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Join Work With

0 A large part of this content derives from my Ph.D thesis with

» Teodor Gabriel Crainic — UQAM, Montreal
> Michel Gendreau — Polytechnique, Montreéal
» Christian Prins — UTT, Troyes, France

© Vidal Thibaut 2013

2



Join Work With

0 Plus recent and current works on specific vehicle routing problems:

< Prize-collecting VRP <+ Vehicle Routing and Truck
> Nelson Maculan — UFRJ Driver Scheduling Problem:
» Puca Huachi Vaz Penna — UFF

Asvin Goel — Jacobs
> Luis Satoru Ochi — UFF >

University, Bremen

<+ Heterogeneous VRP
» Puca Huachi Penna — UFF

L)

» Workover Rig Routing

D)

> Luis Satoru Ochi — UFF Problem:
> G. Ribeiro, B. Vieira— UFRJ
% Clustered VRP > G. Desaulniers, J. Desrosiers
> Maria Battarra — U. Southampton. —U. Montreal
» Gunes Erdogan — U. Southampton. i i
> Anand Subramanian — UEPB < Pollution Routing Problem:
> A. Subramanian — UFPB
<+ Online/Stochastic VRP > R. Kramer — UFPB

> Patrick Jaillet -- MIT
> Richard Hartl — U. Vienna
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Presentation outline

PART 1)

PART 2)

Q

d

1) Vehicle Routing Problem, and attributes.

I1) Classic Heuristics and metaheuristics for
vehicle routing

IlI) An analysis of some winning strategies

IV) A new general-purpose solution approach
> Attribute-based modular design
» Unified Local Search
» Unified Hybrid Genetic Search
» Computational Experiments

V) Some application cases
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Attribute-based modular design

0 Contributing with a new general-purpose method, which exploits
the successful concepts identified in this survey as well as the
structure of the attributes.

0 Additional challenge of this work, designing a unified method :
achieving generality & efficiency

» Drawback of current unified VRP methods: dealing with a rich
VRP model that includes several MAVRP as special cases = Still
accounting for non-activated attributes

> Still need to address the problem = but relegating problem-
specificities to small modular components

» Each separate MAVRP shall be still addressed with state-of-the-
art solution evaluation and search procedures
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Attribute-based modular design

Back to the method-oriented
attribute classification:

g

0
o}

ASSIGN ATTRIBUTES: impacting the 0
assignment of customers and routes

o]

Assignment of customers and
routes to resources

7

o
0
|
¢

S

equencing

SEQ ATTRIBUTES: impacting the nature
of the network and the sequences

7

|

EVAL ATTRIBUTES: impacting the

&

resolution

evaluation of fixed routes Q ;
2:00 d

O

Fixed sequence evaluation,
scheduling or load feasibility
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Attribute-based modular design

Q Proposed unified framework:

> Relying on assignment, sequencing & route evaluation operators 2
implemented in a generic way, based on a library of attribute-specific

modules

Assignement

module : periodic | H

Neighborhood
construction
module: 1-to-many L

Route evaluation
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An efficient and unified local search for MAVRPsS

O Route Evaluation Operators based on re-optimization

~

» Main Property : Any local-search move involving a bounded number of
node relocations or arc exchanges can be assimilated to a concatenation

of a bounded number of sub-sequences.
» The same subsequences appear many times during different moves

Inter-route RELOCATE

"' RO OO S Intra-route CROSS
Y G J
1o-0-elle-0, oo OERo},

» Data preprocessing on sub-sequences to speed up the search
(Savelsbergh 1985,1992 ...)
» The route evaluation modules must allow for such preprocessing.

© Vidal Thibaut 2013
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An efficient and unified local search for MAVRPsS

0 Route Evaluation Operators based on re-optimization
» Main Property : Any local-search move involving a bounded number of
node relocations or arc exchanges can be assimilated to a concatenation
of a bounded number of sub-sequences.

» Hence, to manage and exploit information on subsequences, five
families of route evaluation operators are used :

=

Operators for data construction:

INIT(o) Initialize the data D(vg) for a sub-sequence containing a single visit.

