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Abstract

We consider the Multi Trip Vehicle Routing Problem, in which a set of geographically scattered
customers have to be served by a fleet of vehicles. Each vehicle can perform several trips during
the working day. The objective is to minimize the total travel time while respecting temporal and
capacity constraints.

The problem is particularly interesting in the city logistics context, where customers are located in
city centers. Road and law restrictions favor the use of small capacity vehicles to perform deliveries.
This leads to trips much briefer than the working day. A vehicle can then go back to the depot and
be re-loaded before starting another service trip.

We propose an hybrid genetic algorithm for the problem. Especially, we introduce a new local
search operator based on the combination of standard VRP moves and swaps between trips. Our
procedure is compared with those in the literature and it outperforms previous algorithms with
respect to average solution quality. Moreover, a new feasible solution and many best known solutions
are found.

1 Introduction
The well known Vehicle Routing Problem (VRP) is an NP-hard combinatorial optimization problem
where a set of geographically scattered customers has to be served by a fleet of vehicles. An implicit
assumption of the VRP is that each vehicle can perform only one route in the planning horizon. This
assumption is not realistic in several practical situations. For the distribution of goods in city centers, for
example, small vehicles are generally preferred. Because of this capacity limitation, they daily perform
several short tours. This problem is referred to as the Multi Trip VRP (also VRP with multiple use of
vehicles, Taillard et al. [30], VRP with multiple trips, Petch and Salhi [21] or VRP with multiple routes,
Azi et al. [2]). In the rest of the paper it will be indicated as MTVRP.

The MTVRP is defined on an undirected graph G = (V,E), where V = {0, 1, . . . , n} is the set of
vertices and E = {(i, j)|i, j ∈ V, i < j} is the set of edges. It is possible to travel from i to j, incurring in
a travel time tij. Vertex 0 represents the depot where a fleet of m identical vehicles with limited capacity
Q is based. Vertices 1, . . . , n represent the customers to be served, each one having a demand qi. A
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time horizon TH exists, which establishes the duration of the working day. Overtime is not allowed. It is
assumed that Q, qi and TH are nonnegative integers.

The MTVRP calls for the determination of a set of routes and an assignment of each route to a vehicle,
such that the total travel time is minimized and the following conditions are satisfied:

(a) each route starts and ends at the depot,

(b) each customer is visited by exactly one route,

(c) the sum of the demands of the customers in any route does not exceed Q,

(d) the total duration of the routes assigned to the same vehicle does not exceed TH .

It is also supposed that each customer i could be served by a return trip, i.e, t0i + ti0 ≤ TH and qi ≤ Q.
Few papers in the literature address the MTVRP and no efficient population-based algorithm were

proposed. Our goal is to fill this gap proposing a memetic algorithm able to compete with previous
works. Our interest in the MTVRP raises from the MODUM project1, where mutualized distribution
in city centers is explored. The contribution of this paper is threefold: 1) A high-performing memetic
algorithm is proposed; 2) An adaptation of the Split procedure (Prins [22]) to segment a chromosome
into a MTVRP solution is developed; 3) A new local search (LS) operator, that combines standard VRP
moves and re-assignment of trips to vehicles is introduced.

This paper is organized as follows. In Section 2 the literature of the MTVRP is reviewed. Section 3
describes the proposed algorithm. Section 4 details the Combined LS. Results are reported in Section 5.
Conclusions and perspectives are discussed in Section 6.

2 Literature review
The well known VRP was deeply studied in the last 50 years and many exact and heuristic methods have
been proposed in the literature (see Toth and Vigo [32] and Golden et al. [12]). However, exact methods
remain limited to problems with restricted size, i.e., less than 100 customers. Moreover, many different
variants of the problem are introduced in order to face particular constraints that arise in everyday
applications. Despite that, MTVRP has been investigated only in the last two decades and the literature
is still scarce.

Fleischmann [10] was the first to address the problem in his working paper in 1990. He proposes a
modification of the savings algorithm and uses a bin packing (BP) problem heuristic to assign routes to
the vehicles. In Taillard et al. [30], VRP solutions are generated using a tabu search (TS) algorithm with
adaptive memory (Taillard [29]). The routes forming the VRP solutions are stored in a list. From that list
a subset of routes is selected and a MTVRP solution is constructed using a BP heuristic. A benchmark
of instances (constructed from VRP instances) is proposed. It will be used as efficiency comparison for all
the authors that have developed a solution method for the MTVRP. Curiously, Taillard et al. [30] provide
values only when the algorithm fails in finding a feasible solution, introducing an arbitrary penalization
factor θ = 2 for the overtime. Next papers followed the same scheme except Salhi and Petch [27] (Olivera
and Viera [20] do not provide exact values, but just a GAP measure from a reference value as it will
be explained in Section 5). Petch and Salhi [21] propose a multi-phase algorithm with the minimization
of the overtime as objective function. A pool of solutions is constructed by the parametrized Yellow’s
savings algorithm (Yellow [36]). For each solution in the pool, a MTVRP solution is constructed using
a BP heuristic. The MTVRP solutions are improved using 2-opt, 3-opt moves, combining routes and
reallocating customers. In Salhi and Petch [27], as in Petch and Salhi [21], the maximum overtime is
minimized. A genetic algorithm is proposed. In this method a chromosome is a sequence of strictly

1http://www-lipn.univ-paris13.fr/modum
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increasing angles, measured with respect to the depot, and dividing the plane into sectors. The customers
are then clustered by assigning each one to the sector it occupies. In each cluster, the Clarke and Wright
savings heuristic is used to solve a smaller VRP problem. The resulting routes are packed using a BP
heuristic. Olivera and Viera [20] use an adaptive memory approach to tackle the MTVRP. A memory M
is constructed with different routes that form VRP solutions generated with the sweep algorithm. Each
route is labeled with its overtime value and its cost and are sorted using a lexicographic order. New VRP
solutions are generated by probabilistically selecting routes in M and improved by a TS algorithm. New
VRP solutions are used to update M . From the best VRP solution a MTVRP solution is obtained using
a BP heuristic. Recently, Mingozzi et al. [17] propose an exact method for the MTVRP based on two set
partitioning-like formulations. 52 instances with up to 120 customers and with a known feasible solution
(without overtime) are tackled and in 42 cases the optimal solution is found.

The MTVRP with time widows (MTVRPTW) is addressed as well. Several exact methods are pro-
posed (Azi et al. [2], Hernandez et al. [15]). Instances with 100 customers and 1 vehicle (Azi et al. [2])
and with 50 customers and 4 vehicles (Hernandez et al. [15]) can be solved to optimality.

Different studies facing practical cases envisage to perform several trips during the working day. For
example, Brandão and Mercer [4] consider a MTVRPTW and vehicles with different capacities. Moreover,
vehicles can be hired from the company in case of need and the access to some customers is restricted to
particular vehicles. Drivers’ schedule must respect the maximum legal driving time per day. Legal time
breaks and unloading times are taken into account. Real instances including 45 to 70 customers and the
use of 11 vans and 11 tractors are considered. In their subsequent work, Brandão and Mercer [5] adapt the
algorithm to compare the results with those obtained by Taillard et al. [30]. A two phases TS is performed.
In the first phase, a solution is allowed to become infeasible regarding travel time constraints, but in the
second phase, only feasible solutions are accepted. Insert and swap moves are considered. Battarra et
al. [3] consider the MTVRPTW and different commodities that cannot be transported together. The
objective is to minimize the number of used vehicles. The problem is decomposed in simpler subproblems,
one for each commodity. A set of routes is then generated for each commodity and packed by means of a
BP heuristic in order to obtain a solution. Alonso et al. [1] consider the periodic MTVRP. Each customer
has to be served up to t times in a planning horizon of t periods. Moreover, not every vehicle can serve
all the customers. To each customer is assigned a delivery pattern and it is assigned to a vehicle using
GENIUS heuristic (Gendreau et al. [11]). If the insertion violates time or capacity constraints a new
route is initialized. Two moves are used to improve the solution: customers are moved from a route to
another and different patterns are assigned to a customer. The concept of multi trips is also addressed by
Cornillier et al. [8] and Gribkovskaia et al. [13]. The former paper concerns the petrol distribution to gas
stations, while the latter proposes a model for the livestock collection.

The idea of multi-trip is found in the context of city logistics as well. For example, Taniguchi and
Shimamoto [31] propose a model to evaluate the impact of advanced information system in urban areas
and they assume that vehicles are allowed to perform multiple trips per day. Browne et al. [6] present
the case of supplies company operating in the City of London. From a micro-consolidation urban center,
electrically assisted cargo tricycles and electric vans perform deliveries. Due to the small size of tricycles
and electric vans, they perform several trips during each day.

3 A memetic algorithm for the MTVRP
Genetic algorithms (GA) are adaptive methods inspired from the natural evolution of biological organ-
isms. An initial population of individuals (chromosomes) evolves through generations until satisfactory
criteria of quality, a maximum number of iterations or time limits are reached. New individuals (children)
are generated from individuals forming the current generation (parents) by means of genetic operators
(crossover and mutation). The principles of genetic procedure were firstly formalized by Holland [16] and
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have been successfully used in different context (Neri and Cotta [19]). The papers of Prins [22] and Vidal
et al. [35] are two examples of efficient GA (the former for the VRP and the latter for the multi depot
VRP and the periodic VRP) in the VRP field. In particular, GAs allow for a diversified exploration over
the search space due to the management of several solutions at the same time. When LS algorithms are
part of the procedure, the GA is commonly called memetic algorithm (MA). For an overview of GAs and
MAs the reader is respectively reffered to Reeves [25] and Moscato and Cotta [18].

In this section the proposed MA for the MTVRP is described. It makes use of an adaptation of the
Split procedure (Prins [22]) to obtain a MTVRP solution from giant tours (Section 3.2). The population
diversity management is inspired by the work of Vidal et al. [35]: for survival, individuals are selected
according to their quality and their contribution to the diversification of the population (Section 3.6). A
sketch of the method is given in Algorithm 1.

