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Outline of the presentation 

 I) A general-purpose solver for multi-attribute vehicle routing 
problems 
 Multi-attribute vehicle routing problems 

 An efficient and unified local search for MAVRPs 

 A Unified Hybrid Genetic Search (UHGS) for MAVRPs 

 Computational experiments 

 

 II) Timing problems and algorithms 
 Several applications presenting similar timing issues 

 Classification and notation 

 Reductions 

 Timing Re-optimization 
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Multi-attribute vehicle routing problems (MAVRPs) 

 Classical “vehicle routing problems (VRP)”  
 plethora of exact and heuristic methods 
 

 

 Challenges related to the resolution of VRP 
variants with additional attributes (multi-
attribute VRPs, MAVRPs) 

 modeling the specificities of application 
cases, customers requirements, network and 
vehicle specificities,  operators abilities… 

 Combining several attributes together can 
lead to highly complex rich VRPs. 

 Dramatic increase in the literature dedicated 
to specific VRP variants. 
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Multi-attribute vehicle routing problems (MAVRPs) 

 General purpose solvers / unified methods: address a wide range 
of problems without need for extensive adaptation or user 
expertise. 

 

 Necessary tools for 1) the timely application of current 
optimization methods to industrial settings. 2) for assessing 
the scope of application of elements of methodology 
 

 Few/none of them in the academic VRP literature. Some 
algorithms reporting high quality solutions on several MAVRPs: 
UTS (Cordeau et al. 1997,2001), ALNS (Pisinger and Ropke 
2006), ILS (Subramanian et al. 2013).  

• 7 MAVRP with a single code 

• But “curse of richness” 
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Classification & Proposed Methodology 

 We classified attributes into three categories related to their impact on 
VRP resolution methods : 
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Classification & Proposed Methodology 

 

 ASSIGN ATTRIBUTES: impacting the  
assignment of customers and routes  

 Periodic, Multi-Depot, Heteroge- 
neous Fleet, Location Routing… 

 

 SEQ ATTRIBUTES: impacting the nature  
of the network and the sequences 

 P&D, Backhauls, Two Echelon,  
Truck-and-Trailer… 
 

 EVAL ATTRIBUTES: impacting the  
evaluation of fixed routes 

 Time windows, Time-dep. travel time, 
Loading constraints, HOS regulations 
Lunch breaks, Load-Dependent costs… 
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Classification & Proposed Methodology 

 Challenge: Achieving both genericity and efficiency 
 Still need to address the problem  but relegating problem-specificities 

to small modular components 

 Each separate MAVRP shall be still addressed with state-of-the-art 
solution evaluation and search procedures 

 Not dealing with “dummy” attributes 
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Attribute-based modular design 

 Unified framework:  
 Relying on assignment, sequencing & route evaluation (RE) operators 

to do attribute-dependent tasks. Implemented in a generic way. 

 Attribute-dependent modules are selected and combined by the 
method, relatively to the problem structure, to implement the 
assignment, sequencing and RE operators. 

Metaheuristic &  

Problem-

independent 

Search strategies 

Assignment operator: 
SUGGEST ASSIGN 

Incremental Route 

Evaluation Operators: 
PRE-PROCESS & 

EVALUATE 

Assignement: 

periodic 

Route evaluation: Time 

Windows + Load-

Dependent Cost 

Sequencing operator: 
GENERATE NEIGHB. Neighborhood 

construction: 

one-to-many 
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An efficient and unified local search for MAVRPs 

 

 
 

 Route Evaluation Operators based on re-optimization 

 Main Property : Any local-search move involving a bounded number of 
node relocations or arc exchanges can be assimilated to a concatenation 
of a bounded number of sub-sequences. 

 The same subsequences appear many times during different moves 

 

 

 

 

 

 

 Data preprocessing on sub-sequences to speed up the search 
(Savelsbergh 1985,1992 …) 

 The route evaluation operator must allow for such preprocessing. 
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An efficient and unified local search for MAVRPs 

 

 
 

 Route Evaluation Operators based on re-optimization 
 

 Main Property : Any local-search move involving a bounded number of 
node relocations or arc exchanges can be assimilated to a concatenation of 
a bounded number of sub-sequences. 

 We compute characteristic information on subsequences by induction on 
the concatenation operator     . Four tasks are necessary: 

 

• Init: Initialize the characteristic information on a single node 

• Forw: Append an additional node at the end of an existing sequence, and 
derive the resulting characteristic information 

• Back: Append an additional node at the beginning of an existing sequence, and 
derive the resulting characteristic information 

• Eval: Evaluate a move as a concatenation of a bounded number of 
subsequences using the characteristic information of each one. 
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Route evaluation operators examples 

 Example 1) Route evaluation operators for distance and capacity 
constraints 

What is managed ?  Partial loads L(σ) and distance D(σ) 
 

Init  For a sequence σ0 with a single visit vi , L(σ0) = qi and D(σ0) = 0 
 

Forw and Back  increment L(σ) and D(σ) 

Eval  compute the data by induction on the concatenation operator 
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Route evaluation operators examples 

 Example 2) Route evaluation operators for cumulated arrival time 
objectives 

 
What is managed ?  Travel time D(σ), Cumulated arrival  time C(σ), 
Delay Cost  W(σ) associated to one unit of delay in starting time 

Init  For a sequence σ0 with a single visit vi , D(σ0) = 0 and C(σ0) = 0, 
and W(σ0) = 1 if vi is a customer, and W(σ0) = 0 if vi is a depot visit. 

