
Combinatorial Optimization and Machine
Learning – Part II

Thibaut Vidal1, Thiago Serra2

1 Departamento de Informática, PUC-Rio
vidalt@inf.puc-rio.br

2 Freeman College of Management, Bucknell University
thiago.serra@bucknell.edu

Image Credit: Hitchhikers
Guide to the Galaxy

vidalt@inf.puc-rio.br
thiago.serra@bucknell.edu

The rise of interpretable/explainable AI

• Machine learning is becoming more
and more widespread for high
stakes decisions:

I Recurrence predictions in
medicine

I Credit default risk
evaluations...

I ...and even for some
applications where it should
not be applied in the first
place ⇒ Release decisions in
criminal justice.

References 2/26

The rise of interpretable/explainable AI

Interpretability 6= Explainability

• The decision process of an interpretable model can be understood
by design, e.g., it is possible to track the individual decisions taken
in a decision tree. This implies that interpretable models are also
transparent.

• The internal process of an explainable model does not need to be
transparent (it can be a black box), but an additional algorithm
should be available to explain the decisions taken (e.g., saliency maps,
feature relevance analysis).

References 3/26

The rise of interpretable/explainable AI

Interpretability 6= Explainability

• Explainable AI techniques pose one issue: in case of an unexpected
behavior or bias, two algorithms/models may need debugging instead
of one [21].

• We will therefore principally focus on interpretable AI algorithms in
this talk, considering two important classes of methods: ensembles of
trees and (ReLU) neural networks.

References 4/26

Decision Trees and Random Forests

Decision tree:

++ Simple and explainable

– – Possible overfit & typically lower accuracy on test data

Tree ensemble – Random forest:

++ Ensemble learning algorithm: better generalization on test data

– – Lack of interpretability

References 5/26

Related Literature

Thinning tree
ensembles

Pruning some weak learners
[16, 20, 23, 26]

Replacing the tree ensemble
by a simpler classifier

[1, 6, 17, 24]

Rule extraction via
bayesian model selection

[13]

Extracting a single tree
from a tree ensemble by

actively sampling training
points [2, 3]

Thinning neural
networks

Model compression and
knowledge distillation

[7, 14]: Using a “teacher”
to train a compact “student’

with similar knowledge.

Creating soft decision trees
from a neural network [10],

or decomposing the
gradient in knowledge

distillation [11].

Simplifying neural networks
[8, 9, 22].

Optimal decision
trees

Linear programming
algorithms have been

exploited to find linear
combination splits [4].

Extensive study of global
optimization methods,
based on mixed-integer

programming or dynamic
programming, for the con-
struction of optimal deci-

sion trees [5, 12, 15, 18, 25]

• Other, model-agnostic, explanation approaches such as LIME [19].

⇒ Aimed at providing a local explanation.
⇒ Works by training a simpler surrogate model (e.g., a linear classifier)

around an instance that should be explained and analyze the weights.

References 6/26

Born-Again Tree Ensembles

• A recent exact algorithm that transforms a tree ensemble into a born-again
decision tree (BA tree) that is:

I Optimal in size (number of leaves or depth), and
I Faithful to the tree ensemble in its entire feature space.

• The BA tree is effectively a different representation of the same
decision function.

A single —minimal-size— decision tree that faithfully reproduces
the decision function of the random forest.

References 7/26

Methodology

Construction Process

x2 ≤ 4

x1 ≤ 7 x1 ≤ 2

○ ● ○ ●

x1 ≤ 2

x2 ≤ 2 x2 ≤ 4

○ ● ○ ●

x2 ≤ 2

x1 ≤ 7 x1 ≤ 4

○ ● ○ ●

TRUE FALSE

TRUE FALSE

TRUE FALSE

○

○

○

○

○

○

●

●

●

●

●

●

MAJORITY
CLASS

●

● ● ●

●

○ ○ ○

○

○ ○ ○

DYNAMIC
PROGRAM

●
●

○

●

●
●

○

○
○

x2 ≤ 4

x1 ≤ 4 x1 ≤ 2

○ ●

TRUE FALSE

BORN-AGAIN TREE

x2

x1 7 4 2

2

4

x2 ≤ 4 x1 ≤ 7

● ○ ● ○

REGION

CELL

References 8/26

Methodology

Problem 1: Born-Again Tree Ensemble

Given a tree ensemble T , we search for a decision tree T of minimal size
such that FT (x) = FT (x) for all x ∈ Rp.

Theorem 1

Problem 1 is NP-hard when optimizing depth, number of leaves, or any
hierarchy of these two objectives.

Verifying that a given solution is feasible (faithful) is NP-hard.