A new advanced feature is embedded in the LS: when a pejorative move is detected, it is tested in
combination with a re-assignment of trips. In case of improvement, both the move and the re-assignment
are performed (Section 4).

Algorithm 1 Memetic Algorithm outline
1: Initialize population (Section 3.5)
2: while Termination criteria is not met do
3: Select parent chromosomes SP1 and SP2 (Section 3.3)
4: Generate a child SC (Section 3.3)
5: Educate SC (Section 3.4)
6: if SC is infeasible then
7: Repair SC (Section 3.4)
8: end if
9: Insert SC in the population
10: if Dimension of the population is bigger or equal than π + µ then
11: Select survivors (Section 3.6)
12: end if
13: end while

3.1 Solution representation and search space
A chromosome is a sequence (permutation) S = (S1, . . . , Sn) of n client nodes, without trip delimiters.
S can be viewed as a TSP solution that has to be turned in a feasible MTVRP solution by splitting
the chromosome (inserting trip delimiters and assigning trips to vehicles). From that point of view, S is
usually called a giant tour. From a giant tour S, different MTVRP solutions can be constructed depending
on the way S is split.

During the search phase, overtime and overload are allowed and penalized in the fitness function with
factors θ and λ respectively, even though a feasible solution is required.

A procedure AdSplit (explained in Section 3.2) is used to get a MTVRP solution ξ from S. The
following notation is introduced: Tv(ξ) and Ov(ξ) = max{0, Tv(ξ) − TH} are respectively the travel time
and the overtime of vehicle v in solution ξ. Lr(ξ) is the load of route r and r ∈ v indicates that route r is
assigned to vehicle v. The fitness F (S) of the chromosome S is the cost of the best solution ξ found by
AdSplit and it is defined as

F (S) = c(ξ) =
m∑
v=1

Tv(ξ) + θ
m∑
v=1

Ov(ξ) + λ
m∑
v=1

∑
r∈v

max{0, Lr(ξ)−Q} (1)

When confusion cannot arise, solution ξ will be omitted in the notation. The chromosome S is called
feasible (infeasible) if AdSplit obtains, from S, a feasible (infeasible) solution ξ.
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3.2 A Split algorithm for the Multi Trip problems
3.2.1 Auxiliary graph construction

The splitting procedure proposed here, indicated with AdSplit, is an adaptation of the procedure proposed
by Prins in [22]. It works on an auxiliary graph H = (V ′ , A′). V ′ contains n+ 1 nodes indexed from 0 to
n. Arc (i, j), i < j, represents a trip serving customers from Si+1 to Sj in the order they are in S. With
each arc (i, j), is associated a cost cij defined as

cij = τij + θmax{0, τij − TH}+ λmax{0, lij −Q} (2)

where τij and lij represent respectively the trip travelling time and the sum of customer’s requests served
during the trip.

A simple example with five customers is given in Figures 1–2. S = (1, 2, 3, 4, 5), TH = 45, Q = 50,
θ = λ = 2 and the demand of each customer is given between brackets. For example, arc (1, 5) in
Figure 2 represents the trip serving customers from 2 to 5. τ15 = 116, l15 = 76. The arc cost is then
c15 = 116 + 2 · (116− 45) + 2 · (76− 50) = 310.

14

2

3

4

51

21 15

21

4922

13 17

(30)

(16)

(9)(7)

(21)

32

Figure 1: Example with 5 customers: demands in brackets, TH = 45, Q = 50, θ = λ = 2
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204

310

226114
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26 28 42 102

Figure 2: Auxiliary graph (to each arc (i, j), cost cij is assigned as defined in Equation 2)

Once H is computed, paths basically represent set of trips that can be assigned to vehicles. In the
VRP context, an optimal splitting is equivalent to a shortest path (SP) in H each arc representing a route
which is assigned to a vehicle. Since H is acyclic, Bellman’s algorithm can be used to find the SP in
O(n2). In the MTVRP context, more than one trip can be assigned to the same vehicle. The procedure
proposed in Prins [22] cannot be directly used and is modified as explained in Section 3.2.2.

3.2.2 Assignment procedure

The assignment procedure both selects and assigns trips to vehicles. It consists of two phases. In the first
phase, the SP in H is computed. In the second phase, trips of the SP are assigned to vehicles by means
of a labelling algorithm. The labelling algorithm works as follows.

Starting from node 0, labels are progressively extended along the graph defined by SP. Each label
L has m + 3 fields: the first m fields store vehicle travel times in decreasing order, the (m + 1)th field
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memorizes the total load infeasibility, the (m + 2)th the predecessor node, and the last field keeps the
cost of the partial solution evaluated using Equation 1 and equivalent to the cost c(L) of label L. When
extending a label, m new labels are constructed, one for each possible allocation of the new trip to a
vehicle. When node n is reached, the label L with minimum cost c(L) associated with node n is selected
and the related solution is constructed.

Dominated labels, accordingly with the following dominance rule, are discarded: let L1 and L2 be two
labels associated with the same node i. L1 dominates L2 if and only if

c(L1) + θ
m∑
j=1

δj(L1,L2) ≤ c(L2) (3)

where c(L) is the cost associated with label L,

δj(L1,L2) = max
{

0,min
{
TH , Tj(L1)

}
−min

{
TH , Tj(L2)

}}
and Tj(L) is the (partial) travel time of vehicle j associated to label L. Roughly speaking, given two
labels L1 and L2, extending L1 is penalized as much as possible while it is not extending L2 in the same
way. If Inequality 3 holds, L2 cannot be extended in a better way than L1, and it is eliminated.

Note that this approach provides the optimal assignment of trips in SP, but is suboptimal with regard
to the decomposition of S, as illustrated in Figures 3 and 4.

Applying the procedure on the complete graph H, the label that minimizes Equation 1 at node n
would correspond to the best decomposition of S in the MTVRP context. One could however expect that
a huge number of labels would need to be treated, which do not appear to be viable in the MA context.

57

1 2 3 4 534

114

v2

2

3

4

51
v1

v2

Figure 3: Best MTVRP solution for S (F (S) = 273)
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1 2 3 4 526 28 34

v2

2
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4

51

v1

v2

v1

Figure 4: MTVRP solution obtained from arcs forming the shortest path (F (S) = 288): shortest path
could not lead to the best solution

3.2.3 Improving the Split procedure

Arc (i, j) in the auxiliary graph H represents the trip serving customers (Si+1, Si+2, . . . , Sj) in the or-
der they appear in the giant tour S. Visiting customers in a different order can lead to a trip with a
smaller cost (Figure 5). As proposed by Prins et al. [24], each rotation (circular left shit) can be con-
sidered and evaluated in constant time. For example, a one-position rotation corresponds to the trip
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Figure 5: MTVRP solution obtained considering rotations of customers in the same trip (F (S) = 238)

(0, Si+2, . . . , Sj, Si+1, 0). Then, given an arc, all the possible rotations are considered looking for the best
starting point of the trip without introducing any computational burden (see Prins et al. [24] for a detailed
explanation).

A pseudo-code sketch of the AdSplit procedure is proposed in Algorithm 2. Procedure SP_best_in()
computes the shortest path on graph H, taking into consideration the best rotation for each arc. With
each node i, it associates its successor succi, the travelling time and load of the trip represented by
(i, succi). These values are obtained when needed by procedures get_successor(i), get_best_in_time(i)
and get_load(i). Lk indicates the kth field of label L, while LlInf , Lpred and Lc refer respectively to the
(m + 1)th, (m + 2)th and (m + 3)th label fields. sort(L) sorts the first m fields in decreasing order. If
L is dominated by a label in ListLabeli, is_dominated(ListLabeli,L) returns true, otherwise it returns
false. Labels in ListLabeli dominated by the new inserted label L are eliminated from the list by
eliminate_dominated_labels(ListLabeli,L).

3.3 Crossover
The classic OX operator is used. Figure 6 shows how the OX works. Firstly, two cutting points have
to be chosen in the first parent SP1 . In the example they are i = 4 and j = 7. Indicating with SC1 =
OX(SP1 , SP2) the first child, SC1(k) = SP1(k) for k = i, . . . , j. Then, SP2 is circularly swept from SP2(j+1)
onward inserting in SC1 the missing nodes. By inverting the roles between SP1 and SP2 , we obtain the
second child SC2 = OX(SP2 , SP1).

i=4 j=7
↓ ↓

SP1 : 2 6 4 7 8 5 10 9 3 1
SP2 : 3 7 9 2 4 10 1 6 5 8

SC1 : 2 4 1 7 8 5 10 6 3 9
SC2 : 7 8 5 2 4 10 1 9 3 6

Figure 6: OX operator

Parents SP1 and SP2 are selected with the classic binary tournament method: two chromosomes are
randomly drawn from the population and the one with the lower fitness is selected. The procedure is
repeated twice, once for the selection of each parent. The child that has to be inserted in the population
is randomly selected between children SC1 = OX(SP1 , SP2) and SC2 = OX(SP2 , SP1).
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Algorithm 2 AdSplit
1: SP_best_in()
2: for i = 0 to n do
3: LabelListi = ∅
4: end for

5: LabelList0 ← (
m︷ ︸︸ ︷

0, . . . , 0, 0, 0, 0)
6: current = 0
7: while current < n do
8: succ = get_successor(current)
9: load = get_load(current);
10: time = get_best_in_time(current)
11: for all L ∈ LabelListcurrent do
12: for k = 1→ m do
13: L∗ = L
14: L∗k = Lk + time
15: sort(L)
16: L∗lInf = LlInf + λ ·max{load−Q, 0}
17: L∗c = Lc + time+ θ ·max{time− TH , 0}+ λ ·max{load−Q, 0}
18: L∗pred = current
19: if not is_dominated(ListLabelsucc,L∗) then
20: ListLabelsucc ← L∗
21: eliminate_dominated_labels(ListLabelsucc,L∗)
22: end if
23: end for
24: end for
25: current = succ
26: end while
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3.4 Local search - education and repair procedures
After crossover, the obtained child is evaluated by means of AdSplit procedure, and educated applying LS
procedure with a probability pLS trying to improve its quality. LS is usually used in literature as mutation
operator in order to obtain a high-performance hybrid GA.