Forw & Back & Eval  induction on the concatenation operator: 
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Route evaluation operators examples 

 Example 3) Route evaluation operators for time windows (and route 
duration constraints) 

 
What is managed ?  Travel time and service time T(σ), earliest 
feasible completion time E(σ), latest feasible starting date  L(σ), 
statement of feasibility F(σ). 

Init  For a sequence σ0 with a single visit vi , T(σ0) = si, E(σ0) = ei + si, 
L(σ0) = li and F(σ0) = true.  

Forw & Back & Eval  induction on the concatenation operator: 
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Route evaluation operators examples 

 Example 4) Route evaluation operators for lunch break positioning in 
presence of time-window constraints 

 
What is managed ?  Same set of data (T(σ), E(σ), L(σ), and F(σ))  as in 
the TW case, and it is duplicated to also provide T’(σ), E’(σ), L’(σ), and 
F’(σ) for the sequence where exactly one lunch break was inserted. 

Init  As previously for T(σ0), E(σ0), L(σ0), and F(σ0). Furthermore,  
T’(σ0) = +∞ , E’(σ0) = +∞ , L’(σ0) = 0, and F’(σ0) = false. 

Forw & Back & Eval  induction on the concatenation operator, see 
next page for the equations.  
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Route evaluation operators examples 

 Example 4) Route evaluation operators for lunch break positioning in 
presence of time-window constraints 
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Route evaluation operators examples 

 Example 5) Route evaluation operators for soft and general time 
windows 

What is managed ?  Minimum cost F(σ)(t) to process the sequence σ 
while starting the last service before time t, minimum cost B(σ)(t) to 
process the sequence σ after time t. 

Init  For a sequence σ0 with a single visit vi characterized by a service 
cost function ci(t), F(σ0)(t) = min(x≤t) ci(x) and B(σ0)(t) = min(x≥t) ci(x). 

 
Forw & Back  

Eval 2   
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Route evaluation operators examples 

 Example 6) Route evaluation operators 
for the generalized VRP : 

What is managed ?  The shortest path S(σ)[i,j] inside the sequence σ 
starting at the location i of the starting group and finishing at location j 
of the ending group. 

Init  For a sequence σ0 with a single visit vi , S(σ)[i,j] = +∞ if i ≠ j, and 
S(σ)[i,i] = 0. 

Forw & Back & Eval  induction on the concatenation operator: 
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Route evaluation operators examples 

 Other examples: many other route evaluation operators have been 
designed for other vehicle routing variants. 

 

 Some advanced route evaluation operators, based on dynamic 
programming, enable to implicitly and optimally decide the first 
visit in the route (optimal rotation), the customer-to-depot or 
customer-to-vehicle type assignment, or the selection of 
customers in a prize-collecting setting. 
 

 See for further examples:  
Vidal, T., Crainic, T. G., Gendreau, M.,  
& Prins, C. (2012). Implicit Depot  
Assignments and Rotations in Vehicle  
Routing Heuristics.  
Submitted to EJOR. 
Tech. Rep. 2012, CIRRELT. 
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An efficient and unified local search for MAVRPs 

 Generic local-search based on route evaluation operators 

 

 

 

 

 

 

 

 

 

 Can serve as the basis to build any neighborhood-based unified 
solver based on VNS, Tabu, ILS for MAVRPs with EVAL attributes. 

 Going one step further, designing a unified hybrid GA. 
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 UHGS = Classic GA framework + 4 main ingredients (Vidal et al. 2010) 

 Management of penalized infeasible solutions in two subpopulations 

 High-performance local search-based Education procedure 

 Solution Representation without trip delimiters 

 Diversity & Cost objective for individuals evaluations 

A Unified Hybrid Genetic Search (UHGS) for MAVRPs 
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 General Framework of UHGS : 

A Unified Hybrid Genetic Search (UHGS) for MAVRPs 
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Unified Solution Representation and Split 

 Now dealing with MAVRPs with both ASSIGN and EVAL attributes: 
Assignment of customer services to some ASSIGN attributes 
resources (AARs) + separate optimization of routes for each AARs. 

 Solution representation is designed accordingly. 

 Furthermore,  representation without trip delimiters for each 
AAR. 
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Unified Solution Representation and Split 

 Solution representation as a giant-tour per AAR  requires a Split 
algorithm (Prins 2004) for optimal segmentation into routes. 
 

