
Combinatorial Optimization
and Interpretable Machine Learning

Thibaut Vidal

SCALE-AI Chair in Data-Driven Supply Chains, MAGI, Polytechnique Montreal, Canada

Interuniversity Research Centre on Enterprise Networks, Logistics and Transportation, Montreal, Canada

Department of Computer Science, Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Brazil

Image Credit: Hitchhikers Guide
to the Galaxy

Seminar DAAO, GDR-RO | 06/21/2021

Recent applications for machine learning

• Machine learning seeps into more and more
industries and applications

I Recommendation systems
I Computer vision
I Text editing and translation...

Great!

• remarkably, especially into high stakes
decisions:

I Recurrence predictions in medicine
I Credit default risk evaluations
I Bail decisions in criminal justice...

Wait! Should it be applied here in the
first place?

and their loopholes...

2/22

Humans can be biased...

• ... and so can be AI (algorithmic bias)

I lack of fairness
I lack of justice, i.e., presence of

prejudices

• algorithmic bias can take different forms
(e.g., gender bias, age discrimination, racial
prejudice)

I even if we exclude sensitive variables (!)

• we need to understand the root cause of
algorithmic bias

I there is rarely a way to ”opt out” of the
influence of these algorithms

I this endangers especially marginalized
groups of people

Recent trends

• the ML community’s interest to
understand the decision taking of ML
algorithms is increasing

• explainability has gone a long way from
early methods strongly focused on feature
importance on top of a black-box...

• ...to modern studies and applications
focusing on training transparent and
interpretable models.

A first step: developing a proper understanding of how AI algorithms work

3/22

Transparency, Explainability, and Interpretability

Explainability 6= Interpretability

Interpretability

The decision process of an interpretable
model can be understood by design, e.g., it is
possible to track the individual decisions taken
in a decision tree. This implies that interpretable
models are also transparent.

Explainability

The internal process of an explainable model
does not need to be transparent (it can be a black
box), but an additional algorithm should be
available to explain the decisions taken (e.g.,
saliency maps, feature relevance analysis).

4/22

Aims and Scope

Scope of this talk

• A brief survey of methods for interpretable and explainable machine learning,
discussing some of their advantages and disadvantages

• Second, pinpoint specific tasks for which optimization represents a promising asset, connecting
them with some of our recent works:

I 1) Model Compression
Vidal, T., Schiffer, M. (2020). Born-Again Tree Ensembles. ICML’20.
(https://arxiv.org/abs/2003.11132)

I 2) Counterfactual Search
Parmentier, A., Vidal, T. Optimal Counterfactual Explanations in Tree Ensembles.
ICML’21. (https://arxiv.org/abs/2106.06631)

I 3) Training Sparse Models
Martins, P., Schiffer, M., Serra, T. Vidal, T. Optimal Decision Diagrams for Classification.
(Submitted – ArXiV report soon available).

5/22

https://arxiv.org/abs/2003.11132
https://arxiv.org/abs/2106.06631

Before starting: some terminology

Notations and Basic Concepts

• Considering a data set (X,y) = {xi, yi}ni=1

I with xi ∈ Rp being a p-dimensional feature vector
I and yi ∈ N being its associated target

• Each sample i has been independently drawn from an unknown distribution (X ,Y)

• We aim to learn a function (i.e., classifier or predictor) F : X → Y
I that predicts yi for each xi drawn from X

6/22

Brief Tour d’Horizon

Part I—Interpretable Models

7/22

Linear Regression

Linear regression

• Learn a linear relationship y = β0 + β1x1 + . . .+ βnxn + ε

I e.g., by minimizing the squared deviation between the actual and estimates outcomes

β̂ = arg min
β0,...,βp

n∑
i=1

(
y(i) −

(
β0 +

n∑
j=1

β0 +

p∑
j=1

βjx
(i)
j

))

• Easy to understand and interpretable but has several key assumptions and limitations

I e.g., linearity, normality, homoscedasticity...
I adequate for regression, but not much for classification.

• In cases with multicollinearity, the interpretation of weights can be counter-intuitive

I two highly correlated features can receive very different weights (e.g., first feature can be
used by the model as a main effect, and the second intervenes to “correct” the prediction).

• Extension towards Generalized Linear Models (GLMs) of the form
g(EY (y|x)) = β0 + β1x1 + . . .+ βnxn permits to circumvent some of these issues.

8/22

Generalized Linear Models & Generalized Additive Models

• Other ways to deal with non-linear relationships...

Linear model Feature transformation GAM

picture credit: [2]

Generalized additive models (GAMs)

• Idea: instead of a simple weighted sum, we consider a sum of arbitrary functions (one for each
feature)

y = β0 + f1(x1) + . . .+ fn(xn)

• we can use spline functions to approximate such nonlinearities

9/22

Support Vector Machines

Support Vector Machines

• Originally designed for classification. Training a SVM
consists in best separating two classes of samples by a
hyperplane defined by points satisfying wTx− b = 0

I A regularization term is added on the coefficients
of w, implicitly maximizing the separation margin
between the points.

I Points within the margin or on the wrong side are
linearly penalized relatively to their distance.

• SVM training can be cast as a linear program:

min
w,b,ξ

1

2
||w||2 + C

n∑
i=1

ξi (1)

s.t. yi(w · xi + b) ≥ 1− ξi, i ∈ {1, . . . , n} (2)

ξi ≥ 0, i ∈ {1, . . . , n} (3)

Figure: Credit to Larhmam, CC BY-SA 4.0,

via Wikimedia Commons

10/22

Decision Trees

Decision Trees

• Decision-tree classifiers consist in a hierarchical
tree structure in which each internal node
represents a linear-inequality on a feature, and
each leaf is associated to a class.

• Any sample starts at the root node, and descends
along the tree in accordance with the status of the
inequalities, until it reaches a class node.

• This process is usually viewed as interpretable,
since the trajectory of the samples through the tree
and the features which led to the final prediction
are directly observable.

• Generalization into tree ensembles often improves
performance, but drastically diminishes
interpretability

11/22

Advantages and Disadvantages

The models reviewed in this section...

+ are transparent and interpretable by design

+ permit to comprehend some of the interaction between the features

+ provide natural visualizations

– regularly have a worse performance than sophisticated models (e.g., tree ensembles, neural
networks)

– depend on key assumptions about the data

– may lack stability and robustness

12/22

Brief Tour d’Horizon

Part II—Explanation Methods

13/22

Sophisticated or Black-Box Models are sometimes needed

Ensembles, deep neural networks and cie...

• Sophisticated models are sometimes needed for advanced machine learning tasks and complex
data sets.

• There are also situations where the owner of the model does not want transparency, i.e.,
refuses to reveal the internal decision process (e.g., for applications in security, or simply to
avoid reverse-engineering)

• In this case, explanation methods are needed, which often consist of a second algorithmic
layer on top of the original model.

I Depending on the class of model and the knowledge of the model (black-box vs
white-box), different explanation techniques can be employed.

14/22

Feature Importance

Permutation Feature Importance

• Perhaps the simplest explanation method consists in measuring the impact of each of the
features of the model, i.e., determining which features most “contributed” to the classification.

• A simple empirical approach, called permutation feature importance consists in
considering each feature, randomly shuffling it’s values among the training samples (leading to
a loss of information), and measuring the impact of this shuffle on prediction performance.