References 9/26

Methodology

Dynamic Program 1

Let Φ(zl, zr) be the depth of an optimal born-again decision tree for a
region (zl, zr). Then:

Φ(zl, zr) =


0 if id(zl, zr)

min
1≤j≤p

{
min

zl
j≤l<zr

j

{
1 + max{Φ(zl, zrjl),Φ(zljl, z

r)}
}}

,

in which id(zl, zr) takes value True iff all cells z such that zl ≤ z ≤ zr

are from the same class (i.e. base case).

Issue 1

Detecting base cases

Issue 2

Numerous recursive calls

References 10/26

Circumventing Issue 1

We tried several alternatives to efficiently check base cases. The best
approach we found consisted in including the base case evaluation within
the DP:

Dynamic Program 2

Let Φ(zl, zr) be the depth of an optimal born-again decision tree for a
region (zl, zr). Then:

Φ(zl, zr) = min
1≤j≤p

{
min

zl
j≤l<zr

j

{
1jl(z

l, zr) + max{Φ(zl, zrjl),Φ(zljl, z
r)}
}}

where 1jl(z
l, zr) =

0
if Φ(zl, zrjl) = Φ(zljl, z

r) = 0
and FT (zl) = FT (zr);

1 otherwise.

References 11/26

Circumventing Issue 2

We exploit two simple properties to reduce the number of
recursive calls:

Property 2

If Φ(zl, zr
jl) ≥ Φ(zl

jl, z
r) then for all l′ > l:

1jl(z
l, zr) + max{Φ(zl, zr

jl),Φ(zl
jl, z

r)}
≤ 1jl′(z

l, zr) + max{Φ(zl, zr
jl′),Φ(zl

jl′ , z
r)}

Property 3

If Φ(zl, zr
jl) ≤ Φ(zl

jl, z
r) then for all l′ < l:

1jl(z
l, zr) + max{Φ(zl, zr

jl),Φ(zl
jl, z

r)}
≤ 1jl′(z

l, zr) + max{Φ(zl, zr
jl′),Φ(zl

jl′ , z
r)}

zL

zR

φ=2 φ=1

zjl
R

zjl
L

Allowing us to search for the best hyperplane level for each feature with a binary
search.

References 12/26

Algorithm 1 Born-Again(zl, zr)

1: if (zl = zr) return 0
2: if (zl, zr) exists in memory return Memory(zl, zr)
3: (LB,UB)← (0,∞)
4: for j = 1 to p and LB < UB do
5: (Low,Up)← (zlj , z

r
j)

6: while Low < Up and LB < UB do
7: l← b(Low + Up)/2c
8: Φ1 ← Born-Again(zl, zr + ej(l − zrj))
9: Φ2 ← Born-Again(zl + ej(l + 1− zlj), zr)

10: if (Φ1 = 0) and (Φ2 = 0) then
11: if f(zl, T) = f(zr, T) then Memorize((zl, zr), 0) and return 0
12: else Memorize((zl, zr), 1) and return 1
13: end if
14: UB← min{UB, 1 + max{Φ1,Φ2}}
15: LB← max{LB,max{Φ1,Φ2}}
16: if (Φ1 ≥ Φ2) then Up← l
17: if (Φ1 ≤ Φ2) then Low← l + 1
18: end while
19: end for
20: Memorize((zl, zr),UB) and return UB

References 13/26

Experimental Analyses

Goals

Evaluate the scalability of the DP algorithm depending on:

• the size metric in use

• the number of trees in the ensemble

• the number of samples and features in the datasets

Study the structure and complexity of the born-again trees for different
size metrics.
Measure the impact of an a-posteriori pruning strategy.

References 14/26

Experimental Analyses

Datasets

We used datasets from diverse applications, including medicine (BC, PD),
criminal justice (COMPAS), and credit scoring (FICO).

Data set n p K CD Src.

BC – Breast-Cancer 683 9 2 65-35 UCI
CP – COMPAS 6907 12 2 54-46 HuEtAl
FI – FICO 10459 17 2 52-48 HuEtAl
HT – HTRU2 17898 8 2 91-9 UCI
PD – Pima-Diabetes 768 8 2 65-35 SmithEtAl
SE – Seeds 210 7 3 33-33-33 UCI

Data Preparation

One-hot encoding for categorical variables.
Continuous variables binned into ten ordinal scales.
Generate training and test samples for all data sets by ten-fold cross validation.
For each fold and each dataset, generate a random forest composed of 10
trees with a depth of 3.

References 15/26

Experimental Analyses

Scalability

Number of Samples

●

●

●

●

●

0.25 0.5 0.75 1 2.5 5 7.5 10.5

0
5

10
15

C
om

pa
ris

on
$G

ap

T(ms)

Number of Samples n (x1000)

Number of Features

●

2 3 5 7 10 12 15 17

0
50

10
0

15
0

20
0

25
0

30
0

C
om

pa
ris

on
$G

ap

Number of Features p

T(ms)
Number of Trees

●

●
●

●

●

●

3 5 7 10 12 15 17 20

0
2

4
6

8
10

12

C
om

pa
ris

on
$G

ap

T(ms)

Number of Trees T

Computational time(ms) of the DP as a function of the number of samples, features and
trees.