FORW (o) Compute the data of D(o & v;) from the data of sub-sequence o and vertex v;.
BACK(o) Compute the data of D(v; & o) from the data of vertex v; and sub-sequence o.
Operators for route evaluations:

EVAL2(0q, 09) Evaluate the cost and feasibility of the combined sequence oy @ 9.
EVALN(oq,...,0,) Evaluate the cost and feasibility of the combined sequence o1 & --- & o,.

© Vidal Thibaut 2013 9



Route evaluation operators examples

0 Example 1) Route evaluation operators for distance and capacity
constraints

What is managed ? = Partial loads L(o) and distance D(o)
Init = For a sequence o, with a single visit v., L(o,) = g, and D(g,) = 0

Forw and Back = increment L(o) and D(o)

Eval = compute the data by induction on the concatenation operator

Qo1 B o2) = Q(o1) + Q(02)
D(oy @® 02) = D(01) + dgy (|01 )oa(1) + D(02)

© Vidal Thibaut 2013

10



Route evaluation operators examples

0 Example 2) Route evaluation operators for cumulated arrival time
objectives

What is managed ? = Travel time D(o), Cumulated arrival time C(o),
Delay Cost W(o) associated to one unit of delay in starting time

Init = For a sequence o, with a single visit v, D(o,) = 0 and C(c,) =0,
and W(o,) = 1 if v, is a customer, and W(o,) = 0 if v, is a depot visit.

Forw & Back & Eval = induction on the concatenation operator:

D(o1 @ 02) = D(01) + doy (o1 )os(1) + D(02)
Clo1 @ 02) = C(o1) + W(0o2)(D(01) + doy(joy))os(1)) + Cl02)
Wi(o1 & o9) =W(oy) + W(oa)

© Vidal Thibaut 2013
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Route evaluation operators examples

0 Example 3) Route evaluation operators for time windows (and route
duration constraints)

What is managed ? = Travel time and service time T(o), earliest

feasible completion time E(o), latest feasible starting date L(o),
statement of feasibility F(o).

Init = For a sequence o, with a single visit v, T(c,) = s, E(0,) = €, + 5,
L(o,) = |.and F(o,) = true.

Forw & Back & Eval = induction on the concatenation operator:

T(oy @ o) =T(01) + dgy(|oy))oa(1) + T(02)

E(oy @ 02) = max{E(01) + dy (|51 )oa(1) T T(02), E(02)}

L(oy @ 02) = min{L(c1), L(02) — dg, (|5, )oe(1) — T (01)}
F(oy@o2) = F(o1) N Fo2) A (E(01) + doy (joy))oe(1) < L(02))

© Vidal Thibaut 2013 12



Route evaluation operators examples

0 Example 4) Route evaluation operators for soft and general time
windows

What is managed ? 2 Minimum cost F(o)(t) to process the sequence o
while starting the last service before time t, minimum cost B(o)(t) to
process the sequence o after time t.

Init = For a sequence o, with a single visit v, characterized by a service
cost function c,(t), F(og)(t) = min ., ci(x) and B(gy)(t) = min ., ci(x).

F(o & v;)(t) = min {¢;(x) + F(o)(x — So(o)) — do(|o]).i) }
Forw & Back = 0<x<t

B(v, ®o)(t) = 1'121]&1{(:2-(15) + B(o)(r +s; +dig1))}

Eval2 > Z7(01® 02) = min{F(01)(x) + B(02) (& + 55, (jos]) + Aoy (o1])oa(1))}

© Vidal Thibaut 2013
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Route evaluation operators examples

0 Example 5) Route evaluation operators . /’;\\
for the generalized VRP : \7’:0—\\———'#‘/.‘:/)
| (] ,' \ I

/
‘\ ® ,’ \\ @ /

What is managed ? = The shortest path S(o)[i,j] inside the sequence o

starting at the location i of the starting group and finishing at location j
of the ending group.

Init = For a sequence o, with a single visit v., S(o)[i,j] = +o0 if i # j, and
S(o)Ii,i] = 0.

