

Using single-objective heuristics to solve bi-objective problems:

Short Introduction & Insights

Peter Matl, Univ. of Vienna, Austria piotr.matl@univie.ac.at

Outline

Motivation and Basics	 Side-objectives in travel and routing contexts Pareto-dominance, solution sets, trade-offs
The epsilon- constraint method	 Principles Use with heuristics (?!)
Bi-objective CVRP example	 Implementation Results compared to specialized methods

Best dep	We chose option	ns that give	you the best trade-off b	petween price and	
	8:05 PM - 10:5: Austrian, SWISS, L and airport char	convenience, based on factors such as duration, number of stops, and airport changes during layovers.			
$\overline{\bigcirc}$	7:10 PM – 4:55 AM [*] ' Lufthansa	14h 45m VIE-GIG	1 stop 1h 40m FRA	R\$4,727 round trip	
TP	7:45 PM – 5:20 AM ⁺¹ Tap Air Portugal	14h 35m VIE-GIG	1 stop 1h 5m LIS	R\$6,198 round trip	
Other de	eparting flights				
	7:00 PM – 10:45 AM⁺¹ SWISS, LATAM · Operated by Latam Airlines Brasil	20h 45m VIE-SDU	2 stops 🔺 Change of airport	R\$3,181 v round trip	
	8:05 PM – 1:15 PM⁺¹ Austrian, SWISS, Avianca Brazil	22h 10m VIE-GIG	2 stops ZRH, GRU	R\$3,629 round trip	
	7:00 PM – 10:55 AM ⁺¹ SWISS, LATAM · Operated by Latam Airlines Brasil	20h 55m VIE-GIG	2 stops ZRH, GRU	R\$4,531 vound trip	
~	85 longer or more expensive flights				

Why not use a constraint?

Maximum duration too strict...

 If we allowed only <u>a little</u> longer duration, perhaps we could reduce cost <u>a lot</u>.

Maximum duration not strict enough...

 If we pay only <u>a little</u> more, perhaps we could reduce the duration <u>a lot</u>.

Why consider side-objectives in VRPs?

An "optimal" solution should be...

... **robust** to noise in the input.

Why consider side-objectives in VRPs?

An "optimal" solution should be...

... **robust** to noise in the input.

... **balanced** in terms of workload.

Why consider side-objectives in VRPs?

An "optimal" solution should be...

... **<u>robust</u>** to noise in the input.

... **balanced** in terms of workload.

... consistent regarding service.

Take care with modeling!

Example: Robustness not "symmetric"

Example: "Artificial" balance

Danger: 'optimal' solutions for poorly defined objectives!

Google Acadêmico

Outline

Motivation and Basics	 Side-objectives in travel and routing contexts Pareto-dominance, solution sets, trade-offs
The epsilon- constraint method	 Principles Use with heuristics (?!)
Bi-objective CVRP example	 Implementation Results compared to specialized methods

The classical ε-constraint method

Advantages

Every iteration except the last yields a non-dominated solution, by definition

Each sub-problem is completely independent of the others

Exploit similarities between consecutive Pareto-efficient solutions

 \checkmark

General, easy to understand and implement, 1 simple parameter

All problem-specific aspects in 1 sub-routine, no dependencies with other levels

Heuristic Approximation Sets

Quality Metrics

But how can we identify these solution sets?

Outline

Motivation and Basics	 Side-objectives in travel and routing contexts Pareto-dominance, solution sets, trade-offs
The epsilon- constraint method	 Principles Use with heuristics (?!)
Bi-objective CVRP example	 Implementation Results compared to specialized methods

VRP with Route Balancing

Workload Resource/Metric

What is being balanced?

A. Tour length / distance

B. Tour demand / service time

C. Number of stops / customers

Balance/Equity Function How is the balance quantified?

1. Min-Max

2. Lexicographic

3. Range

4. Mean Absolute Deviation

5. Standard Deviation

6. Gini Coefficient

How to consider all this variety in a simple but flexible way?

Implementation

- We have to handle the epsilon-constraint on the balance objective.
- The most general way is to add a penalty term to the cost objective.
- Let *c* be the constraint value for the maximum allowed imbalance.
- Let b(x) be the imbalance of solution x acc. to the chosen function.
- Then the penalty for imbalance p_{bal} is calculated as:

$$p_{bal} = max\{c - b, 0\} * w_{bal}$$

Implementation

- Critical for efficient local search:
 - efficient delta evaluations for each balance function
 - sorted list of route workloads for quick re-evaluation
 - examine a wider set of moves than for cost-minimization only
- Critical for efficient search along the Pareto front:
 - enable warm-starts from search states of previous sub-problems
 - i.e. start each search from a solution "closest" to the new epsilon-constraint
- Save all local optima (they could be non-dominated)
- Re-evaluate and repair solutions after the epsilon-constraint is tightened

Summary

- In practice, optimization problems can often be multi-objective.
- A multi-objective approach can identify attractive compromises.
- Single-objective heuristics can be used for bi-objective problems.
- A simple ε-constraint framework can outperform specialized multiobjective metaheuristics when used with a state-of-the-art SO solver.

• General, flexible, and modular algorithm design is the key.

References

- Matl, P., Hartl, R. F., & Vidal, T. (2018). Heuristic Rectangle Splitting: Leveraging Single-Objective Heuristics to Efficiently Solve Multi-Objective Problems. <u>https://arxiv.org/abs/1705.10174</u>
- Matl, P., Hartl, R. F., & Vidal, T. (2018). Workload Equity in Vehicle Routing Problems: A Survey and Analysis. *Transportation Science*, 52(2), 239–260. <u>https://arxiv.org/abs/1605.08565</u>
- Matl, P., Hartl, R., & Vidal, T. (2018). Workload Equity in Vehicle Routing : The Impact of Alternative Workload Resources. <u>https://arxiv.org/pdf/1803.01795</u>