I No transparency initially required, simulating the prediction function is often enough.
I Features that significantly impact the classification performance are “important”
I Useful to detect the possible use of protected features
I Weak to correlations
I Importance is not always meaningful as a individual measure

15/22

Shapley Value based approaches

SHAP – SHapley Additive exPlanations [1]

• Shapley values come from cooperative game theory, where they represent by how much each
player contributes to the surplus of a coalition in a cooperative game

I Analogy: assume that each feature is a player and that the prediction is the surplus

• SHAP computes the contribution of each feature for a specific instance

I the Shapley value explanation in SHAP is a linear model

g(z) = φ0 +

M∑
j=1

φjzj

with g–explanation model, z ∈ {0, 1}M–coalition vector (sometimes also called “simplified
features”), φj ∈ R–feature attribution (i.e., Shapley values)

I the model satisfies additivity and consistency properties, i.e., if the model changes and the
marginal contribution of a feature increases or is equal, then the Shapley value increases
or remains equal

16/22

Global Surrogate Models

Global Surrogate Models

• Train an interpretable model to imitate the predictor of a complex or opaque model.

• Simple approaches in this family consist in sampling training examples from the original data
set (or even outside of it) and obtaining the corresponding prediction as given by the original
model. This data set is then used to train an interpretable model.

I However, unless the data set permits to infer the complete behavior of the original model,
such an approach does not provide guarantees on the faithfulness of the surrogate model.

• For transparent classification models such as random forests, mathematical techniques ([6] –
see next part of this talk) can be used to generate a surrogate decision tree model that has the
same prediction function everywhere.

17/22

Local Surrogate models

LIME – Local Interpretable Model-agnostic Explanations [4]

• LIME: Focuses on training a surrogate models to explain individual predictions

• Select an instance which needs to be explained

• Create a data set by adding random perturbations to the point of interest, and obtain the
predicted class from the original model

• Weight the new data set based on proximity to the original instance

• Train an interpretable surrogate model on this data, and use it for explanations and
visualizations.

18/22

Counterfactual Explanations

Counterfactual Explanations [7]

• Counterfactual Explanations are constrastive arguments of the type:

“To obtain this loan, you need $40,000 of annual revenue instead of the current $30,000”.

• Rationale: Smallest set of actions needed to shift the outcome of a classification task. Gives
recourse and can play a critical role in a negotiation process.

• Given an origin point x̂ and a desired prediction class c∗, locate a new data point x ∈ X that
solves the following problem:

min D(x, x̂)

s.t. F (x) = c∗

x ∈ X

• Note the close connections with local explanations, adversarial search and robustness evaluation.

• Solution strategy for this search problem will largely depend on the characteristics of F (x) and
the transparency of the model. It can consist of a simple gradient descent (for convex and
differentiable predictors) or require much more advanced techniques in other cases [3].

19/22

Advantages and Disadvantages

Explanation Methods

+ allow to explain the outcome of a black box model without imposing any limitations to the
model itself

I we can preserve the good performance of black box models

+ usually model agnostic (LIME, SHAP, ...)

- Explainable AI techniques pose one issue: in case of an unexpected behavior or bias, two
algorithms/models may need debugging instead of one [5].

- Explainable AI techniques allow to understand a specific outcome of a model but not to
develop a general understanding of the models rules and decision process

I In general, we are still looking at a black box and try to explain case by case what happens

20/22

Brief Tour d’Horizon

Part III—Promising research paths for combinatorial
optimization and interpretable machine learning

[Next set of slides]

21/22

Bibliography I

[1] S. Lundberg and S.-I. Lee. A unified approach to interpreting model predictions. arXiv preprint
arXiv:1705.07874, 2017.

[2] C. Molnar. Interpretable Machine Learning. 2019. https://christophm.github.io/interpretable-ml-book/.

[3] A. Parmentier and T. Vidal. Optimal counterfactual explanations in tree ensembles. In 38th International
Conference on Machine Learning, PMLR 139, 2021.

[4] M. Ribeiro, S. Singh, and C. Guestrin. “Why Should I Trust You?” Explaining the Predictions of Any Classifier.
In 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining – KDD ’16, pages
1135–1144, 2016.

[5] C. Rudin. Stop explaining black box machine learning models for high stakes decisions and use interpretable
models instead. Nature Machine Intelligence, 1(5):206–215, 2019.

[6] T. Vidal and M. Schiffer. Born-again tree ensembles. In Proceedings of the 37th International Conference on
Machine Learning, volume 119, pages 9743–9753, Virtual, 2020. PMLR.

[7] S. Wachter, B. Mittelstadt, and C. Russell. Counterfactual explanations without opening the black box:
Automated decisions and the GDPR. Harvard Journal of Law & Technology, 31:841, 2018.

22/22

https://christophm.github.io/interpretable-ml-book/

1) Born-Again Tree Ensembles

Thibaut Vidal1,2, Toni Pacheco2, Maximilian Schiffer3

1 CIRRELT & SCALE-AI Chair in Data-Driven Supply Chains, MAGI, Polytechnique Montreal, Canada
2 Computer Science Department, Pontifical Catholic University of Rio de Janeiro

3 TUM School of Management, Technical University of Munich

Image Credit: Hitchhikers Guide
to the Galaxy

Reference: Vidal, T., & Schiffer, M. (2020). Born-Again Tree Ensembles. In Proceedings of the 37th International
Conference on Machine Learning, Online, PMLR 119.

Decision Trees and Random Forests

Decision tree:

++ Simple and explainable

– – Possible overfit & typically lower accuracy on test data

Tree ensemble – Random forest:

++ Ensemble learning algorithm: better generalization on test data

– – Lack of interpretability

References 2/21

Related Literature

Thinning tree
ensembles

Pruning some weak learners
[16, 20, 22, 25]

Replacing the tree ensemble by a
simpler classifier [1, 6, 17, 23]

Rule extraction via bayesian model
selection [13]

Extracting a single tree from a tree
ensemble by actively sampling

training points [2, 3]

Thinning neural networks

Model compression and knowledge
distillation [7, 14]: Using a “teacher”
to train a compact “student’ with

similar knowledge.

Creating soft decision trees from a
neural network [10], or decomposing

the gradient in knowledge
distillation [11].

Simplifying neural networks
[8, 9, 21].

Optimal decision
trees

Linear programming algorithms
have been exploited to find
linear combination splits [4].

Extensive study of global op-
timization methods, based on
mixed-integer programming

or dynamic programming, for
the construction of optimal de-
cision trees [5, 12, 15, 18, 24]

• Other, model-agnostic, explanation approaches such as LIME [19].

⇒ Aimed at providing a local explanation.
⇒ Works by training a simpler surrogate model (e.g., a linear classifier) around an instance that

should be explained and analyze the weights.

References 3/21

Born-Again Tree Ensembles

• A recent exact algorithm that transforms a tree ensemble into a born-again decision tree (BA tree)
that is:

I Optimal in size (number of leaves or depth), and
I Faithful to the tree ensemble in its entire feature space.

• The BA tree is effectively a different representation of the same decision function.

A single —minimal-size— decision tree that faithfully reproduces the decision
function of the random forest.