Forw & Back & Eval = induction on the concatenation operator:

S(o1 B o9)li, j| = I S i, 1, S(e . ]
(71 & o)l J] 1<2<A s, (g <Yy 1) oDt 2]+ dey + 572y, ]

vie{l,..., A} Vi e{L,.... Aoa(loal) }

© Vidal Thibaut 2013
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An efficient and unified local search for MAVRPS

0 Generic local-search based on route evaluation operators

Algorithm 1 Unified local search based on route evaluation operators

1: Detect the good combination of evaluation operators relatively to the problem attributes
2: Build re-optimization data on subsequences using the INIT, FORW and BACK operators.
3: while some improving moves exist in the neigchborhood N do
4:  for each move u; in ' do
for each route -r;" produced by the move do
Determine the k sub-sequences [0y, ..., 0] that are concatenated to produce -rj."
if k=2, then NEWCo0ST(r) = EVAL2(07,02)
else if & > 2, then NEWCoST(r) = EVALN(01,...,0%)
if ACCEPTCRITERIA(p;) then perform the move p and update the re-optimization
data on for each route -r;-” using the INIT, FORW and BACK operators.

o B AN

0 Can serve as the basis to build any neighborhood-based unified
solver based on VNS, Tabu, ILS for MAVRPs with EVAL attributes.

0 Going one step further, designing a unified hybrid GA.

© Vidal Thibaut 2013 15



A Unified Hybrid Genetic Search (UHGS) for MAVRPs

0 UHGS = Classic GA framework + 4 main ingredients (Vidal et al. 2010)
» Management of penalized infeasible solutions in two subpopulations
» High-performance local search-based Education procedure
» Solution Representation without trip delimiters
» Diversity & Cost objective for individuals evaluations

© Vidal Thibaut 2013 16



A Unified Hybrid Genetic Search (UHGS) for MAVRPs

Initialize
Population

\/

QO General Framework of UHGS :

POPULATION
WITH DIVERSITY MANAGEMENT —
Penalties adaptation [1f termunated]
Survivors® selection
Diversification and decomposition phases Retum
I A Best Solution
[if not termunated) ¢
SELECTION @
Binary Tournament
Based on COST & DIVERSITY
'}
R \
P [ PIX CROSSOVER J
A
A v
; ( ASSIGNMENT | o MERGE
SR Placement of depot occurrences . -
I L OPERATORS | for each resource Femovwal of trip delimiters
B y.
15 - —
U ROUTE - i
T EVALUATION EDU (_ATID:\ -
E | OPERATORS | and REPAIR with probability Prp
S Based on local-search
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Unified Solution Representation and Split

0 Now dealing with MAVRPs with both ASSIGN and EVAL attributes:
Assignment of customer services to some ASSIGN attributes
resources (AARs) + separate optimization of routes for each AARs.

» Solution representation is designed accordingly.

> Furthermore, representation without trip delimiters for each

AAR.

123456 1278 134678
: r—\ 4AR k
Giant Tour
® Representation
\ \ k)
MERGE
for each AAR
SPLIT
for each AAR
0-1-2-0 0-1-2-0 0-1-0 0-3-4-0
0-3-4-5-6-0 0-7-8-0 0-6-7-8-0
AAR1 AAR-2 k
Routes of a (ve ) AdR-
Solution ~ \
J % )
@ O ¢

© Vidal Thibaut 2013 18



Unified Crossover Operator

4 phases Assignment and Insertion Crossover (AlX), to produce a
single offspring C from two parents P1 and P2.

Step 1) Choose for each AAR whether the genetic material of P1, P2,
or both parents is inherited.

Step 2) Fully transmit the selected material from P1

Step 3) Complete with the selected material from P2, check at each
step with an Assignment module whether the inheritance respects
the ASSIGN attributes specifications.

Step 4) Perform a best insertion of missing visits.

© Vidal Thibaut 2013 19



Unified Crossover Operator

a0 Bo am B Parent 1 Parent 2
4 6|3 2| 32|45 9 7 8 8 9 32 7 13256 14698 4 9 8
© ® ® ® ® ® ® ®
®@®®@@@®@@®@
0 @o @0 0 @ 7 (0] @0 ‘“’0 0 @9 (0] @o (0] @9
©) @) @) y
& O penod1] O~ peree’ @ O perod 1 ) perod 2 &0 perei @2@3\—@ 353333:@@ ® 3553311®® © ferod 2
| l
32 345 8 9
Step 1) Visits from P,
32 7 [54(5 216 9 8| 89
Step 3) Filling Step 2) Visits from P,
Remaining services /
| A
R Vg0l © K| @ Yo
(1] o (1]
WP |y 00 |5 00
OO pefod2l @ O pehed ® peron 2

Offspring C

Giant tour chromosome
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Unified Education Procedure

Based on the previously described Unified Local Search to perform
route improvement (RI) on separate AAR.