The operators listed in the following are used. Let u and z be two nodes and t and x be their respective
successors (that could be the depot as well). R(u) indicates the route visiting customer u. The following
simple types of moves are tested

M1 If u is a client node, remove u and insert it after z;

M2 If u and t are clients, remove them and insert u and t after z;

M3 If u and t are clients, remove them and insert t and u after z;

M4 If u and z are clients, swap u and z;

M5 If u, t and z are clients, swap u and t with z;

M6 If u, t, z and x are clients, swap u and t with z and x;

M7 If R(u) = R(z), replace (u, t) and (z, x) by (u, z) and (t, x);

M8 If R(u) 6= R(z), replace (u, t) and (z, x) by (u, z) and (t, x);

M9 If R(u) 6= R(z), replace (u, t) and (z, x) by (u, x) and (t, x);

M10 If R(u) = R(z), create another route with all customers from u to z (of from z to u if z come before
u) and put it in a randomly drawn vehicle.

The nodes can belong to the same route or to different routes. Routes can either belong to the same
vehicle or to different vehicles. Moves M1–M3 correspond to insertion moves, moves M4–M6 to swaps,
move M7 is the well known 2-opt and moves M8, M9 are usually called 2-opt∗.

Moves M1–M9 are those used in Prins [22]. If u = z in M10, a new route with just customer u is
created.

At the beginning of the LS with each type of move Mi, i = 1, . . . , 10 is associated a weight wi = w and
the status active. At each iteration the LS procedure probabilistically selects a move among the active
moves. The probability of move Mi to be chosen is wi/W where W = ∑10

i=1 wi. The selected move Mi is
evaluated and the first improvement criteria is adopted. If the move fails, i.e., the current solution is a
local optima in the neighbourhood defined by Mi, Mi becomes inactive and cannot be selected anymore
until another move succeeds. The LS terminates when all the moves are inactive, i.e., a local optima in
the neighbourhood defined by M1–M10 is reached.

After a fixed number of iterations ω (arbitrarily fixed to 100), the weights are updated accordingly to
the number of successes. Precisely, wi = wi+ successi

attemptsi
, where successi and attemptsi indicate respectively

the times move Mi succeeded and was performed (attemptsi is usually not the same for all moves due to
probabilistic selection). W is updated accordingly. Weights wi can be viewed as a short-term memory,
i.e., a move that historically successes more will have a higher probability to be chosen.

To speed up LS, granular search is implemented as proposed by Toth and Vigo [33]: a move is
considered only when z is one of the nclosest closest customers of u (filtering rule).

Each time a solution ξ is obtained from chromosome S by means of AdSplit it is stored in four different
n-size vectors that memorize in ith position the predecessor, the successor, the vehicle and the route of
customer i. The travel time of each vehicle and the load of each route are stored as well. In this way,
moves M1–M9 are evaluated in constant time, while M10 in O(n). Then, given a solution ξ and defining
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its neighbourhood N(ξ) by the set of moves M1–M10, it can be completely explored in O(n3) time (more
precisely, in O(n2 · nclosest) with the usage of the filtering rule), although the neighbourhood defined by
M1–M9 requires O(n2) operations to be explored.

After LS is applied, the educated chromosome can be either feasible or infeasible. In the latter case
the repair procedure is applied with a probability prep. It consists in applying again LS with λ (load
infeasibility penalization parameter) and/or θ temporarily multiplied by 10, regarding the nature of the
infeasibility. If a feasible chromosome is obtained, it is inserted in the population, otherwise λ and/or
θ are (temporarily) multiplied again by 10 and LS reapplied. The original chromosome is not discarded
even if the repaired chromosome is feasible (Vidal et al. [35]). All the chromosomes obtained during LS
and repair procedure are as well inserted in the population.

3.5 Population structure and initialization
An ordered population Π of π chromosomes is kept. A key value kS is associated with each chromosome S
and the population is sorted regarding the key value. kS corresponds to the fitness F (S) of S multiplied by
a penalization factor P . P = 1 if S is feasible, P = 1.5 if S is time-infeasible, P = 2 if S is load-infeasible,
P = 3 if S is both load and time-infeasible. This is done in order to ensure the best feasible solution found
so far corresponds to the chromosome in the first position of the population (infeasible individuals can cost
less than the best feasible one) and in general to keep good quality individuals at the top of Π. Moreover,
it allows to manage both feasible and infeasible chromosomes in the same population, differently from
what is done, for example, in Vidal et al. [35], where the population is divided in two subpopulations, one
for feasible and the other for infeasible chromosomes.

The initial population is formed of π random generated chromosomes evaluated with the AdSplit
procedure and improved applying LS.

3.6 Survivor strategy
When the population reaches a maximum dimension, i.e., π + µ, a survivor selection is performed as
proposed by Vidal et al. [34], [35]. Survivor chromosomes are selected based on quality, i.e., on fitness
F (S), and their diversity contribution f(S) defined as the average distance between S and its nc closest
neighbours in Π (forming set Nc) as follows:

f(S) = 1
nc

∑
S1∈Nc

D(S, S1), (4)

where D(·, ·) is the broken pair distance that is the number of pairs of adjacent customers in S that are
broken in S1 (Prins [23]). D(·, ·) gives a measure on the amount of common arcs between S and S1. A
biased fitness bF (·) is calculated for each chromosome as follows:

bF (S) = rF (S) + (1− ne
|Π|)rf (S) (5)

where rF (S) and rf (S) are the ranks of chromosome S calculated based on fitness F and function f
defined in Equation 4 respectively, and ne is a parameter that ensures elitism properties during selection
(see Vidal et al. [35] for a formal proof).

4 Combined Local Search
To optimize the packing of routes into vehicles, we introduce the possibility of a re-pack of trips along
with a pejorative move M among M1–M10 introduced in Section 3.4. By pejorative move, we mean a
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move that does not decrease the solution cost. The swap between trips (Swp) in different vehicles is used
as re-assignment procedure.

To understand the idea of the Combined LS (CLS) let focus on Figures 7–9. The example involves
three vehicles with up to three routes each and TH = 100 that is violated by the third vehicle (Figure 7).
MoveM involves routes r2 and r3 of vehicles v1 and v2 respectively and it leads to the configuration shown
in Figure 8 with an increasing in the solution cost of 5 units (due to the increasing in routing cost). Since
M is pejorative, it would be discarded by the LS procedure. However, with a different assignment of trips
to vehicles, an improvement can be obtained. In the particular case, it consists of swapping r2 in v1 with
r2 in v3 (Figure 9).

r1 r2 r3 Tv θOv
v1 60 30 90 -
v2 30 30 30 90 -
v3 45 30 30 105 10

cost: 295

Figure 7: Initial configuration

r1 r2 r3 Tv θOv
v1 60 25 85 -
v2 30 30 40 100 -
v3 45 30 30 105 10

cost: 300

Figure 8: Pejorative move. In bold trips in-
volved in M

r1 r2 r3 Tv θOv
v1 60 30 90 -
v2 30 30 40 100 -
v3 45 25 30 100 -

cost: 290

Figure 9: After Swp. In bold trips involved in
Swp

The goal of the CLS is to detect when the combination of moves M1–M10 along with a swap of two
trips leads to a better solution and, in that case, to perform both the move and the swap.

For the sake of computing time, the main issue here is to avoid evaluating every possible combination
of moves with swaps (indicated with M+Swp). We propose to limit the evaluations of M+Swp according
to the following rule:

Rule 1 (R1). The evaluations of M+Swp is limited to those that would improve the solution even if the
assignment of routes to vehicles is optimal before M+Swp is applied.

Using the subsequent propositions, it is then possible to limit heavily the size of the neighborhood
explored with M + Swp.

In the following, we will note respectively ξ, ξM , ξM+Swp the current solution, the solution after
applying move M and the solution after performing Swp as shown in Figure 10. A vehicle without (with)
overtime will be called feasible (infeasible).

M
ξM

Swp
ξ ξM+Swp

Figure 10: Notation

It is noteworthy that Swp can modify overtime, but does not affect the traveling time and the load
infeasibility of the solution. We start discussing the choice of swaps.
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Proposition 1. Under rule R1, we can restrict the choice of the Swp as follows:

1. Swp involves (trips in) two different vehicles v1 and v2,

2. exactly one vehicle between v1 and v2 is feasible,

3. at least one vehicle between v1 and v2 has to have been involved in M .

Proof. The following notation is introduced. ∆O refers to a difference in the overtime of the solution
induced by move M or Swp. In particular ∆O(ξM) = O(ξM) − O(ξ) and ∆O(ξM+Swp) = O(ξM+Swp) −
O(ξM).

We can notice that swapping trips belonging to the same vehicle v cannot lead to any improvement:
Tv is not reduced, then Ov is not reduced neither (that proves 1). Let consider two trips belonging to
two different vehicles v1 and v2. For ease of notation, we note ri the trip that belongs to vi (ri ∈ vi) and
τi, instead of τri , the travel time of trip ri. Let T1 (resp., O1) and T2 (resp., O2) be the respective travel
times (resp., overtimes) of the two vehicles. If point 2 does not hold, we will prove that swapping r1 with
r2 cannot improve the solution.

