward data construction, “F/B”, the complexity of concatenation
of two, “C2”, and more than two subsequences, “C3+”, if available. Column “Sd” finally indicates
whether the mentioned re-optimization approach can address problems with sequence-dependent pa-
rameters. Additional assumptions on the problems are listed in the last column.

Thus, a subset of timing methods, originating from various research fields, and constituting the ac-
tual state-of-the-art for timing problems with different features, has been identified. These algorithms
are a keystone for addressing many rich combinatorial optimization problems with time characteris-
tics, for which the timing sub-problem represents the core of the originality and difficulty. Having a
library of timing algorithms at hand opens the way to further developments on more generic solvers
that relegate the problem difficulties to known subproblems and methods.

Many promising avenues of research arise as a result of this work. First of all, for several timing
features studied in this article, more efficient stand-alone, re-optimization methods and complexity
lower bounds should be investigated. In particular, re-optimization has clearly proven useful to address
more efficiently several timing settings, reducing in many cases the computational complexity by a
factor of n, yet no re-optimization algorithm is available, to our knowledge, for several problems such
as {DUR|MTW}, {ø|DUR,MTW}, {DUR|TW,P (t)}, {ø|TL, TW} and {DUR > D > TL|R}.

The impact of sequence dependency on re-optimization is another interesting concern, as sequence
dependency constitutes a fundamental delimitation between routing related problems and scheduling
settings. Identifying precisely its impact on re-optimization procedures would lead to better insights
on local search-based methods for these two important classes of problems. Finally, even if the focus
of this paper was on time characteristics, other cumulative resources such as load, stock, energy or
workforce lead to similar features and models. The work performed on timing can thus prove useful
for an even broader range of applications.
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Appendix

A Reduction of LISP to {TW (unit)|P}
Given a vector N = (N1, . . . , Nn) of n real numbers, LISP aims to find the maximum length L of a
non-decreasing subsequence of numbers: L = max{k|1 ≤ i1 < · · · < ik ≤ n and Ni1 ≤ · · · ≤ Nik}.
From a LISP instance, we construct the following instance T of {TW (unit)|ø}, with n activities such
that for i ∈ {1, . . . , n}, ri = di = Ni and pi = 0. This instance is created in n elementary algorithmic
operations.

Let z∗(T ) be the optimal solution cost of T . This solution naturally initiates as many activities
as possible without penalties, within a non-decreasing order of execution dates. Hence, the activities
achieved without penalty correspond to the LISP subsequence sought in the original problem, whose
length is L∗ = n − z∗(T ). Hence, LISP admits a many-one reduction to {TW (unit)|ø}. Conversely,
{TW (unit)|ø} generalizes LISP.
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B Proof of Theorem 1: Block optimality conditions of {Σccvx
i (ti)|ø}

We first recall the corresponding timing problem, stated in Equations (64-65).

min
(t1,...,tn)∈<n

n∑
i=1

ci(ti) (64)

s.t. ti + pi ≤ ti+1 1 ≤ i < n (65)

The functions ci(t) : < → < are assumed to be convex, but not necessarily smooth. We denote
by δci(t) the subdifferential of ci at t, which is necessarily a non-empty interval, as a byproduct
of the convexity assumption and the space of definition. We first recall two useful properties on
subdifferentials from Rockafellar [127], to follow with the proof of Theorem (1).

Proposition 2. Let f1, . . . , fm be subdifferentiable functions on <n, then:

δ(f1(x) + · · ·+ fm(x)) ⊃ δf1(x) + · · ·+ δfm(x) ∀x (66)

Theorem 2. Let f1, . . . , fm be a set of proper convex functions on <n having at least one common
point in the relative interior of their domains ri(dom(fi)), then:

δ(f1(x) + · · ·+ fm(x)) = δf1(x) + · · ·+ δfm(x) ∀x ∈
⋂
ri(dom(fi)) (67)

Constraint qualifications hold as the constraints are linear, and any solution with idle time between
each activity is feasible, thus taking place in the relative interior of the polytope. Hence, strong duality
applies, leading to the following necessary and sufficient optimality conditions. A solution t∗ =
(t∗1, . . . , t

∗
n) of Problem (64-65) is optimal if and only if a set of Lagrangian multipliers (λ∗1, . . . , λ

∗
n−1)

exists, such that conditions (68) are satisfied (Bertsekas et al. 13, Propositions 5.7.1 and 6.4.2).

t∗i−1 + pi−1 ≤ t∗i i = 2, . . . , n

0 ∈ δc1(t∗1) + λ∗1

0 ∈ δci(t∗i ) + λ∗i − λ∗i−1 i = 2, . . . , n− 1

0 ∈ δcn(t∗n)− λ∗n−1

λ∗i−1(t∗i−1 + pi−1 − t∗i ) = 0 i = 2, . . . , n

λ∗i ≥ 0 i = 1, . . . , n

(68)