» Using CROSS, I-CROSS, Relocate, 2-Opt* and 2-Opt neighborhoods
» Pruning procedures (granular search)

» Hybrid acceptance strategy (intermediate between first
improvement and best improvement)

Combined with an assignment-improvement (Al) procedure to re-
assign customer visits into different resources and routes.

These two procedures are called in the sequence RI-Al-RI.

© Vidal Thibaut 2013 21



Population management and search guidance

0 Biased Fitness is a tradeoff between ranks in terms of solution
penalized cost cost(l), and contribution to the diversity dc(l),
measured as a distance to others individuals in the population.

BE(I) = fit(I) + (1 nbE it

0 Used during selection of the parents

» Balancing strength with innovation during
reproduction, and thus favoring
exploration of the search space.

0 and during selection of the survivors:

» Removing the individual / with worst
BF(l) also guarantees some elitism
in terms of solution value.

- nbIndiv — 1

) X de(T)

preserved

elite population

1

diversity

x 7! Worst

1
oKt removal
X | zone
X (BF21)

Best

fithess
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Comparison with problem-tailored state-of-the-art methods

0 Extensive computational experiments on 26 structurally different
VRP variants and 39 sets of benchmark instances.

0O Comparing UHGS with the best problem-tailored method for each
benchmark.

Q In the following, we indicate for each method
> % Gap to the BKS of an average run (out of 10 for UHGS).
> % Gap to the BKS of a best run (out of 10 for UHGS).
» Computational effort (total work time) for an average run

» Type of processor used.

© Vidal Thibaut 2013 23



Comparison with problem-tailored state-of-the-art methods

Variant Bench. n Obj. State-of-the-art methods
Author  Ave. Best'% T(min) CPU
GG11: +0.03% %238 8xXe 2.3G
CVRP CMT79 [50,199] C MBO7:  +0.03% 2.80 P-IV 2.8G
UHGS*: +0.02% +0.00% 11.90 Opt 24G
GGl +0.29% 85 8xXe 2.3G
CVRP GWEKC98 | [200,483] C NB09: +0.27%  +0.16% 21.51 Opt 24G
UHGS*: +0.15% +0.02% 71.41 Opt 246G
ZK12:  +0.38% +0.00% 1.09 T5500 1.67
VRPB G.J89 [25,200] C GA09:  +0.09%  +0.00% 1.13 Xe 2.4G
UHGS: +0.01% +0.00% 0.99 Opt 2.4G
NPWI10: +0.74% +0.28% 5.20 Core2 2G
CCVRP CMT79 [50,199] C RL12:  +037%  +0.07% 2.69 Core2 2G
UHGS: +0.01% -0.01% 1.42 Opt 2.2G
NPW10: +2.03% +1.38% 04.13 Core2 2G
CCVRP GWEKC98 | [200,483] C RL12: +0.34% +0.07% 21.11 Core2 2
UHGS: -0.14%  -0.23% 17.16 Opt 2.2G
SDBOF10: +0.16% +0.00%  256x0.37 256xXe 2.67G
VRPSDP SN99 [50,199] C ZTK10: +0.11% T5500 1.66G
UHGS: +40.01% +0.00% 2.79 Opt 24G
SDBOF10:  +0.30%  +0.17% 256x3.11 256xXe 2.67G
VRPSDP MGO6 [100,400] C UHGS: +0.20% +0.07% 12.00 Opt 2.4G
512 +0.08% +0.00% 7.23 I7 293G
© Vidal Thibaut 2013
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Comparison with problem-tailored state-of-the-art methods