References 16/26

Experimental Analyses

Simplicity

Depth and number of leaves of the born-again trees:

D L DL
Data set Depth # Leaves Depth # Leaves Depth # Leaves

BC 12.5 2279.4 18.0 890.1 12.5 1042.3
CP 8.9 119.9 8.9 37.1 8.9 37.1
FI 8.6 71.3 8.6 39.2 8.6 39.2
HT 6.0 20.2 6.3 11.9 6.0 12.0
PD 9.6 460.1 15.0 169.7 9.6 206.7
SE 10.2 450.9 13.8 214.6 10.2 261.0

Avg. 9.3 567.0 11.8 227.1 9.3 266.4

Analysis

The decision function of a random forest is visibly complex
One main reason: Incompatible feature combinations are being represented,
and the decision function of the RF is not necessarily uniform on these regions
due to the other features.

References 17/26

Experimental Analyses

Post-Pruning

Eliminate inexpressive tree sub-regions. From bottom to top:

• Verify whether both sides of a split contain at least one sample

• Eliminate every such empty split

References 18/26

Experimental Analyses

Analysis

With post-pruning, faithfulness is no longer guaranteed per definition.
We need to experimentally evaluate:

I Impact on simplicity
I Impact on accuracy

Depth and number of leaves:

RF BA-Tree BA+P

Leaves Depth Leaves Depth Leaves

BC 61.1 12.5 2279.4 9.1 35.9

CP 46.7 8.9 119.9 7.0 31.2

FI 47.3 8.6 71.3 6.5 15.8

HT 42.6 6.0 20.2 5.1 13.2

PD 53.7 9.6 460.1 9.4 79.0

SE 55.7 10.2 450.9 7.5 21.5

Avg. 51.2 9.3 567.0 7.4 32.8

Accuracy and F1 score comparison:

RF BA-Tree BA+P

Acc F1 Acc F1 Acc F1

BC 0.953 0.949 0.953 0.949 0.946 0.941

CP 0.660 0.650 0.660 0.650 0.660 0.650

FI 0.697 0.690 0.697 0.690 0.697 0.690

HT 0.977 0.909 0.977 0.909 0.977 0.909

PD 0.746 0.692 0.746 0.692 0.750 0.700

SE 0.790 0.479 0.790 0.479 0.790 0.481

Avg. 0.804 0.728 0.804 0.728 0.803 0.729

References 19/26

Heuristic Solutions

The current DP approach can be applied to datasets with up to 20 features in
our experiments. To solve larger cases we introduced a heuristic that
guarantees faithfulness, but relaxes optimality.

I Instead of opening all recursions, it uses a greedy split criterion
(information gain) considering nc = 100 random cells within the region.

I If the nc cells belong to the same class, it uses a resource-constrained
shortest path bound to attempt to prove that all cells within this
region belong to the same class.

I If this bound is insufficient, a MIP is used to prove uniformity or detect
a violating cell.

This heuristic finds faithful BA-trees for large datasets (Ionosphere, Spambase,
and Miniboone, the later with over 130,000 samples and 50 features) in less than
30 seconds.
The depth and number of leaves increases by 22.90% and 18.20% on average over
the optimal solutions, but the heuristic solutions usually give good trade-offs.

References 20/26

Conclusions

• BA-trees provide a compact representations of the decision functions of
random forests, as a single —minimal size— decision tree.

• Sheds a new light on random forests visualization and
interpretability.

• Progressing towards interpretable models is an important step towards
addressing bias and data mistakes in learning algorithms.

• Optimal classifiers can be fairly complex. Indeed, BA-trees reproduce the
complete decision function for all regions of the feature space.

I Pruning can solve this issue
I Heuristics can be used for datasets which are too large to be solved to

optimality

References 21/26

Paths towards algorithmic interpretability

• Trade-off: Faithfulness vs Simplicity

I Heuristic BA-trees can permit to reduce computational time and
apply the concept to larger data sets

I Faithfulness can be traded in exchange for more simplicity, but this
requires identifying the most “meaningful” regions of the feature space.

I The algorithm can be focused on smaller sub-regions to provide local
explanations

• Other research paths:

I Extension to gradient boosting, regression applications etc.
I Interpretation and simplification of other ML models (next

presentation by Thiago Serra)
I Counterfactual explanations, Feature importance measurement...

References 22/26

Thanks !

THANK YOU FOR YOUR ATTENTION !