References 4/21

Methodology

Construction Process

x2 ≤ 4

x1 ≤ 7 x1 ≤ 2

○ ● ○ ●

x1 ≤ 2

x2 ≤ 2 x2 ≤ 4

○ ● ○ ●

x2 ≤ 2

x1 ≤ 7 x1 ≤ 4

○ ● ○ ●

TRUE FALSE

TRUE FALSE

TRUE FALSE

○

○

○

○

○

○

●

●

●

●

●

●

MAJORITY
CLASS

●

● ● ●

●

○ ○ ○

○

○ ○ ○

DYNAMIC
PROGRAM

●
●

○

●

●
●

○

○
○

x2 ≤ 4

x1 ≤ 4 x1 ≤ 2

○ ●

TRUE FALSE

BORN-AGAIN TREE

x2

x1 7 4 2

2

4

x2 ≤ 4 x1 ≤ 7

● ○ ● ○

REGION

CELL

References 5/21

Methodology

Problem 1: Born-Again Tree Ensemble

Given a tree ensemble T , we search for a decision tree T of minimal size such that FT (x) = FT (x)
for all x ∈ Rp.

Theorem 1

Problem 1 is NP-hard when optimizing depth, number of leaves, or any hierarchy of these two
objectives.

Verifying that a given solution is feasible (faithful) is NP-hard.

References 6/21

Methodology

Dynamic Program 1

Let Φ(zl, zr) be the depth of an optimal born-again decision tree for a region (zl, zr). Then:

Φ(zl, zr) =


0 if id(zl, zr)

min
1≤j≤p

{
min

zl
j≤l<zr

j

{
1 + max{Φ(zl, zrjl),Φ(zljl, z

r)}
}}

,

in which id(zl, zr) takes value True iff all cells z such that zl ≤ z ≤ zr are from the same
class (i.e. base case).

Issue 1

Detecting base cases

Issue 2

Numerous recursive calls

References 7/21

Circumventing Issue 1

We tried several alternatives to efficiently check base cases. The best approach we found
consisted in including the base case evaluation within the DP:

Dynamic Program 2

Let Φ(zl, zr) be the depth of an optimal born-again decision tree for a region (zl, zr). Then:

Φ(zl, zr) = min
1≤j≤p

{
min

zl
j≤l<zr

j

{
1jl(z

l, zr) + max{Φ(zl, zrjl),Φ(zljl, z
r)}
}}

where 1jl(z
l, zr) =

0
if Φ(zl, zrjl) = Φ(zljl, z

r) = 0
and FT (zl) = FT (zr);

1 otherwise.

References 8/21

Circumventing Issue 2

We exploit two simple properties to reduce the number of recursive calls:

Property 2

If Φ(zl, zr
jl) ≥ Φ(zl

jl, z
r) then for all l′ > l:

1jl(z
l, zr) + max{Φ(zl, zr

jl),Φ(zl
jl, z

r)}
≤ 1jl′(z

l, zr) + max{Φ(zl, zr
jl′),Φ(zl

jl′ , z
r)}

Property 3

If Φ(zl, zr
jl) ≤ Φ(zl

jl, z
r) then for all l′ < l:

1jl(z
l, zr) + max{Φ(zl, zr

jl),Φ(zl
jl, z

r)}
≤ 1jl′(z

l, zr) + max{Φ(zl, zr
jl′),Φ(zl

jl′ , z
r)}

zL

zR

φ=2 φ=1

zjl
R

zjl
L

Allowing us to search for the best hyperplane level for each feature with a binary search.

References 9/21

Algorithm 1 Born-Again(zl, zr)

1: if (zl = zr) return 0
2: if (zl, zr) exists in memory return Memory(zl, zr)
3: (LB,UB)← (0,∞)
4: for j = 1 to p and LB < UB do
5: (Low,Up)← (zlj , z

r
j)

6: while Low < Up and LB < UB do
7: l← b(Low + Up)/2c
8: Φ1 ← Born-Again(zl, zr + ej(l − zrj))
9: Φ2 ← Born-Again(zl + ej(l + 1− zlj), zr)

10: if (Φ1 = 0) and (Φ2 = 0) then
11: if f(zl, T) = f(zr, T) then Memorize((zl, zr), 0) and return 0
12: else Memorize((zl, zr), 1) and return 1
13: end if
14: UB← min{UB, 1 + max{Φ1,Φ2}}
15: LB← max{LB,max{Φ1,Φ2}}
16: if (Φ1 ≥ Φ2) then Up← l
17: if (Φ1 ≤ Φ2) then Low← l + 1
18: end while
19: end for
20: Memorize((zl, zr),UB) and return UB

References 10/21

Experimental Analyses

Goals

Evaluate the scalability of the DP algorithm depending on:

• the size metric in use

• the number of trees in the ensemble

• the number of samples and features in the datasets

Study the structure and complexity of the born-again trees for different size metrics.
Measure the impact of an a-posteriori pruning strategy.

References 11/21

Experimental Analyses

Datasets

We used datasets from diverse applications, including medicine (BC, PD), criminal justice
(COMPAS), and credit scoring (FICO).

Data set n p K CD Src.

BC – Breast-Cancer 683 9 2 65-35 UCI
CP – COMPAS 6907 12 2 54-46 HuEtAl
FI – FICO 10459 17 2 52-48 HuEtAl
HT – HTRU2 17898 8 2 91-9 UCI
PD – Pima-Diabetes 768 8 2 65-35 SmithEtAl
SE – Seeds 210 7 3 33-33-33 UCI

Data Preparation

One-hot encoding for categorical variables.
Continuous variables binned into ten ordinal scales.
Generate training and test samples for all data sets by ten-fold cross validation. For each fold and
each dataset, generate a random forest composed of 10 trees with a depth of 3.

References 12/21

Experimental Analyses

Scalability

Number of Samples

●

●

●

●

●

0.25 0.5 0.75 1 2.5 5 7.5 10.5

0
5

10
15

C
om

pa
ris

on
$G

ap

T(ms)

Number of Samples n (x1000)

Number of Features

●

2 3 5 7 10 12 15 17

0
50

10
0

15
0

20
0

25
0

30
0

C
om

pa
ris

on
$G

ap

Number of Features p

T(ms)
Number of Trees

●

●
●

●

●

●

3 5 7 10 12 15 17 20

0
2

4
6

8
10

12

C
om

pa
ris

on
$G

ap

T(ms)

Number of Trees T
Computational time(ms) of the DP as a function of the number of samples, features and trees.

References 13/21

Experimental Analyses

Simplicity

Depth and number of leaves of the born-again trees:

D L DL
Data set Depth # Leaves Depth # Leaves Depth # Leaves

BC 12.5 2279.4 18.0 890.1 12.5 1042.3
CP 8.9 119.9 8.9 37.1 8.9 37.1
FI 8.6 71.3 8.6 39.2 8.6 39.2
HT 6.0 20.2 6.3 11.9 6.0 12.0
PD 9.6 460.1 15.0 169.7 9.6 206.7
SE 10.2 450.9 13.8 214.6 10.2 261.0

Avg. 9.3 567.0 11.8 227.1 9.3 266.4

Analysis

The decision function of a random forest is visibly complex
One main reason: Incompatible feature combinations are being represented, and the decision function
of the RF is not necessarily uniform on these regions due to the other features.