State-of-the-art methods

o .
Vartant Bench. " Obj. Author  Aveg% Best% T(min) CPU

[SW09: +0.07% ®.34 P-M 1.7G

VFMP-F G884 [20,100] C SPUO12: +0.12% +0.01% 0.15 I7 293G
UHGS: +0.04% +40.01% 1.13 Opt 2.4G

[SW09: +0.02% 2.85 P-M 1.7G

VFMP-V G884 [20,100] C SPUO12:  +0.17% +0.00% 0.06 I7 293G
UHGS: +0.03% +0.00% 0.85 Opt 246G

P09: +0.02% 0.39 P4M 1.8G

VEFMP-FV G&4 [20,100] C UHGS: +0.01% +0.00% .99 Opt 24G
SPUO12: +0.01% +0.00% 0.13 I7 293G

. _ . X7ZKX12:  +0.48% +0.00% 1.3 NC 1.6G
LDVRE ) CMI79 1019911 ¢ UHGS: -0.28% -0.33%  2.34 Opt 2.2G
, o o XZKX12: +0.66% +0.00% 3.3 NC 1.6G
LDVRP | GWKCO8 | [200.483] | C© UHGS: -1.38% -1.52%  23.81 Opt 2.2G
HDHO09: +1.69% +0.28% 3.09 P-1V 3.2G

PVRP CGLOT | [50,417] C UHGS*:  +0.43%  +0.02% 6.78 Opt 2.4G
CM12: +0.24% +0.06% 64x3.55 64 xXe 3G

CM12:  +0.09% +0.03% 64x3.28 64 x Xe 3G

MDVRP CGLIT [50,288] C S12: +0.07% +0.02% 11.81 I7 2.93G
UHGS*: +0.08%, +0.00% .17 Opt 246G

BERI11: +0.06% 0.01 Opt 246G

GVRP B11 [16,262] C MCR12: +0.11% .34 Duo 1.83G
UHGS: +0.00% -0.01% 1.53 Opt 2.4G
© Vidal Thibaut 2013
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Comparison with problem-tailored state-of-the-art methods
Variant Bench. n Obj. E:'-tatc—uf‘—thr:—art l'l'ud:thmis B _
Author Ave. % Best% T(min) CPU
CMTT0 RTBI10: 0%,/+0.32% 0.54 P-IV 2.8G
OVRP &Fo4 [50,199] F/C 512: J+0.16% 0% /+0.00% 2.39 I7 2.93G
UHGS: 0% /40.11% 0% /+0.00% 1.97 Opt 2.4G
ZK10: 0%/+0.39% 0%/+0.21% 14.79 TH500 1.66G
OVRP GWEKC98 | [200,480] F/C S512: 0%/+0.13% 0% ,/+0.00% 64.07 I7 2.93G
UHGS: 0% /-0.11% 0% /-0.19% 16.82 Opt 2.4G
RTT09: 0%/+0.11% 0% /+0.04% 17.9 Opt 2.3G
VRPTW SDES 100 F/C UHGS*: 0%/ +0.04% 0% /+0.01% 2.68 Xe 293G
NBDI10: 0% /+0.02% 0% /+0.00% 5.0 Opt 2.4G
RTI00b: 10.16%/+3.36% 270 Opt 2.3G
VRPTW HGO9 [200,1000] F/C NBD10:  +0.20%/+0.42% +0.10%/+0.27% 21.7 Opt 2.4G
UHGS*: 4+0.18%/4+0.11% +0.08%/-0.10% 141 Xe 293G
RTI09a:  +0.89%/+0.42% 0%,/+0.24% 10.0 P-IV 3.0G
OVRPTW SDER 100 F/C KTDHS12: 0%,/ +0.79% 0% /+0.18% 10.0 Xe 2.67G
UHGS: 40.09%/-0.10% 0% /-0.10% 5.2T Opt 2.2G
. . , . KTDHS12: +2.25% 0% 10.0 Xe 267G
TDVRFTW SDES 100 F/C UHGS: -2.31% -3.68% 2104  Opt 2.2G
BDHMGOS: +0.59% 10.15 Ath 2.6G
VFEMPTW LS99 100 D RT10: +0.22% 16.67 P-IV 3.4G
UHGS: -0.15% -0.24% 4.58 Opt 2.2G
BDHMGOS: +0.25% 3.55 Ath 2.6G
VFMPTW LS99 100 C BPDRT09: +0.17% 0.06 Duo 2.4G
UHGS: -0.38% -0.49% 4.82 Opt 2.2G
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Variant Bench. n Obj. .\E:-tatc—uf‘—t]m—art l'l'lf;:thﬂds B _
Author Ave. % Best% T(min) CPU
PROS: +1.75% Opt 2.2G
PVRPTW CLD1 48,288] C CM12: +1.10% +0.76% 64x11.3 64xXe 3G
UHGS*: +0.63% +0.22% 32.7 Xe 2.93G
PEDHIOS: +1.37% 147 P-1V 3.6G
MDVRPTW CLO1 48,288] C CM12: +0.36% +0.15% 64x6.57 64xXe 3G
UHGS*: +0.19% +0.03% 6.49 Xe 2.93G
B10: +2.23% 2.94 Qd 2.67G
SDVRPTW CLO1 48,288] C CM12: +0.62% +0.36% 64x5.60 64xXe 3G
UHGS*: 4+0.36% +0.10% 5.48 Xe 2.93G
- : - M- Lhr 0 K/ -
, VRPSTW 9Dss 100 F/TW/C F10: 0% | JT.IDJ P-M 1.6G
(type 1, a=100) : UHGS: -3.05% -4.42% 18.62 Opt 2.2G
VRPSTW ) KTDHS12: +0.62% +0.00% 10.0 Xe 2.67G
SDES8 100 C+TW
(type 1, a=1) * UHGS: -0.13% -0.18% 5.82 Opt 2.2G
VRPSTW . FELOT7: 0% 5.98 P-IT 600M
SD&8 100 F/TW/C
(type 2, a=100) ! ' UHGS: -13.91% -13.91% 41.16 Opt 2.2G
VRPSTW SDES8 100 C+TW UHGS: +0.26% 0% 29.96 Opt 2.2G
(tyvpe 2, a=1)
MDPVRPTW New 48,288] C UHGS: 4+0.77% 0% 16.89 Opt 2.2G
VRTDSP Go9 100 F/C PDDR10: 0%,/ 0% 0%, 0% 88 Opt 2.3G
(E.U. rules) ! UHGS*:  -0.56%/-0.54% -0.85%/-0.70% 228 Xe 2.93G
© Vidal Thibaut 2013 27