Contact me:
vidalt@inf.puc-rio.br

Articles, slides and data sets:
http://w1.cirrelt.ca/~vidalt/

Source codes:
https://github.com/vidalthi/

Regular updates:
https://twitter.com/vidalthi

References 23/26

vidalt@inf.puc-rio.br
http://w1.cirrelt.ca/~vidalt/
https://github.com/vidalthi/
https://twitter.com/vidalthi

Bibliography I

[1] Bai, J., Y. Li, J. Li, Y. Jiang, S. Xia. 2019. Rectified decision trees: Towards
interpretability, compression and empirical soundness. arXiv preprint
arXiv:1903.05965 .

[2] Bastani, O., C. Kim, H. Bastani. 2017. Interpretability via model extraction. arXiv
preprint arXiv:1706.09773 .

[3] Bastani, O., C. Kim, H. Bastani. 2017. Interpreting blackbox models via model
extraction. arXiv preprint arXiv:1705.08504 .

[4] Bennett, K. 1992. Decision tree construction via linear programming. Proceedings of
the 4th Midwest Artificial Intelligence and Cognitive Science Society Conference,
Utica, Illinois.

[5] Bertsimas, D., J. Dunn. 2017. Optimal classification trees. Machine Learning 106(7)
1039–1082.

[6] Breiman, L., N. Shang. 1996. Born again trees. Tech. rep., University of California
Berkeley.

[7] Buciluǎ, C., R. Caruana, A. Niculescu-Mizil. 2006. Model compression. Proceedings of
the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining.

[8] Clark, K., M.-T. Luong, U. Khandelwal, C. D. Manning, Q. V. Le. 2019. Bam!
born-again multi-task networks for natural language understanding. arXiv preprint
arXiv:1907.04829 .

[9] Frankle, J., M. Carbin. 2018. The lottery ticket hypothesis: Finding sparse, trainable
neural networks. arXiv preprint arXiv:1803.03635 .

References 24/26

Bibliography II

[10] Frosst, N., G. Hinton. 2017. Distilling a neural network into a soft decision tree. arXiv
preprint arXiv:1711.09784 .

[11] Furlanello, Tommaso, Zachary C Lipton, Michael Tschannen, Laurent Itti, Anima
Anandkumar. 2018. Born again neural networks. arXiv preprint arXiv:1805.04770 .

[12] Günlük, O., J. Kalagnanam, M. Menickelly, K. Scheinberg. 2018. Optimal decision
trees for categorical data via integer programming. arXiv preprint arXiv:1612.03225 .

[13] Hara, S., K. Hayashi. 2016. Making tree ensembles interpretable: A bayesian model
selection approach. arXiv preprint arXiv:1606.09066 .

[14] Hinton, G., O. Vinyals, J. Dean. 2015. Distilling the knowledge in a neural network.
arXiv preprint arXiv:1503.02531 .

[15] Hu, X., C. Rudin, M. Seltzer. 2019. Optimal sparse decision trees. Advances in Neural
Information Processing Systems.

[16] Margineantu, D., T. Dietterich. 1997. Pruning adaptive boosting. Proceedings of the
Fourteenth International Conference Machine Learning.

[17] Meinshausen, N. 2010. Node harvest. The Annals of Applied Statistics 2049–2072.

[18] Nijssen, S., E. Fromont. 2007. Mining optimal decision trees from itemset lattices.
Proceedings of the 13th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining.

[19] Ribeiro, M.T., S. Singh, C. Guestrin. 2016. “Why Should I Trust You?” Explaining the
Predictions of Any Classifier. 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining – KDD ’16 . 1135–1144.

[20] Rokach, L. 2016. Decision forest: Twenty years of research. Information Fusion 27
111–125.

References 25/26

Bibliography III

[21] Rudin, C. 2019. Stop explaining black box machine learning models for high stakes
decisions and use interpretable models instead. Nature Machine Intelligence 1(5)
206–215.

[22] Serra, T., A. Kumar, S. Ramalingam. 2020. Lossless compression of deep neural
networks. CPAIOR 2020: Integration of Constraint Programming, Artificial
Intelligence, and Operations Research. 417–430.

[23] Tamon, C., J. Xiang. 2000. On the boosting pruning problem. Proceedings of the 11th
European Conference on Machine Learning.

[24] Tan, H. F., G. Hooker, M. T. Wells. 2016. Tree space prototypes: Another look at
making tree ensembles interpretable. arXiv preprint arXiv:1611.07115 .

[25] Verwer, S., Y. Zhang. 2019. Learning optimal classification trees using a binary linear
program formulation. Proceedings of the AAAI Conference on Artificial Intelligence.

[26] Zhang, Y., S. Burer, W. N. Street. 2006. Ensemble pruning via semi-definite
programming. Journal of Machine Learning Research 7(Jul) 1315–1338.

References 26/26

	Introduction
	Thinning Tree Ensembles – Related Literature
	Methodology
	Experimental Analyses
	References