References 14/21

Post-Pruning

Eliminate inexpressive tree sub-regions. From bottom to top:

• Verify whether both sides of a split contain at least one sample, and eliminate every such
empty split

References 15/21

Experimental Analyses

Analysis

With post-pruning, faithfulness is no longer guaranteed per definition. We need to experi-
mentally evaluate:

I Impact on simplicity
I Impact on accuracy

Depth and number of leaves:

RF BA-Tree BA+P

Leaves Depth Leaves Depth Leaves

BC 61.1 12.5 2279.4 9.1 35.9

CP 46.7 8.9 119.9 7.0 31.2

FI 47.3 8.6 71.3 6.5 15.8

HT 42.6 6.0 20.2 5.1 13.2

PD 53.7 9.6 460.1 9.4 79.0

SE 55.7 10.2 450.9 7.5 21.5

Avg. 51.2 9.3 567.0 7.4 32.8

Accuracy and F1 score comparison:

RF BA-Tree BA+P

Acc F1 Acc F1 Acc F1

BC 0.953 0.949 0.953 0.949 0.946 0.941

CP 0.660 0.650 0.660 0.650 0.660 0.650

FI 0.697 0.690 0.697 0.690 0.697 0.690

HT 0.977 0.909 0.977 0.909 0.977 0.909

PD 0.746 0.692 0.746 0.692 0.750 0.700

SE 0.790 0.479 0.790 0.479 0.790 0.481

Avg. 0.804 0.728 0.804 0.728 0.803 0.729

References 16/21

Heuristic Solutions

The current DP approach can be applied to datasets with up to 20 features in our experiments. To solve
larger cases we introduced a heuristic that guarantees faithfulness, but relaxes optimality.

I Instead of opening all recursions, it uses a greedy split criterion (information gain) considering
nc = 100 random cells within the region.

I If the nc cells belong to the same class, it uses a resource-constrained shortest path bound to
attempt to prove that all cells within this region belong to the same class.

I If this bound is insufficient, a MIP is used to prove uniformity or detect a violating cell.

This heuristic finds faithful BA-trees for large datasets (Ionosphere, Spambase, and Miniboone, the later
with over 130,000 samples and 50 features) in less than 30 seconds.
The depth and number of leaves increases by 22.90% and 18.20% on average over the optimal solutions,
but the heuristic solutions usually give good trade-offs.

References 17/21

Conclusions

• BA-trees provide a compact representations of the decision functions of random forests, as a single
—minimal size— decision tree.

• Sheds a new light on random forests visualization and interpretability.

• Progressing towards interpretable models is an important step towards addressing bias and data
mistakes in learning algorithms.

• Optimal classifiers can be fairly complex. Indeed, BA-trees reproduce the complete decision
function for all regions of the feature space.

I Pruning can solve this issue
I Heuristics can be used for datasets which are too large to be solved to optimality

To be continued...

Controlled relaxation of faithfulness, Better optimization algorithms, Gradient boosting, Extension
to Regression, Local Explainability, Case studies...

References 18/21

Bibliography I

[1] Bai, J., Y. Li, J. Li, Y. Jiang, S. Xia. 2019. Rectified decision trees: Towards interpretability, compression and
empirical soundness. arXiv preprint arXiv:1903.05965 .

[2] Bastani, O., C. Kim, H. Bastani. 2017. Interpretability via model extraction. arXiv preprint arXiv:1706.09773 .

[3] Bastani, O., C. Kim, H. Bastani. 2017. Interpreting blackbox models via model extraction. arXiv preprint
arXiv:1705.08504 .

[4] Bennett, K. 1992. Decision tree construction via linear programming. Proceedings of the 4th Midwest Artificial
Intelligence and Cognitive Science Society Conference, Utica, Illinois.

[5] Bertsimas, D., J. Dunn. 2017. Optimal classification trees. Machine Learning 106(7) 1039–1082.

[6] Breiman, L., N. Shang. 1996. Born again trees. Tech. rep., University of California Berkeley.

[7] Buciluǎ, C., R. Caruana, A. Niculescu-Mizil. 2006. Model compression. Proceedings of the 12th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining.

[8] Clark, K., M.-T. Luong, U. Khandelwal, C. D. Manning, Q. V. Le. 2019. Bam! born-again multi-task networks
for natural language understanding. arXiv preprint arXiv:1907.04829 .

[9] Frankle, J., M. Carbin. 2018. The lottery ticket hypothesis: Finding sparse, trainable neural networks. arXiv
preprint arXiv:1803.03635 .

[10] Frosst, N., G. Hinton. 2017. Distilling a neural network into a soft decision tree. arXiv preprint
arXiv:1711.09784 .

[11] Furlanello, Tommaso, Zachary C Lipton, Michael Tschannen, Laurent Itti, Anima Anandkumar. 2018. Born
again neural networks. arXiv preprint arXiv:1805.04770 .

[12] Günlük, O., J. Kalagnanam, M. Menickelly, K. Scheinberg. 2018. Optimal decision trees for categorical data via
integer programming. arXiv preprint arXiv:1612.03225 .

References 19/21

Bibliography II

[13] Hara, S., K. Hayashi. 2016. Making tree ensembles interpretable: A bayesian model selection approach. arXiv
preprint arXiv:1606.09066 .

[14] Hinton, G., O. Vinyals, J. Dean. 2015. Distilling the knowledge in a neural network. arXiv preprint
arXiv:1503.02531 .

[15] Hu, X., C. Rudin, M. Seltzer. 2019. Optimal sparse decision trees. Advances in Neural Information Processing
Systems.

[16] Margineantu, D., T. Dietterich. 1997. Pruning adaptive boosting. Proceedings of the Fourteenth International
Conference Machine Learning.

[17] Meinshausen, N. 2010. Node harvest. The Annals of Applied Statistics 2049–2072.

[18] Nijssen, S., E. Fromont. 2007. Mining optimal decision trees from itemset lattices. Proceedings of the 13th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining.

[19] Ribeiro, M.T., S. Singh, C. Guestrin. 2016. “Why Should I Trust You?” Explaining the Predictions of Any
Classifier. 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining – KDD
’16 . 1135–1144.

[20] Rokach, L. 2016. Decision forest: Twenty years of research. Information Fusion 27 111–125.

[21] Serra, T., A. Kumar, S. Ramalingam. 2020. Lossless compression of deep neural networks. CPAIOR 2020:
Integration of Constraint Programming, Artificial Intelligence, and Operations Research. 417–430.

[22] Tamon, C., J. Xiang. 2000. On the boosting pruning problem. Proceedings of the 11th European Conference on
Machine Learning.

[23] Tan, H. F., G. Hooker, M. T. Wells. 2016. Tree space prototypes: Another look at making tree ensembles
interpretable. arXiv preprint arXiv:1611.07115 .

References 20/21

Bibliography III

[24] Verwer, S., Y. Zhang. 2019. Learning optimal classification trees using a binary linear program formulation.
Proceedings of the AAAI Conference on Artificial Intelligence.

[25] Zhang, Y., S. Burer, W. N. Street. 2006. Ensemble pruning via semi-definite programming. Journal of Machine
Learning Research 7(Jul) 1315–1338.

References 21/21

2) Optimal Counterfactual Explanations
in Tree Ensembles

Axel Parmentier1, Thibaut Vidal2,3

1 Cermics, École des Ponts Paristech
2 CIRRELT & SCALE-AI Chair in Data-Driven Supply Chains, MAGI, Polytechnique Montreal, Canada
3 Department of Computer Science, Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Brazil

Image Credit: Hitchhikers Guide
to the Galaxy

Sensitive applications of ML require Transparency and Explainability

I Machine learning applied to high stakes decisions:

• Recurrence predictions in medicine
• Credit default risk evaluations
• Even in contexts where it should not be applied in

current form (e.g., bail decisions in criminal
justice...)

I Critical decisions ⇒ Right to have explanations and
recourse, i.e., “what can I do to change the outcome”.

I Counterfactual explanations: contrastive arguments
of the type: “To obtain this loan, you need $40,000 of
annual revenue instead of the current $30,000”.