Let suppose both vehicles are feasible or both are infeasible, i.e., Ti(ξM) ≤ TH or Ti(ξM) > TH , i = 1, 2.
We consider the two cases separately.

a. T1(ξM) ≤ TH and T2(ξM) ≤ TH . O1(ξM) = O2(ξM) = 0. No improvement can be carried out with Swp.

b. T1(ξM) > TH and T2(ξM) > TH . We consider without loss of generality τ2(ξM) ≤ τ1(ξM). With
Swp, overtime of vehicle v1 decreases; ∆O1(ξM+Swp) = max{τ2(ξM)− τ1(ξM), TH − T1(ξM)}. Overtime
of vehicle v2 increases; ∆O2(ξM+Swp) = τ1(ξM) − τ2(ξM). Then ∆O(ξM+Swp) = ∆O1(ξM+Swp) +
∆O2(ξM+Swp) ≥ τ2(ξM)− τ1(ξM) + τ1(ξM)− τ2(ξM), that is, ∆O(ξM+Swp) ≥ 0.

This proves point 2. Point 3 directly follows from the rule R1. Let us suppose v1 and v2 are not involved
in M . Then, τk(ξ) = τk(ξM) for all rk ∈ vi, i = 1, 2. If an improvement is obtained by Swp, the same
improvement could have been obtained applying Swp before M (that does not modify trips involved in
Swp). This means that when the initial assignment of trips to vehicles is optimal, no improvement can be
carried out.

Let us now move the discussion to the choice of the move M to be tested along with a Swp. We
introduce the following proposition.

Proposition 2. Under Proposition 1 we can restrict the choice of moves involved along with a swap to
those such that

τr(ξM) < τr(ξ) for at least one route r involved in M. (C1)

Proof. We suppose the assignment of trips to vehicles is optimal before M is applied. We will show that
when C1 does not hold, M + Swp cannot improve the solution cost. Applying R1, such moves can be
discarded. We indicate respectively with R and RM the set of trips that form ξ and ξM . Without loss of
generality we can suppose |R| = |RM | (if M creates a new route, an empty route could be added in R).
Let us indicate with r a trip in R and with rM the corresponding trip in RM after M have been applied.
The following considerations are valid.

¬ The cost of the solution ξM+Swp is greater than or equal to the cost of the solution obtained by
optimally assigning trips in RM to vehicles. We indicate such solution with ξ∗RM and its cost with
c∗RM ;
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 Let ξ̃ be the solution constructed by assigning trips in R as follows: r is assigned to vehicle v if and
only if the corresponding rM is assigned to vehicle v in ξ∗RM . We note c̃ the cost of such solution.
Since τrM ≥ τr for all r ∈ R (C1 does not hold), c∗RM ≥ c̃ is verified.

® We note c∗R the cost of the solution obtained by optimally assigning trips in R to vehicles. Then, it
holds c̃ ≥ c∗R.

¯ We have assumed the initial assignment of trips to vehicles to be optimal. Then, c∗R = c(ξ).

Concluding, the following holds

c(ξM+Swp)
¬

≥ c∗RM


≥ c̃
®

≥ c∗R
¯= c(ξ),

namely, M + Swp cannot improve the solution ξ.

An algorithm sketch of the procedure is given in Algorithm 3. Detect_Trips_To_Swap(v1, v2) is a

Algorithm 3 Combined LS
1: evaluate move M
2: if M improves the solution then
3: accept M
4: else
5: if C1 then
6: for all v1 involved in M do
7: for all v2 6= v1 do
8: if (T1(ξM) < TH ∧ T2(ξM) > TH) ∨ (T1(ξM) > TH ∧ T2(ξM) < TH) then
9: (r1, r2, tripDetected) = Detect_Trips_To_Swap(v1, v2)
10: if tripDetected then
11: perform(M)
12: swap(v1, v2, r1, r2)
13: end if
14: end if
15: end for
16: end for
17: end if
18: end if

function that tests swaps between trips in vehicles v1 and v2. If it finds a pair of trips r1, r2 that improves
the solution if swapped, it returns them and sets tripDetected to TRUE. Otherwise tripDetected is set to
FALSE. Function perform(M) performs move M while swap(v1, v2, r1, r2) swaps trips r1, r2.

5 Computational results
This section reports the computational results obtained with the proposed method. The algorithm is
coded in C++, compiled with Visual Studio 2008 and run on a Intel Xeon 2.80 Ghz processor. It is tested
on classical instances in the MTVRP literature. These instances were introduced by Taillard et al. [30]
and are constructed from the instances 1–5 and 11–12 proposed in Christofides et al. [7] (that will be
denoted CMT1–CMT5 and CMT11–CMT12 in the following) and instances 11–12 proposed in Fisher [9]
(F11-F12) for the VRP. For each VRP instance, instances for MTVRP are constructed with different
values of m and two values of TH , given by T 1

H =
[

1.05z∗
m

]
and T 2

H =
[

1.1z∗
m

]
where z∗ is the solution cost of
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Instance n Q z∗

CMT1 50 160 524.61
CMT2 75 140 835.26
CMT3 100 200 826.14
CMT4 150 200 1028.42
CMT5 199 200 1291.44
CMT11 120 200 1042.11
CMT12 100 200 819.56
F11 71 30000 241.97
F12 134 2210 1162.92

Table 1: Instances’ details

the original CVRP instances found by Rochat [26] and [x] represents the closest integer to x (see Table 1).
There are, in total, 104 different instances. For 42 of them, the optimal value is known and is provided
by Mingozzi et al. [17]. We classify them in a first group denoted G1. For the remaining 62 instances,
56 have a known feasible solution (they will form a second group G2). The six remaining instances form
the third group G3. These instances are not solved yet. These groups of the instances set will be used
during the presentation of the computational results. When it is necessary to indicate a specific instance,
the notation N_T iH_m, will be used, where N stands for the original VRP instance name and i = 1, 2
for the horizon length.

5.1 Parameter settings
5.1.1 Overtime and overload penalization parameters

The overtime penalization parameter θ is set to 2 and it is kept fixed during all the search. That is done
because the value θ = 2 is used in literature to penalize overtime when a feasible solution is not found.

The overload penalization parameter λ is set to d̄/q̄, where d̄ represents the average distance among
customers and q̄ the average demand of customers. The value of λ is kept fixed during the search. Different
dynamic adaptation schemes were tested, but no visible improvements were obtained.

5.1.2 Parameter tuning

The procedure requires the setting of some parameters among values that have to be chosen in sensible
ranges. To set the parameters involved in our algorithm, a tuning method is used. Roughly speaking, a
tuning method is a procedure whose search space is P 1× · · · ×P np , where P i is the domain of parameter
i and looks for the solution with the best utility, that is a measure of the algorithm’s efficiency on a given
parameter vector (Smit and Eiben [28]). In particular, the Evolutionary Strategy with Covariance Matrix
Adaptation proposed by Hansen and Ostermeier [14] is used. The tuning algorithm is run on a limited
set of instances formed by CMT1_T 2

H_4, CMT2_T 1
H_6, CMT3_T 1

H_6, CMT4_T 1
H_8, CMT5_T 1

H_9,
CMT11_T 1

H_4 to determine the values of parameters listed in Table 2. Instances with a large number
of vehicles were selected since they are more difficult to solve. Other parameters are fixed a priori: the
probability of educate a new chromosome is pLS = 1 and the probability to repair an infeasible chromosome
is prep = 0.5 as in Vidal et al. [34]. The adopted survivor strategy (Section 3.6) allows for the use of LS to
educate each chromosome without premature convergence of the population. That is in particular due to
the fact that survivor chromosomes are selected based on their contribution to the diversification of the
population as well as their fitness value.
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Parameter Range Final value
Π Dimension of population [1, 100] 9
µ Children generated at each generation [1, 100] 32
ne Proportion of elite individuals ne = ne × Π (Eq. 4) [0.1, 1] 0.2
nc Proportion of close individuals nc = nc × Π (Eq. 5) [0.1, 1] 0.35
h Granularity threshold in LS nclosest = h× n [0.2, 1] 0.45

Table 2: Parameter Tuning

5.2 Discussion
A fair and comprehensive comparison with previous works is quite difficult to carry out since (as already
mentioned) complete and precise values are reported only by Salhi and Petch [27].

Olivera and Veira [20], report detailed results as well, but with some imprecision. Indeed, these authors
provide gaps to values z∗ (see Table 1), which cannot be precisely converted into solution costs due to
truncation.

Notation reported in Table 3 will be used in the following. In all tables, the first three columns indicate
respectively the name, the number of vehicles and the time horizon of the instances.

Symbol Meaning
TLG results from Taillard, Laporte and Gendreau [30]
BM results from Brandão and Mercer [5]
SP results from Salhi and Petch [27]
OV results from Olivera and Viera [20]
AAB results from Alonso, Alvarez and Beasley [1]
MRT results from Mingozzi, Roberti and Toth [17]
MAMTVRP-F results from our MA stopping at the first feasible found solution
MAMTVRP results from MA without the usage of CLS
MAMTVRP+CLS results from our MA with the usage of CLS
Best Best value over five runs
Av Average value over five runs
Worst Worst value over five runs
StDv Standard deviation over five runs
#fs Number of runs ended with a feasible solution
#opt Number of runs ended with an optimal solution
3 a feasible solution is found
5 a feasible solution is not found
8 the instance is not considered

Table 3: Notation for computational results

The results are reported as follows. In Section 5.2.1, the ability of the algorithm to find feasible
solutions is tested. The procedure terminates as soon as a feasible solution is obtained. In Section 5.2.2
two variants of the algorithm, with or without CLS, are evaluated and complete and detailed results are
reported. Both versions stop after a fixed number of iterations or when an optimal solution is obtained.
Separate comparison with the results obtained by Olivera and Viera [20] is discussed in Section 5.2.3.
Finally, computational times comparison is discussed in Section 5.2.4.
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5.2.1 Feasibility check algorithm

The procedure is first run five times over all instances to measure its capability to obtain feasible solutions:
it stops as soon as a feasible solution is found. It is indicated as MAMTVRP-F. The efficiency of the
algorithm is measured on the time needed to find a feasible solution without considering its value, following
the implicit idea of the paper by Taillard et al. [30]. Results are reported on Tables 4 and 5.