Solution t∗ can be represented as a succession of blocks of activities (B1, . . . , Bm), such that
activities within each block are processed without idle time, and the last activities of blocks are followed
by non-zero idle time. The previous definition, combined with primal feasibility, yields t∗Bj(|Bj |) +

pBj(|Bj |) < t∗Bj(|Bj |)+1, and thus λ∗Bj(|Bj |) = 0 for j ∈ {1, . . . ,m − 1}. Conditions (68) are thus

equivalent to primal feasibility (equivalent to the first condition of (1) combined with the definition of
blocks) and the following independent systems of equations for each block:

∀j ∈ {1, . . . ,m}



i) 0 ∈ δcBj(1)(t
∗
Bj(1)) + λ∗Bj(1)

ii) 0 ∈ δci(t∗Bj(1) + pBj(1)i−1) + λ∗i − λ∗i−1 i = Bj(1) + 1, . . . , Bj(|Bj |)− 1

iii) 0 ∈ δcBj(|Bj |)(t
∗
Bj(1) + pBj(1)Bj(|Bj |−1)))− λ∗Bj(|Bj |)−1

iv) λ∗i ≥ 0 i = Bj(1), . . . , Bj(|Bj |)
(69)
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Necessary condition proof. For 1 ≤ i ≤ j ≤ n, let pij be the cumulative processing duration of
activities ai to aj . Relying on Proposition (2), one can sum i) , ii) and iii) of (69), leading to:

0 ∈ δcBj(1)(t
∗
Bj(1)) +

Bj(|Bj |)∑
i=Bj(1)+1

δci(t
∗
Bj(1) + pBj(1)i−1)⇒ 0 ∈ δCBj (t∗Bj(1)) , (70)

and thus, following the definition of the optimal block execution cost of Equation (18), t∗Bi(1) ∈
[T−∗Bi , T

+∗
Bi

]. Any optimal solution thus verifies the first statement of Theorem (1). Finally, for any

block Bj and prefix block Bk
j , summing i) , ii) and iii) for j ∈ {Bj(1) + 1, . . . , k} leads to:

− λ∗k ∈ δcBj(1)(t
∗
Bj(1)) +

k∑
i=Bj(1)+1

δci(t
∗
Bj(1) + pBj(1)i−1)⇒ −λ∗k ∈ δCBj (t∗Bkj (1)

) , (71)

which can be reformulated as T+∗
Bkj
≥ t∗Bj(1) and implies the last statement of Theorem (1).

Sufficient condition proof. Consider a solution t = (t1, . . . , tn) with its blocks (B1, . . . , Bm),
respecting conditions of Theorem (1). Following block definitions and primal feasibility, it only remains
to prove that Conditions (69) are respected for each block. We choose the following Lagrangian
multipliers, which are non-negative as T+∗

Bki
≥ tBi(1) ⇒ ∃x ≤ 0 ∈ δCBij (tBj(1))):

∀j ∈ {1, . . . ,m}

{
λ∗i = −min(x ∈ δCBij (tBj(1))) i = Bj(1) + 1, . . . , Bj(|Bj |)− 1

λ∗Bj(|Bj |) = 0
(72)

Proposition (2) then involves that for i ∈ {1, . . . ,m} and j ∈ {Bj(1) + 1, . . . , Bj(|Bj |)− 1};

− λ∗i ∈ δCBij (tBj(1)) = δcBj(1)(tBj(1)) +
i∑

k=Bj(1)+1

δck(tBj(1) + pBj(1)k−1) (73)

In the case where i = Bj(1), Equation (73) proves statement i) of (69). Also, λ∗Bj(1) ∈ δ(−cBj(1))(tBj(1)),

and we can combine this statement with Equation (73) for i = Bj(1)+1, using Proposition 2), leading
to:

λ∗Bj(1)+1 − λ
∗
Bj(1) ∈ δ(−cBj(1))(tBj(1)) + δcBj(1)(tBj(1)) + δcBj(1)+1(tBj(1) + pBj(1))

= δcBj(1)+1(tBj(1) + pBj(1))
(74)

The remaining statements of Equation ii) and Equation iii) in (69) are proven by recurrence.
Assuming that for a given i ∈ {Bj(1) + 1, . . . , Bj(|Bj |)− 1}, λ∗i−1 − λ∗i ∈ δci(tBj(1) + pBj(1)i), then

λ∗i − λ∗i+1 = −λ∗i+1 + λ∗i−1 − (λ∗i−1 − λ∗i )

∈ δcBj(1)(tBj(1)) +

i+1∑
k=Bj(1)

δck(tBj(1) + pBj(1)k−1) + δ(−cBj(1))(tBj(1))

+
i−1∑

k=Bj(1)

δ(−ck)(tBj(1) + pBj(1)k−1) + δ(−ci)(tBj(1) + pBj(1)i−1)

⊂ δci+1(tBj(1) + pBj(1)i)

(75)

All the sufficient optimality conditions are thus satisfied by solution t = (t1, . . . , tn). ut
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