Comparison with problem-tailored state-of-the-art methods

List of acronyvms for benchmarks

B11 Bektas et al. (2011) G&4 Golden (1984) LS99 Liu and Shen (1999)

CGLIT Cordean et al. (1997) GO09 Goel (2009) MGO6 Montané and Galvao (2006)
CLO1 Cordeau and Laporte (2001) GH99 Gehring and Homberger (1999) SD&8 Solomon and Desrosiers (1988)
CMT79 Christofides et al. (1979) GJga Goetschalckx and J.-B. (1989)  SN99 Salhi and Nagy (1999)

Fo4 Fisher (1994) GWEKC98  Golden et al. (1998)

List of acronyms for state-of-the-art algorithms

B10 Belhaiza (2010) KTDHS12 Kritzinger et al. (2012) RT10 Repoussis and Tarantilis (2010)
BDHMGOS8 Briysy et al. (2008a) MBOT Mester and Briiysy (2007) RTBEI10 Repoussis et al. (2010)

BER11 Bektas et al. (2011) MCRI12 Moccia et al. (2012) RTIN9a Repoussis et al. (2009a)

BLR11 Balseiro et al. (2011) NBO9 Nagata and Briysy (2009) RTIOOh Repoussis et al. (2009b)
BPDRT09  Briysy et al. (2009) NBD10 Nagata et al. (2010) 512 Subramanian (2012)

CM12 Cordean and M. (2012) NPW10 Ngueveu et al. (2010) SDBOF10 Subramanian et al. (2010)

F10 Figliozzi (2010) P09 Prins (2009) SPUO12  Subramanian et al. (2012)

FELOT Fu et al. (2007) PBDHO8  Polacek et al. (2008) XZKX12  Xiao et al. (2012)

(GA09 Gajpal and Abad (2009) PDDR10  Prescott-Gagnon et al. (2010) ZTRK10 Zachariadis et al. (2010)

GGI1 Groér and Golden (2011) PRO7 Pisinger and Ropke (2007) ZK10 Zachariadis and Kiranoudis (2010)
HDH0O9 Hemmelmayr et al. (2000) PRO# Pirkwieser and Raidl (2008) ZK11 Zachariadis and Kiranoudis (2011)
ISWo9 Imran et al. (2009) RL12 Ribeiro and Laporte (2012) ZK12 Zachariadis and Kiranoudis (2012)
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Conclusions on UHGS

0 A unified hybrid genetic search

» Using a local-search framework which is generic and
computationally efficient.