Instance Algorithm
Name m TH TLG BM SP OV AAB MAMTVRP-F #fs
CMT1 1 551 3 3 3 3 3 3 5

2 275 3 3 5 3 3 3 5
1 577 3 3 3 3 3 3 5
2 289 3 3 3 3 3 3 5
4 144 3 3 3 3 3 3 5

CMT2 1 877 3 3 3 3 3 3 5
2 439 3 3 3 3 3 3 5
3 292 3 3 5 3 3 3 5
4 219 3 3 3 3 3 3 5
5 175 3 3 5 3 3 3 5
1 919 3 3 3 3 3 3 5
2 459 3 3 3 3 3 3 5
3 306 3 3 3 3 3 3 5
4 230 3 3 3 3 3 3 5
5 184 3 3 3 3 3 3 5
6 153 3 3 5 3 3 3 5

CMT3 1 867 3 3 3 3 3 3 5
2 434 3 3 3 3 3 3 5
3 289 3 3 5 3 3 3 5
1 909 3 3 3 3 3 3 5
2 454 3 3 3 3 3 3 5
3 303 3 3 3 3 3 3 5
4 227 3 3 3 3 3 3 5

CMT11 1 1094 3 3 3 3 3 3 5
2 547 3 3 5 3 3 3 5
3 365 3 3 5 3 3 3 5
5 219 3 3 5 3 3 3 5
1 1146 3 3 3 3 3 3 5
2 573 3 3 3 3 3 3 5
3 382 3 3 3 3 3 3 5
4 287 3 3 5 3 3 3 5
5 229 3 3 3 3 3 3 5

CMT12 1 861 3 3 3 3 3 3 5
2 430 3 3 3 3 3 3 5
3 287 3 3 3 3 3 3 5
4 215 3 3 3 3 3 3 5
1 902 3 3 3 3 3 3 5
2 451 3 3 3 3 3 3 5
3 301 3 3 3 3 3 3 5
4 225 3 3 3 3 3 3 5
5 180 3 3 3 3 3 3 5
6 150 3 3 3 3 3 3 5

# problems solved 42 42 34 42 42 42

Table 4: Feasibility check on the 42 instances in G1

The algorithm is able to find a feasible solution in at least one run on all instances from groups G1 and
G2. Better, feasible solutions are always found on G1 and for 51 instances out of 56 on G2. In general,
on all the 490 runs, feasible solution are obtained 474 times, denoting high efficiency of the algorithm.
Comparatively, only Olivera and Viera [20] exhibit similar results. No feasible solutions are found on G3
instances.

5.2.2 Detailed results

The algorithm is run again five times over all the instances, but it now stops when a maximum number
of iterations is performed or when the optimum value is found. It has been decided to terminate after
2000 crossovers are performed, since preliminary computational experiments shown that it is a good
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Instance Algorithm
Name m TH TLG BM SP OV AAB MAMTVRP-F #fs

CMT1 3 192 3 3 3 3 3 3 5

CMT2 6 146 5 5 5 3 5 3 1
7 131 3 3 5 3 3 3 5

CMT3 4 217 3 3 5 3 3 3 5
5 173 5 3 5 3 3 3 5
6 145 3 3 5 3 3 3 5
5 182 3 3 3 3 3 3 5
6 151 3 3 3 3 3 3 5

CMT4 1 1080 3 3 3 3 3 3 5
2 540 3 3 3 3 3 3 5
3 360 3 3 5 3 3 3 5
4 270 3 3 5 3 3 3 5
5 216 3 3 5 3 3 3 5
6 180 3 3 5 3 3 3 5
8 135 5 5 5 3 5 3 2
1 1131 3 3 3 3 3 3 5
2 566 3 3 3 3 3 3 5
3 377 3 3 3 3 3 3 5
4 283 3 3 3 3 3 3 5
5 226 3 3 3 3 3 3 5
6 189 3 3 3 3 3 3 5
7 162 3 3 5 3 3 3 5
8 141 3 3 5 3 3 3 5

CMT5 1 1356 3 3 3 3 3 3 5
2 678 3 3 3 3 3 3 5
3 452 3 3 5 3 3 3 5
4 339 3 3 5 3 3 3 5
5 271 3 3 5 3 3 3 5
6 226 3 3 5 3 3 3 5
7 194 3 3 5 3 3 3 5
8 170 3 3 5 3 3 3 5
9 151 3 5 5 3 5 3 4
10 136 5 5 5 3 5 3 2
1 1421 3 3 3 3 3 3 5
2 710 3 3 3 3 3 3 5
3 474 3 3 3 3 3 3 5
4 355 3 3 3 3 3 3 5
5 284 3 3 3 3 3 3 5
6 237 3 3 3 3 3 3 5
7 203 3 3 3 3 3 3 5
8 178 3 3 5 3 3 3 5
9 158 3 3 5 3 3 3 5
10 142 3 3 5 3 3 3 5

CMT11 4 274 5 5 5 3 5 3 1

CMT12 5 172 3 3 5 3 3 3 1

F11 1 254 3 3 5 3 8 3 5
2 127 5 5 5 3 8 3 5
1 266 3 3 3 3 8 3 5
2 133 3 3 3 3 8 3 5
3 89 3 3 3 3 8 3 5

F12 1 1221 3 3 3 3 8 3 5
2 611 3 3 3 3 8 3 5
3 407 3 3 3 3 8 3 5
1 1279 3 3 3 3 8 3 5
2 640 3 3 3 3 8 3 5
3 426 3 3 3 3 8 3 5

# problems solved 50 50 29 56 40 56

Table 5: Feasibility check on the 56 instances in G2
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compromise between solution quality and computational efficiency. Complete and detailed results are
reported in Tables 6–9. Results from the MA without CLS are reported in columns indicated with
MAMTVRP while those from the MA with CLS are given in columns indicated with MAMTVRP+CLS.

Table 6 reports results obtained on the 42 instances of G1. Optimal values are indicated in bold.
MAMTVRP and MAMTVRP+CLS find optimal solutions on all the five runs in 23 cases, but the former
finds the optimal value at least once in 32 cases while the latter in 36 cases. In general, MAMTVRP+CLS
is more efficient in finding optimal solutions: they are obtained 136 times over 210 runs while MAMTVRP
finds optimal solutions 129 times. Both procedures always find feasible solutions. Note that Salhi and
Petch [27] do not find any optimal solution and is outperformed by both methods on all instances.

Results on instances of G2 are detailed in Table 7. Here, bold numbers are used to indicate best known
values. MAMTVRP finds a feasible solution at least once over all instances and the procedure finds a
feasible solution on all the five runs in 50 cases (out of 56) for a total of 260 feasible solutions out of 280
runs. Introducing the CLS improves the results. Feasible solutions are always found in 52 cases and at
least 2 feasible solutions are found over the five runs for a total of 271 feasible solutions. Again, solutions
found by the procedures are always better than those reported in Salhi and Petch [27].

Tables 8 and 9 report results on instances of G3. First of all, it can be noticed from Table 8 that
MAMTVRP+CLS finds a new feasible solution for instance CMT4_T 1

H_7 (details can be found in Ap-
pendix A). On the other five instances (Table 9), direct comparison with other methods on values of
infeasible solutions found is possible. MAMTVRP+CLS finds two new best known values for instances
CMT2_T 1

H_7 and F11_T 1
H_3. For the latter, the new best known value is as well reached by MAMTVRP.

On average, both methods outperform the others.
Averagely, MAMTVRP+CLS performs better than MAMTVRP as can be seen in the last columns

of Tables 6, 7 and 9. This, together with the new feasible solution found for instance CMT4_T 1
H_7 by

MAMTVRP+CLS, validates the usefulness and efficiency of the CLS.

5.2.3 Detailed comparison with Olivera and Viera [20]

A full comparison following the scheme proposed by Olivera and Viera [20] is proposed in Tables 10 and 11.
Given a solution ξ, the value GAP (ξ) is calculated as

GAP (ξ) = 100 ·
(
c(ξ)
z∗

+ 1
)
, (6)

and results are reported accordingly. The number of runs ended with a feasible solution is reported for
instances in G1 as in Olivera and Viera [20] since they did not have optimal values available. As it can
be noticed, results obtained by MAMTVRP+CLS outperform those by Olivera and Viera [20]. On the
other side, the algorithm proposed by Olivera and Viera [20] performs better than MAMTVRP-F. A
probable reason is that MAMTVRP-F terminates the procedure as soon as a feasible solution is found,
while Olivera and Viera [20] check for feasibility each 100 iterations of their procedure.