• Ideally, good counterfactual explanations provide
the “smallest” set of changes of the features (or
actions) needed to achieve the desired class,

• Bound by additional constraints imposing
plausibility and actionability.

References 2/15

Explanations in Tree Ensembles

Counterfactual Search

Given an origin point x̂ and a desired
prediction class c∗, searching for a plausi-
ble and actionable counterfactual explana-
tion consists in locating a new data point
x ∈ X that solves the following problem:

min fx̂(x)

s.t. FT (x) = c∗

x ∈ Xp ∩Xa

I Finding counterfactual explanations in tree
ensembles is notably difficult:

• Function FT (x) has a number of pieces that
grows as the product of the number of leaves
of the trees [7].

• Changing any feature impacts the
trajectory in all trees ⇒ searching for the
right combination of leaves

• Non-convex, non differentiable decision
function, NP-hard optimization problem.

References 3/15

HEURISTIC vs OPTIMAL Explanations

I Current HEURISTIC explanation
algorithms, e.g., Feature Tweaking (FT – [5])
regularly produce suboptimal solutions

• Largely overshooting the actions (up to
31.7× in our experiments) needed to
achieve the desired outcome.

• Unstable solution quality, widely varying
between different subjects and subject
groups...

• Is this transparent and fair?

I OPTIMAL counterfactual search through
mixed-integer linear programming (MILP)
provides explanations grounded on a
mathematical definition, independently of the
search algorithm

• The flexibility of the modeling framework
permit to seamlessly include a wide
diversity of metrics, objectives and
constraints

• As seen in this study, is possible to
achieve optimal results within seconds

References 4/15

OCEAN – Optimal Counterfactual Explanations

I MILP = solution of a problem represented as a set of linear equations, in which some
variables are restricted to the integer domain, under an objective measuring how difficult it
is to act on the different features.

I Solved to optimality with a branch-and-cut solver (Gurobi)

I Our model has several desirable characteristics that permit an efficient solution:
• logarithmic number of integer variables (not linear as in [1, 2]);
• tighter linear relaxation than previous models ⇒ improves branch-and-cut performance

I The approach is very flexible:
• applicable to heterogeneous data with numerical, ordinal, categorical and binary features;
• large variety of objectives: l0, l1 and l2 norm and extensions thereof;
• additional actionability and plausibility constraints.

References 5/15

Sample Flows

The λ variables represent the branch decisions for each
tree t at each layer d. The y variables represent the
flows of the counterfactual example through each tree.

yt1 = 1 t ∈ T
ytv = ytl(v) + ytr(v) t ∈ T , v ∈ VI

t∑
v∈VI

td

ytl(v) ≤ λtd t ∈ T , d ∈ Dt

ytv ∈ [0, 1] t ∈ T , v ∈ VI
t ∪ VI

t

λtd ∈ {0, 1} t ∈ T , d ∈ Dt.

Numerical Features

The µ variables represent the levels of numerical fea-
tures as ordered simplices, also connecting them with
the variables representing the branch choices.

µj−1
i ≥ µj

i j ∈ {1, . . . , ki}

µj
i ≤ 1− ytl(v) j ∈ {1, . . . , ki}, t ∈ T , v ∈ VI

tij

µj−1
i ≥ ytr(v) j ∈ {1, . . . , ki}, t ∈ T , v ∈ VI

tij

µj
i ≥ εytr(v) j ∈ {1, . . . , ki}, t ∈ T , v ∈ VI

tij

µj
i ∈ [0, 1] j ∈ {0, . . . , ki}

λt0

λt1

x2 ≤ 0.5

yt1 = 1

x1 ≤ 0.4

yt2

x1 ≤ 0.6

yt3

x1=

x2=

0.0 0.4 0.6 1.0

0.0 0.5 1.0

µ0
1 µ1

1 µ2
1

µ0
2 µ1

2

References 6/15

OCEAN – Optimal Counterfactual Explanations

Categorical Features

The ν variables represent the possible categories:

νji ≤ 1− ytl(v) j ∈ Ci, t ∈ T , v ∈ VI
tij

νji ≥ ytr(v) j ∈ Ci, t ∈ T , v ∈ VI
tij

νji ∈ {0, 1} j ∈ Ci∑
j∈Ci

νji = 1

Ordinal Features

The ω variables represent the relevant levels for the
ordinal features (only those appearing in some splitting
hyperplanes):

ωj−1
i ≥ ωj

i j ∈ {2, . . . , ki − 1}

ωj
i ≤ 1− ytl(v) j ∈ {1, . . . , ki−1}, t ∈ T , v ∈ VI

tij

ωj
i ≥ ytr(v) j ∈ {1, . . . , ki−1}, t ∈ T , v ∈ VI

tij

ωj
i ∈ {0, 1} j ∈ {1, . . . , ki − 1}

Binary Features

Simply done through binary x variables:

xi ≤ 1− ytl(v) t ∈ T , v ∈ VI
ti

xi ≥ ytr(v) t ∈ T , v ∈ VI
ti

xi ∈ {0, 1}

The domain of the variables repre-
senting the features can be relaxed
to the continuous interval [0, 1] while
retaining integrality of the linear-
relaxation solutions (with the sim-
plex algorithm).

References 7/15

OCEAN – Optimal Counterfactual Explanations

For binary, categorical, or ordinal features, we can freely set a weight for each discrete choice in the
objective. For continuous numerical features, we can proceed as follows:

Objective for numerical features

l0 :


fn
0 (µ) =

∑
i∈IN

(c−i z
−
i + c+i z

+
i)

z−i ≥ 1− µj−1
i , z+i ≥ µ

j
i i ∈ IN, j = ĵi

z−i ∈ {0, 1}, z
+
i ∈ {0, 1} i ∈ IN

l1 :


fn
1 (µ) =

ki∑
j=0

(φj+1
i − φj

i)µ
j
i

with parameter φj
i = c−i max(x̂i − xji , 0)

+ c+i max(xji − x̂i, 0)

Achieving the desired counterfactual class
c∗ though majority vote can be expressed
as:

zc =
∑
t∈T

∑
v∈VL

t

wtptvcytv c ∈ C

zc∗ > zc c ∈ C, c 6= c∗

References 8/15

OCEAN – Optimal Counterfactual Explanations

Many additional constraints related to actionability and plausibility can be seamlessly integrated into
the model:

Domain Knowledge Constraints

Fixed features xi = x̂i, µi = µ̂i, νi = ν̂i
Monotonic features xi ≥ x̂i, µi ≥ µ̂i, νi ≥ ν̂i
Known linear relations between features

A(xi − x̂i) ≤ b
(i.e., joint actionability – Venkatasubramanian and Alfano 6)

Known logical implications between features,
Example for binary features (x1 = True)⇒ (x2 = True) x2 ≥ x1
Example for categorical features x1 ∈ {Cat1,Cat2} ⇒ x2 ∈ {Cat3,Cat4} ν32 + ν42 ≥ ν11 + ν21

Resource constraints (e.g., time) as modeled by additional functions gi(x,ν,µ) gi(x,ν,µ) ≤ bi

References 9/15

Experimental Setup

I We used heterogeneous datasets coming from a wide range of applications, with up to 45222
samples and 57 features.

• Divided each data set into 80% training and 20% test
• For each data set, trained a random forest (RF) with 100 trees and maximum depth of 5, and

selected 20 origin samples with negative outcome for the counterfactual explanations
• Saved/Serialized all the RF and samples for a fair comparison between different counterfactual

explanation methods

Data set n p pn pb pc Src.