» With generalized solution representation, Split procedure,
genetic operators (Crossover) and population management
methods.

» State-of-the-art results when compared to each problem-tailored
method for 26 VRP variants.

0 Generality does not necessarily alter performance for the
considered classes of problems.

© Vidal Thibaut 2013 29



Conclusions on UHGS

O Some perspectives —on UHGS :

> Extend the range of problems (especially SEQ attributes,
stochastic and multi-objective settings)

» Use UHGS to conduct experiments on metaheuristic strategies on
a wide range of VRPs

» Further study of the combinatorial aspect of attributes relatively
to UHGS operators.

a Vidal, T., Crainic, T. G., Gendreau, M., & Prins, C. (2013). A unified solution
framework for multi-attribute vehicle routing problems. European Journal of
Operational Research, Forthcoming.
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a

1) Vehicle Routing Problem, and attributes.

I1) Classic Heuristics and metaheuristics for
vehicle routing

IlI) An analysis of some winning strategies

IV) A new general-purpose solution approach
» Attribute-based modular design
» Unified Local Search
» Unified Hybrid Genetic Search
» Computational Experiments

V) Some application cases
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Multi-attribute VRPs : some application cases

O Application cases originating from academic collaborations and
personal projects.

O Analysis of hours of service regulations around the world,
considering optimized solutions

<< SOME PREZI SLIDES >>

0 Goel, A., & Vidal, T. (2013). Hours of service regulations in road freight
transport: an optimization-based international assessment. Transportation
Science, Articles in Advance.
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Multi-attribute VRPs : some application cases

0 Workover Rig Routing Problem

» One specialist (and author of the next 4 slides) is Glaydston
Ribeiro

> We recently studied some advanced heuristics in
Ribeiro, G. M., Desaulniers, G., Desrosiers, J., Vidal, T., & Vieira, B. S.

(2013). Efficient Heuristics for the Workover Rig Routing Problem with

a Heterogeneous Fleet and a Finite Horizon. Submitted. Les Cahiers du
GERAD. Université de Montréal. G-2013-47
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Multi-attribute VRPs : some application cases

Workover Rig Routing Problem

Onshore oil wells in Southeast and Northeast regions in Brazil use
artificial lift methods

Each oil well has a specialized and expensive equipment, which
operates under hard conditions and for a long time

Maintenance services are needed after some time : cleaning,
reinstatement, stimulation

In general, these maintenance services are performed by a short
number of expensive workover rigs which are transported by trucks.
Some rigs may have specific use, and not all rigs can provide all
services.
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Multi-attribute VRPs : some application cases

0 Workover Rig Routing Problem

Workover rig performing
a maintenance service
(Aloise et al., 2006)

Transportation of a
workover rig
(Aloise et al., 2006)
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Multi-attribute VRPs : some application cases

Workover Rig Routing Problem

When a well requires a maintenance, its production is reduced or
stopped for safety reasons.
> A rig must be sent to perform the required service in order to
reestablish its production.
> The production loss of a well is obtained as its regular daily flow
rate, multiplied by the number of days during which it does not
operate.
The rigs are located at different positions and may take considerable
time to reach the wells.
In our case:
» all services must be performed within a planning horizon;
> each well is serviced at most once;
» total production loss must be minimized.
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Multi-attribute VRPs : some application cases

0 Workover Rig Routing Problem
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Multi-attribute VRPs : some application cases

0 Workover Rig Routing Problem

0 Developed four heuristics for this problem
» Variable Neighborhood Search
» Heuristic Branch-and-price-and-cut
> Adaptive Large Neighborhood Searcjh

> Hybrid Genetic Algorithm = not using giant-tour solution
representation in this case