5.2.4 Computational times

A fair computational time comparison could not be performed as the machine relative speeds were not
found for all the computers used by previous papers. Machines used in previous works are listed in
Table 12. Original computational times, as well as those of our method, are reported in Table 13 (times are
expressed in seconds). Furthermore, algorithm differences and inharmonious computational time reporting
complicate comparison. In particular, Taillard et al. [30] perform their algorithm five times on each
instance. If no feasible is found, it is run another time. Average time on all runs is reported. Brandão and
Mercer [5] stop their procedure once a feasible solution is found and they report computational times over
the runs where a feasible solution is found. Salhi and Petch [27] and Alonso et al. [1] stop their algorithm
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Algorithm
Instance MRT SP MAMTVRP MAMTVRP+CLS

Name m TH Optimal Best Best Average #opt Best Av #opt

CMT1 1 551 524.61 546.28 524.61 524.61 5 524.61 524.61 5
2 275 533.00 5 533.00 533.67 4 533.00 533.00 5
1 577 524.61 547.14 524.61 524.61 5 524.61 524.61 5
2 289 529.85 549.42 529.85 529.85 5 529.85 530.67 3
4 144 546.29 566.86 546.29 546.29 5 546.29 546.29 5

CMT2 1 877 835.26 869.06 835.26 838.40 2 835.26 838.40 2
2 439 835.26 865.48 835.77 840.04 0 835.26 838.59 1
3 292 835.26 5 835.26 836.32 1 835.26 838.58 2
4 219 835.26 856.77 835.77 839.41 0 835.77 839.77 0
5 175 835.8 5 836.18 841.97 0 836.18 836.52 0
1 919 835.26 869.73 835.26 835.48 2 835.26 835.48 2
2 459 835.26 881.50 835.26 839.20 1 835.26 836.46 1
3 306 835.26 869.11 835.77 840.07 0 835.26 837.40 2
4 230 835.26 880.90 838.17 840.41 0 835.26 837.73 2
5 184 835.26 883.29 835.77 837.71 0 835.77 837.99 0
6 153 835.22 5 843.09 848.06 0 839.22 846.02 0

CMT3 1 867 826.14 845.33 826.14 827.96 1 826.14 827.96 1
2 434 826.14 850.65 826.14 827.96 0 826.14 827.75 2
3 289 826.14 5 828.08 829.63 0 826.14 828.53 1
1 909 826.14 845.33 829.45 829.53 0 829.45 829.53 0
2 454 826.14 872.10 826.14 828.80 1 826.14 827.96 1
3 303 826.14 869.48 826.14 828.94 1 827.39 829.09 0
4 227 826.14 878.00 826.14 828.01 1 826.14 827.55 1

CMT11 1 1094 1042.11 1088.26 1042.11 1042.11 5 1042.11 1042.11 5
2 547 1042.11 5 1042.11 1042.11 5 1042.11 1042.11 5
3 365 1042.11 5 1042.11 1042.11 5 1042.11 1042.11 5
5 219 1042.11 5 1042.11 1042.11 5 1042.11 1042.11 5
1 1146 1042.11 1088.26 1042.11 1042.11 5 1042.11 1042.11 5
2 573 1042.11 1110.10 1042.11 1042.11 5 1042.11 1042.11 5
3 382 1042.11 1088.56 1042.11 1042.11 5 1042.11 1042.11 5
4 287 1042.11 5 1042.11 1042.11 5 1042.11 1042.11 5
5 229 1042.11 1092.95 1042.11 1042.11 5 1042.11 1042.11 5

CMT12 1 861 819.56 819.97 819.56 819.56 5 819.56 819.56 5
2 430 819.56 821.33 819.56 819.56 5 819.56 819.56 5
3 287 819.56 826.98 819.56 819.56 5 819.56 819.56 5
4 215 819.56 824.57 819.56 819.56 5 819.56 819.56 5
1 902 819.56 819.97 819.56 819.56 5 819.56 819.56 5
2 451 819.56 829.54 819.56 819.56 5 819.56 819.56 5
3 301 819.56 851.16 819.56 819.56 5 819.56 819.56 5
4 225 819.56 821.53 819.56 819.56 5 819.56 819.56 5
5 180 824.78 833.85 824.78 824.78 5 824.78 824.78 5
6 150 823.14 855.36 823.14 823.14 5 823.14 823.15 5

total optimal solutions found 129 136
average 838.85 840.01 838.64 839.62

average GAP from optimal 0.05 0.19 0.03 0.15

Table 6: Feasible solutions on the 42 instances in G1
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Algorithm
Instance SP MAMTVRP MAMTVRP+CLS

Name m TH Best known Best Best Av #fs Best Av #fs

CMT1 3 192 552.68 560.26 552.68 552.68 5 552.68 552.68 5

CMT2 6 146 858.58 5 858.58 858.58 1 859.16 859.42 3
7 131 844.70 5 853.88 861.64 5 844.70 854.70 5

CMT3 4 217 829.45 5 829.45 829.65 5 829.45 829.45 5
5 173 832.89 5 832.89 835.98 5 832.89 843.72 5
6 145 836.22 5 836.22 837.06 5 836.22 836.22 5
5 182 832.34 901.30 833.02 833.83 5 832.34 832.88 5
6 151 834.35 861.76 834.35 834.83 5 834.35 834.35 5

CMT4 1 1080 1031.00 1064.06 1031.00 1034.22 5 1031.00 1034.22 5
2 540 1031.07 1065.86 1032.65 1038.33 5 1031.07 1037.89 5
3 360 1028.42 5 1029.56 1036.73 5 1028.42 1032.79 5
4 270 1031.10 5 1036.25 1040.75 5 1031.10 1037.09 5
5 216 1031.07 5 1032.69 1040.42 5 1031.07 1037.41 5
6 180 1034.61 5 1043.42 1046.71 5 1034.61 1041.82 5
8 135 1056.54 5 1056.93 1059.58 2 1056.54 1059.68 3
1 1131 1031.07 1088.93 1031.07 1038.77 5 1031.07 1038.77 5
2 566 1030.45 1070.50 1030.45 1037.29 5 1034.08 1040.39 5
3 377 1031.59 1077.24 1031.63 1040.75 5 1031.59 1032.92 5
4 283 1031.07 1119.05 1031.07 1034.69 5 1031.96 1036.33 5
5 226 1030.86 1085.38 1033.05 1039.52 5 1030.86 1035.52 5
6 189 1030.45 1112.03 1032.16 1038.62 5 1030.45 1037.10 5
7 162 1036.08 5 1043.92 1047.87 5 1036.08 1043.60 5
8 141 1044.32 5 1044.71 1050.28 5 1044.32 1048.08 5

CMT5 1 1356 1302.43 1347.34 1302.43 1308.27 5 1302.43 1308.27 5
2 678 1302.15 1346.63 1302.15 1309.04 5 1306.26 1309.66 5
3 452 1301.29 5 1301.41 1309.33 5 1301.29 1307.85 5
4 339 1304.78 5 1308.93 1312.76 5 1304.78 1308.07 5
5 271 1300.02 5 1307.78 1314.66 5 1300.02 1307.10 5
6 226 1303.37 5 1303.37 1314.29 5 1308.40 1311.16 5
7 194 1309.40 5 1315.41 1319.86 5 1309.40 1313.06 5
8 170 1303.91 5 1310.48 1316.53 5 1303.91 1308.98 5
9 151 1307.93 5 1329.86 1331.61 4 1307.93 1317.03 5
10 136 1323.01 5 1326.54 1326.54 1 1323.01 1329.00 5
1 1421 1299.86 1340.44 1299.86 1310.43 5 1299.86 1310.43 5
2 710 1305.35 1399.65 1305.35 1310.98 5 1307.70 1314.05 5
3 474 1301.03 1409.37 1301.03 1312.15 5 1308.76 1310.93 5
4 355 1303.65 1397.60 1303.65 1311.19 5 1310.97 1312.40 5
5 284 1300.62 1411.19 1308.04 1311.87 5 1300.62 1308.75 5
6 237 1306.17 1377.07 1306.17 1308.49 5 1306.25 1311.40 5
7 203 1301.54 1394.73 1311.35 1314.18 5 1301.54 1313.66 5
8 178 1308.78 5 1311.93 1313.86 5 1308.78 1310.61 5
9 158 1307.25 5 1312.28 1318.26 5 1307.25 1311.32 5
10 142 1308.81 5 1312.04 1321.27 5 1308.81 1316.80 5

CMT11 4 274 1078.64 5 1080.12 1080.12 1 1078.64 1080.38 3

CMT12 5 172 845.56 5 849.89 849.89 1 845.564 847.727 2

F11 1 254 241.97 5 241.97 241.97 5 241.97 241.97 5
2 127 250.85 5 250.85 250.85 5 250.85 250.85 5
1 266 241.97 254.07 241.97 241.97 5 241.97 241.97 5
2 133 241.97 254.07 241.97 241.97 5 241.97 241.97 5
3 89 254.07 256.53 254.07 254.07 5 254.07 254.07 5

F12 1 1221 1162.96 1190.21 1162.96 1162.96 5 1162.96 1162.96 5
2 611 1162.96 1194.24 1162.96 1162.96 5 1162.96 1162.96 5
3 407 1162.96 1199.86 1162.96 1163.05 5 1162.96 1162.96 5
1 1279 1162.96 1183.00 1162.96 1162.96 5 1162.96 1162.96 5
2 640 1162.96 1199.64 1162.96 1162.96 5 1162.96 1162.96 5
3 426 1162.96 1215.43 1162.96 1162.96 5 1162.96 1162.96 5

total feasible solutions found 260 271
average 1040.90 1044.70 1039.23 1043.11

Table 7: Feasible solutions on the 56 instances in G2
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Algorithm
TLG BM SP OV AAB MAMTVRP MAMTVRP+CLS

Name m TH Best known Best Best Best Best Best Best Av #fs Best Av #fs
CMT1 3 184 - 5 5 5 5 5 - - - - - -
CMT1 4 138 - 5 5 5 5 5 - - - - - -
CMT2 7 125 - 5 5 5 5 5 - - - - - -
CMT4 7 154 1068.59 5 5 5 5 5 - - - 1068.59 1068.59 1
CMT12 6 143 - 5 5 5 5 5 - - - - - -

F11 3 85 - 5 5 5 5 8 - - - - - -

Table 8: Feasible solutions on the 6 instances in G3
Algorithm

TLG BM SP OV AAB MAMTVRP MAMTVRP+CLS
Name m TH Best known best best best best best Best Av Best Av
CMT1 3 184 569.54 579.48 575.73 586.32 573.4 569.54 569.54 569.54 569.54 569.54
CMT1 4 138 564.07 565.27 564.07 632.54 564.07 564.1 564.07 564.07 564.07 564.07
CMT2 7 125 866.58 878.29 896.57 1056.34 877.12 878.05 876.77 880.06 866.58 873.14
CMT12 6 143 845.48 845.48 847.85 898.88 860.61 866.54 845.48 845.48 845.48 845.48

F11 3 85 256.93 257.31 257.47 266.85 260.55 8 256.93 256.93 256.93 256.93
average 625.17 628.34 688.19 627.15 - 622.56 623.21 620.52 621.83