AD: Adult 45222 11 5 2 4 UCI
CC: Credit Card Default 29623 14 11 3 0 UCI
CP: COMPAS 5278 5 2 3 0 ProPublica
GC: German Credit 1000 9 5 1 3 UCI
ON: Online News 39644 47 43 2 2 UCI
PH: Data Phishing 11055 30 8 22 0 UCI
SP: Spambase 4601 57 57 0 0 UCI
ST: Students Performance 395 30 13 13 4 UCI

I Data, code and scripts available at https://github.com/vidalt/OCEAN.

References 10/15

https://github.com/vidalt/OCEAN

Computational Experiments – Performance and Optimality

Measuring the time needed to find optimal
counterfactual explanations with OCEAN for
different objectives and data sets

●

●

●
●●

●

●

●

●●

●

●

●
●

●

●

●

droplevels(interaction(Objective, Case))

T
im

e(
s)

AD CC CP GC ON PH SP ST

0.
2

0.
5

1
2

5
10 L0 L1 L2

CPU Time (s)

Comparing CPU time and solution quality with
other approaches for RF explanations: FT [5],
MACE [3], OAE [1, 2]. We use the l1 objective
(which is common to all methods) and the same
serialized RFs.

Data FT MACE OAE OCEAN
T(s) R T(s) R T(s) R T(s) R

AD 3.03 15.9 20.60 1.1 28.37 1.0 1.22 1.0
CC 29.44 10.2 41.25 1.2 5.52 1.0 1.34 1.0
CP 22.68 4.5 15.82 1.0 0.38 1.0 0.52 1.0
GC 16.26 4.8 19.03 1.0 5.08 1.0 1.16 1.0
ON 10.05 31.7 >900 — >900 — 2.97 1.0
PH 10.95 1.4 >900 — 0.94 1.0 0.52 1.0
SP NA — >900 — >900 — 2.73 1.0
ST NA — >900 — 69.64 1.0 1.10 1.0

R = Ratio between l1 distance found & optimum
NA = No counterfactual explanation found
> 900 = Time limit exceeded

References 11/15

Computational Experiments – Scalability

Comparative analysis of CPU time as a function
of the maximum depth of the trees. Number of
trees fixed to 100:

0.1

1.0

10

100

 3 4 5 6 7 8

AD

T(s)

MACE OCEAN

0.1

1.0

10

100

 3 4 5 6 7 8

CC

T(s)

OAEFT

Max Depth Max Depth

Comparative analysis of CPU time as a function
of the number of trees in the ensemble. Maximum
depth fixed to 5:

0.1

1.0

10

100

10 20 50 100 200 500

AD

T(s)

0.1

1.0

10

100

10 20 50 100 200 500

CC

T(s)

Nb Trees Nb Trees

MACE OCEANOAEFT

References 12/15

Computational Experiments – Isolation Forests for Plausibility

I Isolation forests [4] are trained to return an outlier score for any sample, inversely proportional to
its average path depth within a set of randomized trees.

• Constraining this average depth to be greater than a threshold δ controls the plausibility of
the counterfactual explanation.

• This is done within the same MILP formulation, with an additional set of constraints
representing the IF. We select δ to capture 10% of the training data as an outlier ⇒
counterfactual explanation typical of the 90% most common samples for the target class.

• Computational time remains tractable even with the addition of the IF

●

●●●

●

●

●

●

●

●
●

●●

●

●
●●

●

●

●

●

●

●

●

●

●
●
●

droplevels(interaction(Objective, Case))

T
im

e(
s)

AD CC CP GC ON PH SP ST

0.
1

0.
5

1
2

5
10

L0 L1 L2

CPU Time (s)

0.
2

References 13/15

Conclusions & Perspectives

I Optimal counterfactual explanations are achievable for most tabular datasets of practical interest

I The flexibility of an appaoch based on MILP gives much-needed flexibility to integrate additional
objectives, penalty terms, and constraints related to actionability and plausibility

I Models are still evolving, and likely to need customization for each application at hand

I Further developments could focus on improving performance, but without losing sight of
formulation ease and extendability

References 14/15

References

References

[1] Cui, Z., W. Chen, W. He, Y. Chen. 2015. Optimal action extraction for random forests and boosted trees.
Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
179–188.

[2] Kanamori, K., T. Takagi, K. Kobayashi, H. Arimura. 2020. DACE: Distribution-aware counterfactual explana-
tion by mixed-integer linear optimization. Proceedings of the Twenty-Ninth International Joint Conference
on Artificial Intelligence, IJCAI-20 2855–2862.

[3] Karimi, A.-H., G. Barthe, B. Balle, I. Valera. 2020. Model-agnostic counterfactual explanations for conse-
quential decisions. Silvia Chiappa, Roberto Calandra, eds., Proceedings of the Twenty Third International
Conference on Artificial Intelligence and Statistics, Proceedings of Machine Learning Research, vol. 108.
PMLR, 895–905.

[4] Liu, F.T., K.M. Ting, Z.-H. Zhou. 2008. Isolation forest. 2008 Eighth IEEE International Conference on
Data Mining. 413–422.

[5] Tolomei, Gabriele, Fabrizio Silvestri, Andrew Haines, Mounia Lalmas. 2017. Interpretable predictions of tree-
based ensembles via actionable feature tweaking. Proceedings of the 23rd ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining. New York, NY, 465–474.

[6] Venkatasubramanian, Suresh, Mark Alfano. 2020. The philosophical basis of algorithmic recourse. Proceedings
of the 2020 Conference on Fairness, Accountability, and Transparency 284–293.

[7] Vidal, T., M. Schiffer. 2020. Born-again tree ensembles. Hal Daumé III, Aarti Singh, eds., Proceedings of the
37th International Conference on Machine Learning, vol. 119. PMLR, Virtual, 9743–9753.

References 15/15

3) Optimal Decision Diagrams for Classification

Pedro Martins1, Maximilian Schiffer2, Thiago Serra3, Thibaut Vidal4,1

1 Department of Computer Science, Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Brazil
2 TUM School of Management, Technical University of Munich, Germany

3 Freeman College of Management, Bucknell University, USA
4 CIRRELT & SCALE-AI Chair in Data-Driven Supply Chains, MAGI, Polytechnique Montreal, Canada

Image Credit: Hitchhikers Guide
to the Galaxy

Decision Diagram for Classification – An Underexploited Opportunity?

I Decision diagrams (DD – also called decision graphs or
decision streams) have a long history

• in logic synthesis and formal circuit verification [5, 6]
• in the optimization and artificial intelligence

domains [1, 13].
• In machine learning, regularly re-emerging as a

possible classification model [10, 12, 13, 14] or a
by-product of model compression algorithms
[4, 7, 9].

• A DD is represented as a rooted directed acyclic
graph in which each internal node represents a
splitting hyperplane, and each terminal node is
uniquely associated to a class.

Figure: Credit to Stefan Szeider, TU Wien

I The topology of the graph is free (i.e., internal edge connections)

⇒ DD learning requires jointly determining the splitting hyperplanes and the
internal connections.

References 2/23

Decision Diagram for Classification – An Underexploited Opportunity?

I Decision diagrams have notable advantages over decision trees.

• Their width is not bound to grow exponentially with their depth, allowing training deep but
narrow decision diagrams without facing issues of data fragmentation [10, 14].

• Additional degrees of freedom in their topology design permit to express a richer set of
concepts and to achieve better model compression [4, 11].