0 Experimentations on 80 instances from Ribeiro et al. (2012).
> 100-200 wells,
> 5-10rigs
» H=200-300 time increments (equiv 14-21 days).
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Multi-attribute VRPs : some application cases

0 Workover Rig Routing Problem

VNS BPC ALNS HGA
Combination Best Time Dev Best Time Dev Best Time Dev Best Time Dev
(No.)  (s) (%) (No.)  (s) (%) (No.)  (s) (%) (No.)  (s) (%)
100/ 5/200 0 6.5 6.96 10 0.5 0.00 10 6.8 0.01 10 5.7 0.00
100/10/200 0 9.2 6.39 9 2.3 0.00 9 9.3 0.04 10 4.8 0.01
100/ 5/300 0 9.4 7.88 4 30.7 0.08 9 9.5 0.04 10 5.5  0.00
100/10/300 0 7.8 6.87 5 239 0.02 10 7.5 0.02 10 4.3  0.00
200/ 5/200 0 25.7 8.92 9 14.1  0.01 7 26.6 0.23 10 26.5 0.01
200/10/200 0 51.9 9.89 8 27.9 0.03 7 52.4 0.22 10 26.7 0.02
200/ 5/300 0 44.5 12.56 8 296.7 0.00 2 45.4  0.52 10 26.7 0.06
200/10/300 0 67.6 12.87 2 815.6 0.28 3 66.2 0.46 10 21.1  0.06

Q All heuristics provide results of high quality in very short CPU time.

» HGA seems to produce all best known solutions, but BCP may be

faster for some smaller-size problems.
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Conclusions, Guidelines and Perspectives

0 Recipe -- Solving large and complex multi-attribute VRP :

1) Analyze the structure, and identify attributes that are just a matter of
separate route evaluations

2) Possibly Relax linking constraints
3) Create a purposeful local search
4) Add some simple metaheuristic strategies

5) Adjust the balance between exploration and intensification
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Conclusions, Guidelines and Perspectives

0 Research Perspectives — on VRP metaheuristics in general :

>

Identify some “good” search spaces for broad MAVRP classes,
and compound neighborhoods.

Diversity management and definition of better population-
diversity metrics and distances

More intelligent pruning procedures.

Better exploiting the search history, and profiting for the very
particular structure of MAVRP search spaces.

Finding good and simple hybridizations between classic methods.
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Thank you for your attention !

For further reading, and follow-up works:

Vidal, T., Crainic, T. G., Gendreau, M., & Prins, C. (2013). A Unified Solution Framework for Multi-Attribute
Vehicle Routing Problems. European Journal of Operational Research, Forthcoming

Vidal, T., Crainic, T. G., Gendreau, M., & Prins, C. (2013). A hybrid genetic algorithm with adaptive diversity
management for a large class of vehicle routing problems with time-windows. Computers & Operations
Research, 40(1), 475—-489.

Ribeiro, G. M., Desaulniers, G., Desrosiers, J., Vidal, T., & Vieira, B. S. (2013). Efficient Heuristics for the Workover
Rig Routing Problem with a Heterogeneous Fleet and a Finite Horizon. Cahiers du GERAD.

Vidal, T., Crainic, T. G., Gendreau, M., Lahrichi, N., & Rei, W. (2012). A Hybrid Genetic Algorithm for Multi-
Depot and Periodic Vehicle Routing Problems. Operations Research, 60(3), 611-624.

Vidal T., Crainic T.G., Gendreau M., Prins C. Heuristics for Multi-Attribute Vehicle Routing Problems: A
Survey and Synthesis (2013). European Journal of Operational Research, Forthcoming

Vidal, T., Crainic, T. G., Gendreau, M., & Prins, C. (2012). Implicit Depot Assignments and Rotations in
Vehicle Routing Heuristics. Submitted to European Journal of Operational Research. Revised.

Vidal, T., Crainic, T. G., Gendreau, M., & Prins, C. (2012). A Unifying View on Timing Problems and
Algorithms. Submitted to Networks. Tech Rep CIRRELT-2011-43.

Goel, A., & Vidal, T. (2012). Hours of service regulations in road freight transport : an optimization-based
international assessment. Transportation Science

Links to other technical reports, papers and slides can be found at http://wl1.cirrelt.ca/~vidalt/
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