Table 9: Non-feasible solutions on the 5 unsolved instances in G3

Instance MAMTVRP-F OV MAMTVRP+CLS
Name m TH Best Av Worst StDv #fs Best Av Worst StDv #fs Best Av Worst StDv #fs
CMT1 1 551 0.0 2.7 4.8 2.0 5 0.0 0.0 0.0 0.0 5 0.0 0.0 0.0 0.0 5

2 275 1.6 3.2 4.2 1.2 5 1.6 1.7 2.2 0.3 5 1.6 1.6 1.6 0.0 5
1 577 2.3 4.8 7.3 2.3 5 0.0 0.0 0.0 0.0 5 0.0 0.0 0.0 0.0 5
2 289 4.6 6.9 9.3 1.7 5 1.0 1.1 1.6 0.3 5 1.0 1.2 1.6 0.3 5
4 144 4.6 5.7 7.6 1.3 5 4.1 4.2 4.3 0.1 5 4.1 4.1 4.1 0.0 5

CMT2 1 877 2.8 3.4 3.8 0.5 5 0.0 0.2 0.3 0.1 5 0.0 0.4 0.7 0.4 5
2 439 2.6 3.6 4.4 0.7 5 0.2 0.5 1.0 0.4 5 0.0 0.4 0.7 0.3 5
3 292 3.3 3.7 4.4 0.5 5 0.2 0.5 1.3 0.5 5 0.0 0.4 0.8 0.4 5
4 219 1.8 2.4 3.3 0.7 5 0.1 0.7 1.7 0.7 5 0.1 0.5 0.8 0.3 5
5 175 2.6 2.9 3.6 0.4 5 1.2 1.6 2.1 0.4 5 0.1 0.2 0.2 0.0 5
1 919 4.3 4.9 5.5 0.5 5 0.1 0.7 1.3 0.5 5 0.0 0.0 0.1 0.0 5
2 459 3.7 4.2 4.6 0.4 5 0.1 0.5 1.0 0.4 5 0.0 0.1 0.5 0.2 5
3 306 3.3 5.3 8.0 1.9 5 0.1 0.4 0.8 0.3 5 0.0 0.3 0.7 0.4 5
4 230 4.2 6.0 9.6 2.2 5 0.1 0.2 0.6 0.2 5 0.0 0.3 0.5 0.3 5
5 184 3.7 5.4 8.1 2.0 5 0.1 0.9 1.3 0.5 5 0.1 0.3 0.7 0.3 5
6 153 3.3 4.9 6.0 1.0 5 2.5 3.4 4.8 0.9 5 0.5 1.3 2.4 0.7 5

CMT3 1 867 1.6 2.8 4.0 0.9 5 0.0 0.4 0.6 0.2 5 0.0 0.2 0.4 0.2 5
2 434 1.2 3.0 4.4 1.5 5 0.4 0.5 1.0 0.2 5 0.0 0.2 0.4 0.2 5
3 289 2.3 3.4 4.6 0.8 5 0.5 0.7 0.9 0.2 5 0.0 0.3 0.4 0.2 5
1 909 2.1 3.3 4.7 1.1 5 0.4 0.5 0.7 0.2 5 0.4 0.4 0.4 0.0 5
2 454 2.2 4.8 6.7 1.6 5 0.3 0.4 0.7 0.2 5 0.0 0.2 0.4 0.2 5
3 303 2.5 5.3 8.9 2.6 5 0.2 0.4 0.4 0.1 5 0.2 0.4 0.4 0.1 5
4 227 2.3 5.4 7.9 2.1 5 0.0 0.3 0.5 0.2 5 0.0 0.2 0.4 0.1 5

CMT11 1 1094 0.8 3.6 5.0 1.7 5 0.1 2.5 3.2 1.3 5 0.0 0.0 0.0 0.0 5
2 547 0.8 2.8 4.4 1.5 5 3.0 3.1 3.2 0.1 5 0.0 0.0 0.0 0.0 5
3 365 0.2 0.7 1.1 0.3 5 0.2 2.7 4.5 2.1 5 0.0 0.0 0.0 0.0 5
5 219 0.4 1.5 2.3 0.8 5 0.1 0.8 1.3 0.4 5 0.0 0.0 0.0 0.0 5
1 1146 3.8 7.1 10.0 3.0 5 0.2 2.5 3.1 1.3 5 0.0 0.0 0.0 0.0 5
2 573 0.8 3.8 7.1 2.3 5 1.2 2.6 3.1 0.8 5 0.0 0.0 0.0 0.0 5
3 382 1.0 4.1 5.0 1.7 5 0.1 0.8 3.3 1.4 5 0.0 0.0 0.0 0.0 5
4 287 0.6 1.6 2.6 0.8 5 0.1 0.2 0.4 0.1 5 0.0 0.0 0.0 0.0 5
5 229 1.3 2.5 4.4 1.3 5 0.1 0.3 0.6 0.2 5 0.0 0.0 0.0 0.0 5

CMT12 1 861 0.2 1.5 5.0 2.0 5 0.0 0.1 0.2 0.1 5 0.0 0.0 0.0 0.0 5
2 430 0.3 1.8 4.0 1.7 5 0.0 0.1 0.2 0.1 5 0.0 0.0 0.0 0.0 5
3 287 0.5 2.1 3.3 1.3 5 0.0 0.1 0.1 0.1 5 0.0 0.0 0.0 0.0 5
4 215 0.3 0.6 1.1 0.3 5 0.0 0.0 0.0 0.0 5 0.0 0.0 0.0 0.0 5
1 902 0.2 4.2 8.1 3.7 5 0.0 0.1 0.1 0.1 5 0.0 0.0 0.0 0.0 5
2 451 0.8 4.0 6.0 2.5 5 0.0 0.1 0.1 0.1 5 0.0 0.0 0.0 0.0 5
3 301 0.7 2.6 4.2 1.7 5 0.0 0.1 0.1 0.1 5 0.0 0.0 0.0 0.0 5
4 225 0.9 2.0 5.2 1.8 5 0.0 0.1 0.1 0.1 5 0.0 0.0 0.0 0.0 5
5 180 1.2 3.7 6.8 2.9 5 0.6 0.6 0.6 0.0 5 0.6 0.6 0.6 0.0 5
6 150 0.4 3.8 6.9 2.3 5 0.4 0.5 0.7 0.1 5 0.4 0.4 0.4 0.0 5

total feasible solutions found 210 210 210
average 1.9 3.6 5.4 1.5 0.5 0.9 1.3 0.4 0.2 0.3 0.5 0.1

Table 10: Comparison with OV on the 42 instances in G1
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Instance MAMTVRP-F OV MAMTVRP+CLS
Name m TH Best Av Worst StDv #fs Best Av Worst StDv #fs Best Av Worst StDv #fs
CMT1 3 192 6.7 7.5 8.8 1.0 5 5.4 5.5 6.0 0.3 5 5.4 5.4 5.4 0.0 5
CMT2 6 146 2.9 2.9 2.9 - 1 2.6 2.6 2.6 - 1 2.9 2.9 2.9 0.0 3

7 131 3.7 5.4 7.2 1.5 5 3.6 4.2 4.7 0.4 5 1.1 2.3 2.9 0.7 5
CMT3 4 217 1.4 3.4 4.6 1.3 5 0.4 0.8 1.2 0.3 5 0.4 0.4 0.4 0.0 5

5 173 2.2 2.9 3.4 0.6 5 2.6 3.2 4.1 0.6 5 0.8 2.1 2.5 0.7 5
6 145 1.2 1.8 2.3 0.4 5 1.2 2.0 3.0 0.7 5 1.2 1.2 1.2 0.0 5
5 182 2.6 4.1 5.2 1.1 5 0.8 1.0 1.9 0.5 5 0.7 0.8 0.8 0.0 5
6 151 2.6 5.2 7.8 1.9 5 1.1 1.7 1.9 0.4 5 1.0 1.0 1.0 0.0 5

CMT4 1 1080 3.1 3.8 4.6 0.7 5 0.5 0.9 1.3 0.4 5 0.3 0.6 1.4 0.5 5
2 540 2.6 3.7 4.4 0.7 5 0.8 0.7 3.5 1.1 5 0.3 0.9 1.4 0.6 5
3 360 2.3 3.5 4.2 0.8 5 0.7 1.3 1.8 0.4 5 0.0 0.4 1.4 0.6 5
4 270 2.6 3.7 4.2 0.7 5 0.8 1.6 2.5 0.9 5 0.3 0.8 1.5 0.6 5
5 216 2.9 3.6 4.6 0.7 5 0.4 1.6 2.8 0.9 5 0.3 0.9 1.8 0.7 5
6 180 2.7 3.6 4.2 0.7 5 2.0 3.2 4.5 0.9 5 0.6 1.3 2.1 0.6 5
8 135 2.8 3.0 3.3 0.4 2 3.0 3.6 4.3 0.7 3 2.7 3.0 3.4 0.3 3
1 1131 4.5 6.5 8.3 1.8 5 1.0 1.3 1.6 0.2 5 0.3 1.0 1.6 0.7 5
2 566 3.5 5.2 5.8 1.0 5 0.9 1.5 2.1 0.5 5 0.6 1.2 1.5 0.4 5
3 377 3.9 5.6 6.7 1.1 5 0.5 1.1 1.6 0.4 5 0.3 0.4 0.5 0.1 5
4 283 4.1 5.4 6.5 0.8 5 1.0 1.7 2.5 0.5 5 0.3 0.8 1.2 0.4 5
5 226 4.7 5.8 6.8 0.9 5 0.8 1.5 2.3 0.6 5 0.2 0.7 1.8 0.6 5
6 189 5.6 6.6 7.7 0.9 5 0.4 1.4 2.0 0.7 5 0.2 0.8 1.7 0.7 5
7 162 4.7 6.8 8.5 1.5 5 2.6 3.3 3.9 0.6 5 0.7 1.5 2.4 0.7 5
8 141 3.1 5.9 8.6 2.2 5 3.5 4.4 5.6 0.8 5 1.5 1.9 2.2 0.3 5