I Despite this, decision diagrams have been more rarely used than decision trees

• Learning them is inherently complex: a decision diagram topology cannot easily be optimized
by construction and local optimization

I Our goal: finally proposing efficient training algorithms based on MILP.

References 3/23

Optimal Decision Diagram Training as a MILP

Flow variables:

I For each sample i and internal node u ∈ VC, define a pair of flow variables w−iu ∈ [0, 1] and
w+
iu ∈ [0, 1].

• A non-zero value in w−iu (respectively w+
iu) means that sample i passes through node u on the

negative side of the separating hyperplane (on the positive side, respectively).

I Define variables z−iuv ∈ [0, 1] (respectively z+iuv ∈ [0, 1]) to characterize the flow going from the
positive and negative sides of u to other nodes v.

w+
iv + w−iv =

{
1 if v = 0∑
u∈δ−(v)(z

+
iuv + z−iuv) otherwise

v ∈ VI, i ∈ {1, . . . , n} (1)

w−iu =
∑

v∈δ+(u)

z−iuv u ∈ VI, i ∈ {1, . . . , n} (2)

w+
iu =

∑
v∈δ+(u)

z+iuv u ∈ VI, i ∈ {1, . . . , n} (3)

References 4/23

Optimal Decision Diagram Training as a MILP

0

u

v

Class 1 Class 2

w+
iuw−

iu

z−iuv

VI
0

VI
1

VI
2

VC

Thick edges represent a possible

decision-graph topology (selected

by the training algorithm)

Flow variables w−iu, w+
iu and z−iuv

indicate the trajectory of

sample i. The following conditions

always hold: (w−iu = 1)⇒ (aT
uxi <

bu) (w+
iu = 1) ⇒ (aT

uxi ≥ bu)

The blue path corresponds

to the possible trajectory of

a sample classified as Class 1

Also additional “long arcs” connecting the internal nodes to the leaves.

References 5/23

Optimal Decision Diagram Training as a MILP

I Integrality of the flow variables is not guaranteed, due to the constraints coming from the
hyperplanes.

I To obtain integer sample flows, using an additional binary variable λil ∈ {0, 1} for each sample
i ∈ {1, . . . , n} and level l ∈ {0, . . . , D − 1}:∑

u∈VI
l

w−iu ≤ 1− λil l ∈ {0, . . . , D − 1}, i ∈ {1, . . . , n} (4)

∑
u∈VI

l

w+
iu ≤ λil l ∈ {0, . . . , D − 1}, i ∈ {1, . . . , n} (5)

I Sample i can only go to the negative (respectively positive) side of any node u of level VI
l if λil = 0

(respectively λil = 1).

References 6/23

Optimal Decision Diagram Training as a MILP

Decision diagram topology:

I Connect the flow variables to the binary design variables that characterize the topology of the
diagram.

I Define binary variable du ∈ {0, 1} for each u ∈ V that takes value 1 if this node is used in the
classification.

I For the negative and positive sides of each node u ∈ VI, we create binary design variables
y−uv ∈ {0, 1} and y+uv ∈ {0, 1} taking value 1 if and only if u links towards v on the negative and
positive sides, respectively.

du =
∑

v∈δ+(u)

y+uv =
∑

v∈δ+(u)

y−uv u ∈ VI (6)

y+uv + y−uv ≤ dv u ∈ VI, v ∈ δ+(u) (7)

z+iuv ≤ y
+
uv, u ∈ VI, v ∈ δ+(u), i ∈ {1, . . . , n} (8)

z−iuv ≤ y
−
uv u ∈ VI, v ∈ δ+(u), i ∈ {1, . . . , n} (9)

References 7/23

Optimal Decision Diagram Training as a MILP

Reducing symmetry.

I We impose that the arcs (u, v) and (u,w) such that y−uv = 1 and y+uw = 1 satisfy v < w for each
internal node u ∈ VI. This corresponds to the logical constraint (y−uv = 1)⇒ (y+uw = 0 ∀w ≤ v),
formulated as

y−uv +
∑

w∈δ+(u),w≤v

y+uw ≤ 1 u ∈ VI, v ∈ δ+(u). (10)

I Let p(u) ∈ {1, . . . , |VI
l |} be the position of each internal node u at depth l within its layer. We also

impose:

y−uv = 0 u ∈ VI, v ∈ δ+(v) ∩ VI, p(v) ≥ 2p(u) (11)

y+uv = 0 u ∈ VI, v ∈ δ+(v) ∩ VI, p(v) > 2p(u) (12)

du ≥ dv p(v) = p(u) + 1, u ∈ VI
l , v ∈ VI

l , l ∈ {1, . . . , D − 1} (13)

References 8/23

Optimal Decision Diagram Training as a MILP

Linear separator variables and consistency with the sample flows:

I Associate to each internal node v ∈ VI a vector of variables av ∈ [−1, 1]d and a variable bv ∈ [−1, 1]
to characterize the splitting hyperplane.

I Add indicator constraints to connect the path of the samples with their relative positions from the
hyperplane:

(w−iv = 1)⇒ (aT
vx

i + ε ≤ bv) i ∈ {1, . . . , n}, v ∈ V (14)

(w+
iv = 1)⇒ (aT

vx
i ≥ bv) i ∈ {1, . . . , n}, v ∈ V (15)

References 9/23

Optimal Decision Diagram Training as a MILP

Objective function:

I In a similar fashion as in [2], optimizing accuracy with an additional regularization term that favors
simple decision diagrams with few internal nodes.

I Using variables wiv ∈ [0, 1] for each sample i ∈ {1, . . . , n} and leaf v ∈ VC expressing the amount of
flow of i reaching terminal node v with class cv. These variables must satisfy the following
constraints.

wiv =
∑

u∈δ−(v)

(z+iuv + z−iuv) v ∈ VC, i ∈ {1, . . . , n} (16)

I Objective can be stated as

min
1

n

n∑
i=1

∑
v∈VC

φivwiv +
α

|VI| − 1

∑
v∈VI−{0}

dv, (17)

where φiv represents the mismatch penalty when assigning sample i to terminal node v (typically
defined as 0 if ci = cv and 1 otherwise), and α is a regularization parameter.

References 10/23

General Solution Approach

Step 1: Initial construction and improvement:

I Top-down construction approach which shares some common traits with CART [3].

• For each layer l ∈ {0, . . . , D − 2} and each internal node u ∈ VI
l , select the univariate split

that maximizes the information gain.
• To determine the internal connections, use a greedy merging policy: as long as the number of

sample flows is greater than wl+1, join the pair of flows that least decreases the information
gain.

I To obtain a better initial diagram, repeat the construction process Nit = 5 times and consider only
a random subset of 60% of the features during each split selection.

I Further improve each resulting decision diagram by re-optimizing each split from top to bottom
without changing the internal topology.

References 11/23

General Solution Approach

Step 2: Iterative refinement. Improve the decision diagram by considering each internal node
u ∈ VI from top to bottom, fixing in the MILP all design variables au, bu, du, y−uv, y+uv, to their current
value except for node u, as well as all sample flows that do not pass through node u. Solve each
restricted problem with Gurobi using a time limit of 20 seconds.

Step 3: Solution of the MILP. Finally, apply Gurobi on the complete MILP using the solution
found in the previous step as a warm start. Time limit of Tmax = 300 seconds for this phase.

References 12/23

Experimental Setup

I Same selection of 54 data sets as in Bertsimas and Dunn [2].

I All these data sets are publicly available from the UCI machine learning repository [8].