CMT5 1 1356 4.1 4.6 4.9 0.3 5 1.9 2.8 3.4 0.6 5 0.9 1.3 1.5 0.3 5
2 678 4.3 4.6 4.9 0.2 5 2.0 3.1 3.9 0.8 5 1.1 1.4 1.8 0.2 5
3 452 4.2 4.4 4.7 0.2 5 1.6 2.1 2.8 0.4 5 0.8 1.3 1.5 0.3 5
4 339 4.2 4.3 4.7 0.2 5 2.5 3.0 3.2 0.3 5 1.0 1.3 1.5 0.2 5
5 271 4.0 4.2 4.6 0.3 5 2.5 3.1 4.1 0.2 5 0.7 1.2 1.5 0.4 5
6 226 3.5 3.8 4.5 0.4 5 3.1 3.5 4.0 0.4 5 1.3 1.5 1.9 0.2 5
7 194 2.9 3.7 4.3 0.6 5 3.6 3.8 4.1 0.2 5 1.4 1.7 2.1 0.3 5
8 170 3.3 3.7 4.4 0.5 5 2.8 3.5 4.2 0.6 5 1.0 1.4 1.8 0.3 5
9 151 3.6 4.0 4.5 0.5 4 3.4 3.7 4.0 0.3 4 1.3 2.0 2.8 0.6 5
10 136 3.5 3.8 4.1 0.4 2 4.1 4.1 4.1 - 1 2.4 2.9 3.6 0.5 5
1 1421 6.5 7.6 8.5 0.8 5 2.1 2.7 3.5 0.7 5 0.7 1.5 2.0 0.6 5
2 710 5.3 6.1 7.1 0.8 5 1.8 2.4 2.9 0.5 5 1.3 1.8 2.0 0.3 5
3 474 4.6 6.7 8.6 1.4 5 1.6 2.3 2.6 0.4 5 1.3 1.5 1.6 0.1 5
4 355 4.9 5.9 8.2 1.4 5 1.3 2.4 3.6 1.0 5 1.5 1.6 1.9 0.2 5
5 284 7.0 7.5 8.1 0.5 5 2.0 2.7 3.3 0.5 5 0.7 1.3 1.9 0.5 5
6 237 4.4 6.9 8.1 1.4 5 1.5 2.7 4.1 1.0 5 1.1 1.5 2.0 0.3 5
7 203 5.8 6.8 7.9 0.9 5 2.3 3.2 3.7 0.6 5 0.8 1.7 2.2 0.5 5
8 178 5.7 7.1 8.2 1.3 5 1.8 2.0 2.3 0.2 5 1.3 1.5 1.6 0.1 5
9 158 5.2 6.4 7.8 0.9 5 3.0 3.4 4.2 0.5 5 1.2 1.5 1.9 0.3 5
10 142 4.5 5.9 6.7 0.9 5 4.1 4.6 5.0 0.4 5 1.3 2.0 2.3 0.4 5

CMT11 4 274 4.4 4.4 4.4 - 1 4.2 4.3 4.4 0.1 2 3.5 3.7 4.0 0.3 3
CMT12 5 172 3.7 3.7 3.7 - 1 3.1 3.3 3.1 0.1 2 3.2 3.4 3.7 0.4 5

F11 1 254 1.7 3.1 4.2 1.0 5 0.0 0.3 0.7 0.3 5 0.0 0.0 0.0 0.0 5
2 127 3.9 4.2 4.5 0.2 5 4.2 4.3 4.3 0.1 4 3.7 3.7 3.7 0.0 5
1 266 1.9 4.8 6.8 1.8 5 0.0 0.4 0.7 0.3 5 0.0 0.0 0.0 0.0 5
2 133 5.2 6.9 9.3 1.7 5 0.0 0.8 1.8 0.8 5 0.0 0.0 0.0 0.0 5
3 89 5.0 5.5 7.2 1.0 5 5.4 7.0 8.2 1.3 5 5.0 5.0 5.0 0.0 5

F12 1 1221 1.3 3.8 4.9 1.4 5 0.5 0.6 0.9 0.2 5 0.0 0.0 0.0 0.0 5
2 611 2.7 3.9 4.6 0.9 5 0.7 0.9 1.1 0.2 5 0.0 0.0 0.0 0.0 5
3 407 1.1 2.3 3.9 1.2 5 0.3 0.5 0.7 0.2 5 0.0 0.0 0.0 0.0 5
1 1279 1.0 4.5 7.8 2.7 5 0.8 1.0 1.3 0.2 5 0.0 0.0 0.0 0.0 5
2 640 1.0 4.7 8.9 3.0 5 0.7 0.9 1.0 0.1 5 0.0 0.0 0.0 0.0 5
3 426 0.4 5.6 8.8 3.2 5 0.4 0.8 1.0 0.3 5 0.0 0.0 0.0 0.0 5

total feasible solutions found 256 257 269
average 3.6 4.9 6.0 1.0 1.9 2.4 3.0 0.5 1.1 1.4 1.8 0.3

Table 11: Comparison with OV on the 56 instances in G2
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Paper Machine RAM
TLG 100 Mhz Silicon Graphics Indingo -
BM HP Vectra XU Pentium Pro 200 Mhz -
SP Ultra Enterprise 450 dual processor 300 Mhz -
OV 1.8 Ghz AMD Athlon XP 2200+ 480 Mb
AAB DELL Dimensio 8200 1.6 Ghz 256 Mb

Table 12: Machines used in previous papers

when a maximum number of iteration is reached, but while the former report average computational time
over five runs the latter run the algorithm just once. Olivera and Viera [20] check for feasibility each 100
iterations and terminate the computation in case of success. They report computational times only for
the best run. Finally, our goal is to find high quality solution and not to just satisfy feasibility as it was
done in previous works. Keeping that in mind, it can be noticed from Table 13 that MAMTVRP-F is able
to find feasible solutions very quickly (almost instantaneously for instances of families CMT3 and F12).
We can also notice that the use of the CLS increases the time spent by the procedure. The time increase
is, however, rewarded by more efficiency in finding optimal and feasible solutions as already outlined in
Section 5.2.2.

Instance Algorithm
Name # TLG BM SP OV AAB MAMTVRP-F MAMTVRP MAMTVRP+CLS
CMT1 8 300 150 16 16 161 3 5 14
CMT2 14 420 300 30 29 221 4 24 81
CMT3 12 1440 600 70 27 459 1 50 119
CMT4 16 3060 1500 206 68 681 31 169 493
CMT5 20 3960 3750 484 125 870 37 354 1284
CMT11 10 2700 1500 1132 28 527 12 98 220
CMT12 12 1380 600 45 27 414 10 16 50
F11 6 1560 150 93 13 8 5 21 40
F12 6 4500 4800 584 31 8 0 87 160

Table 13: CPU times comparison. Times expressed in seconds

6 Conclusion and future work
In this paper we proposed a genetic algorithm for the Multi Trip Vehicle Routing Problem. It is the first
evolutionary procedure that efficiently faces the benchmark of instances proposed in the literature.

We use an adaptation of the Split procedure proposed by Prins [22] to evaluate the chromosomes.
We introduce a new LS operator that performs pejorative moves along with re-assignment of trips to

vehicles and is called Combined LS (CLS). The efficiency of the CLS is validated by the quality of the
results obtained. This opens a new promising research direction related to the management of moves
combined with re-packing procedures.

We report detailed results over all instances (and not only for unsolved instances) and we give precise
values of the found solutions (differently than what is done in Olivera and Viera [20]).

The method finds a feasible solution over 99 instances, one more than all the previous works (that
have failed in finding a feasible solution for instance CMT4_T 1

H_7). Solutions found are always better
than those reported by Salhi and Petch [27] (the only paper which gives detailed results). GAP values
are averagely better than those reported by Olivera and Viera [20].
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The proposed algorithm could be extended to the MTVRP with time windows introducing slight
modifications into the AdSplit procedure explained in Section 3.2, in moves M1–M10 and in the CLS. This
will be the subject of future research.
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A New feasible solution for CMT4_T 1
H_7

The procedure found a new feasible solution for problem CMT4_T 1
H_7 that is detailed in Table 14 where

v, r, τr and lr indicate the vehicle, the route, its travelling time and its load.

v r τr lr
1 1 152.00 195 0, 18, 60, 84, 114, 8, 46, 124, 47, 36, 143, 49, 64, 11, 126, 63, 90, 70, 101, 69, 0

2 1 150.42 200 0, 51, 103, 71, 65, 136, 35, 135, 34, 78, 121, 29, 24, 134, 25, 55, 130, 54, 0

3 1 97.33 200 0, 40, 73, 75, 56, 23, 67, 39, 139, 4, 110, 149, 26, 0
2 55.68 174 0, 53, 138, 12, 109, 80, 150, 68, 116, 76, 111, 27, 0

4 1 73.68 196 0, 50, 102, 33, 81, 9, 120, 129, 79, 3, 77, 28, 0
2 80.10 198 0, 146, 52, 106, 7, 82, 48, 123, 19, 107, 62, 148, 88, 127, 0

5 1 56.16 187 0, 96, 104, 99, 93, 85, 61, 5, 118, 89, 0
2 95.96 199 0, 132, 1, 122, 30, 20, 66, 128, 131, 32, 108, 10, 31, 0

6 1 89.36 200 0, 59, 98, 91, 16, 141, 86, 113, 17, 45, 125, 83, 0
2 64.60 156 0, 105, 21, 72, 74, 133, 22, 41, 145, 115, 2, 58, 0

7 1 36.35 130 0, 112, 147, 6, 94, 95, 117, 13, 0
2 116.94 200 0, 137, 87, 144, 57, 15, 43, 42, 142, 14, 38, 140, 44, 119, 100, 37, 92, 97, 0

Table 14: New feasible solution for CMT4_T 1
H_7
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