I Reflect a wide range of practical classification applications and contain between 47 to 6435 data
points with 2 to 484 features.

• Each data set is divided each data set into 50% training, 25% validation and 25% test
• To increase statistical significance, experiments are repeated 10 times with different random

seeds for each data set

References 13/23

Hyperparameter Calibration and Performance

Hyper-parameters tuning using the validation set.

I Consider different values of the regularization parameter α ∈ {0.0, 0.1, 0.25, 0.5, 1.0}
I Consider four different decision diagram skeletons: 1–2–4–8, 1–2–4–4–4, 1–2–3–3–3–3, and

1–2–2–2–2–2–2–2, hereby referred to as Skeletons I to IV, respectively.

I Train each configuration: measuring

(i) computational effort,
(ii) ability to achieve optimal training,

(iii) classification performance on the validation set and best configuration of hyper-parameters.

References 14/23

Hyperparameter Calibration and Performance

Computational performance. Table shows, for each skeleton and α combination, the number of
runs (out of 54 data sets × 10 seeds = 540 runs) for which a global optimum was found. Figure further
locates data sets that can be solved to optimality in relation to their characteristics.

α

Skeleton 0 0.1 0.25 0.5 1 Total

I 282 263 266 270 270 1351
II 305 278 279 281 278 1421

III 294 271 276 268 269 1378
IV 298 298 298 293 299 1486

Total 1179 1110 1119 1112 1116 5636 102 103 104

101

102

103

Nb. samples

N
b
.

fe
a
tu

re
s

References 15/23

Regularization Sensitivity

Also analyzing how often each combination of a value for the sparsity parameter α and skeleton yields
the best accuracy on the validation set.

α

Skeleton 0 0.1 0.25 0.5 1 Total

I 41 26 26 33 41 167
II 48 23 21 26 32 150

III 61 15 27 23 33 159
IV 11 17 7 15 14 64

Total 161 81 81 97 120 540

References 16/23

Performance Analysis

I Finally, comparing the performance of the ODDs with those of optimal decision trees (ODTs).

• Using the best skeleton from the hyper-parameter calibration phase for each data set.
• ODTs obtained by fixing the decision variables representing the internal topology of the graph.

We apply the same hyperparameter calibration process to calibrate their α parameters.

Distribution of the classification accuracy on
the test data over all data sets and runs for
the respective best ODT and ODD models:

ODT ODD

0.2

0.4

0.6

0.8

1

Model

T
e
st

d
a
ta

a
c
c
u
ra

c
y

Accuracy of all 54 × 10 data sets and runs for ODD
and ODT, sorted in ascending order:

0 100 200 300 400 500
0

0.5

1

Instance

T
e
st

d
a
ta

a
c
c
u
ra

c
y

ODT

ODD

References 17/23

Performance Analysis

I Performance gain of ODD over ODT comes from additional freedom in topology, permitting to
further exploit all decision nodes. The following example illustrates the optimal topologies found
on the “seeds” data set, as well as the data fragmentation within the classifiers.

References 18/23

ODDs – Conclusions & Perspectives

I Studied ODDs training from a combinatorial optimization viewpoint.

I First MILP for this task running within short computational time

• Methodology seems to allow optimal training for half of the data sets considered.
• Degrees of freedom of the model permit to find good topologies for each data set and avoids

data fragmentation ⇒ leads to better accuracy and generalization capability on the test set.

I Flexibility of MILP permits to extend the model towards a variety of important side requirements,
such as fairness, parsimony and stability.

References 19/23

General Conclusions

I Many research opportunities at the intersection between combinatorial optimization and
explainable/interpretable ML.

I Optimal training has received acclaim as a critical asset for maximizing accuracy or performance
(mainly due to the risk of over-fitting). However, it has a role to play given the growing emphasis
towards sparse and interpretable models (compactness needs optimization).

I Some tasks are more critical than training: explanations, guarantees, error diagnosis.

• Those are domains where search methods grounded on combinatorial optimization can excel.

I Finally, some families of models are more prone for applications of combinatorial optimization (e.g.,
random forests vs deep neural networks).

• Evolution of algorithms for these tasks may lead us to reconsider the current dominance of
DNNs in a wide variety of domains...

References 20/23

Thanks !

THANK YOU FOR YOUR ATTENTION !

Contact me (also job announcements at the M.Sc., Ph.D. and postdoc
levels in relation to the SCALE-AI chair):
thibaut.vidal@polymtl.ca

Articles, slides and data sets:
http://w1.cirrelt.ca/~vidalt/

Source codes:
https://github.com/vidalthi/

Regular updates and announcements:
https://twitter.com/vidalthi

References 21/23

thibaut.vidal@polymtl.ca
http://w1.cirrelt.ca/~vidalt/
https://github.com/vidalthi/
https://twitter.com/vidalthi

Bibliography I

[1] Bergman, D., A.A. Cire, W.-J. Van Hoeve, J. Hooker. 2016. Decision diagrams for optimization.
Springer International Publishing.

[2] Bertsimas, Dimitris, Jack Dunn. 2017. Optimal classification trees. Machine Learning 106(7)
1039–1082.

[3] Breiman, L., J.H. Friedman, R.A. Olshen, C.J. Stone. 1984. Classification and regression trees.

[4] Breslow, L.A., D.W. Aha. 1997. Simplifying decision trees: A survey. Knowledge Engineering
Review 12(1) 1–40.

[5] Bryant, R.E. 1986. Graph-based algorithms for boolean function manipulation. IEEE Transactions
on Computers C-35(8) 677–691.

[6] Bryant, R.E. 1992. Symbolic boolean manipulation with ordered binary-decision diagrams. ACM
Computing Surveys 24(3) 293–318.

[7] Choudhary, T., V. Mishra, A. Goswami, J. Sarangapani. 2020. A comprehensive survey on model
compression and acceleration. Artificial Intelligence Review 1–43.

[8] Dua, D., C. Graff. 2017. UCI machine learning repository.

[9] Gossen, F., B. Steffen. 2019. Large random forests: Optimisation for rapid evaluation. arXiv
preprint arXiv:1912.10934 .

References 22/23

Bibliography II

[10] Ignatov, D., A. Ignatov. 2018. Decision stream: Cultivating deep decision trees. Proceedings -
International Conference on Tools with Artificial Intelligence, ICTAI 905–912.

[11] Kumar, A., S. Goyal, M. Varma. 2017. Resource-efficient machine learning in 2 KB RAM for the
Internet of Things. 34th International Conference on Machine Learning, ICML 2017 4 3062–3071.

[12] Oliveira, A.L., A. Sangiovanni-Vincentelli. 1996. Using the minimum description length principle to
infer reduced ordered decision graphs. Machine Learning 25(1) 23–50.

[13] Oliver, J. 1993. Decision graphs – An extension of decision trees. Proceedings of the 4th
international workshop on artificial intelligence and statistics (AISTATS). 343––350.

[14] Shotton, J., S. Nowozin, T. Sharp, J. Winn, P. Kohli, A. Criminisi. 2013. Decision jungles:
Compact and rich models for classification. Advances in Neural Information Processing Systems
1–9.

References 23/23

	Seminar-GDR-RO-XAI-Part1
	References

	Seminar-GDR-RO-XAI-Part2
	Introduction
	Thinning Tree Ensembles – Related Literature
	Methodology
	Experimental Analyses
	References

	Seminar-GDR-RO-XAI-Part3
	Introduction
	References

	Seminar-GDR-RO-XAI-Part4
	Introduction
	References