 We propose a unified Split  
algorithm 

 As usual, the problem is solved 
as a m-shortest path 

 The route evaluation  
operators are used to  
build the auxiliary graph 



© Vidal Thibaut 2012 25 

Unified Solution Representation and Split 

 Solution representation as a giant-tour per AAR  requires a Split 
algorithm (Prins 2004) for optimal segmentation into routes. 
 

 

 

 Unified Split algorithm. 
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Unified Crossover Operator 

 4 phases  Assignment and  Insertion Crossover (AIX), to produce a 
single offspring C from two parents P1 and P2. 
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Unified Education Procedure 

 

 

 

 Unified Local Search to perform route improvement (RI) on separate 
AAR. 

 Using CROSS, I-CROSS, Relocate, 2-Opt* and 2-Opt neighborhoods 

 Pruning procedures (granular search) 

 Combined with an assignment-improvement (AI) procedure to re-
assign customer visits into different resources and routes : RI-AI-RI. 
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Population management and search guidance 

 Biased Fitness is a tradeoff between ranks in terms of solution 
penalized cost cost(I), and contribution to the diversity dc(I), 
measured as a distance to others individuals in the population. 

 

 

 

 

 

 Used during selection of the parents  

 Balancing strength with innovation during  
reproduction, and thus favoring  
exploration of the search space.  
 

 and during selection of the survivors:  

 Removing the individual I with worst  
BF(I) also guarantees some elitism  
in terms of solution value. 
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Comparison with problem-tailored state-of-the-art methods  

 

 Extensive computational experiments on 26 structurally different 
VRP variants and 39 sets of benchmark instances.  

 A total of 1008 problem instances. 
 

 Comparing UHGS with the best problem-tailored method for each 
benchmark and problem. 10 runs on each problem. 
 

 In  the following, we indicate for each method 

 % Gap to the BKS of an average run (out of 10 for UHGS). 

 % Gap to the BKS of a best run (out of 10 for UHGS). 

 Computational effort (total work time) for an average run 

 Type of processor used. 
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Comparison with problem-tailored state-of-the-art methods  
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Comparison with problem-tailored state-of-the-art methods  
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Comparison with problem-tailored state-of-the-art methods  
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Comparison with problem-tailored state-of-the-art methods  
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Comparison with problem-tailored state-of-the-art methods  

 

 

 

 

 BKS has been found or improved on 954/1008 problems ! 

 Strictly improved on 550/1008 problems. 

 All known optimal solutions have been retrieved !! 

 Run time of a few minutes for average-size instances (n = 200-300)  

 Standard deviation below 0.1% 

 Outperforming the current best 179/180 problem-dedicated 
algorithms from the literature. New best method on 28/29 problems 
and 37/38 benchmarks !!! 
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Conclusions 

 A component-based design & unified hybrid genetic search 

 Method structure designed in accordance with problem structure. 
Attribute-dependent tasks are identified and addressed by adaptive 
components. 

 UHGS proof-of-concept : with unified solution representation, Split 
procedure, genetic operators (Crossover) and population management 
methods. 

 Major methodological breakthrough : UHGS redefines the state-of-the-
art for 26 major VRP variants, outperforming 179/180 current best 
problem-tailored methods. 

 Major impact on current OR practice : finally an efficient solver for rich 
VRP, state-of-the-art & ready-to-run. 
 

 Generality does not necessarily go against performance for the 
considered MAVRPs. 
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Perspectives 

 

 Perspectives :  

 Extend the range of problems (especially SEQ attributes, 
stochastic and multi-objective settings) 

 UHGS can be now viewed as a “laboratory” on which we can 
experiment new solution concepts not only on one problem, but 
on many at the same time 

 Integrate assignment, sequencing and route evaluations (often 
scheduling) within polynomially-enumerable large 
neighborhoods. 

 Problems with multiple levels, cross-docking, synchronization, 
and multiple modes. 



© Vidal Thibaut 2012 37 

Outline of the presentation 

 I) A general-purpose solver for multi-attribute vehicle routing 
problems 
 Multi-attribute vehicle routing problems 

 An efficient and unified local search for MAVRPs 

 A Unified Hybrid Genetic Search (UHGS) for MAVRPs 

 Computational experiments 

 

 II) Timing problems and algorithms 
 Several applications presenting similar timing issues 

 Classification and notation 

 Reductions 

 Timing Re-optimization 

 



© Vidal Thibaut 2012 38 

Several problems 

 

 General effort dedicated to better address rich vehicle routing 
problems involving many side constraints and attributes. 
 

 Observation : several VRP settings deserve their richness to the 
temporal features they involve : Time windows, time-dependent 
cost and travel times, flexible travel times, stochastic travel times, 
break scheduling… 
 

 The same questions are encountered in different domains: vehicle 
routing, scheduling, PERT, and isotone regression in statistics, 
among others. 
 

 Leading us to a cross-domain analysis and classification of timing 
problems and algorithms. 
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Several problems 

 Four problems originating from different domains 

VRPTW                      E/T                               ship                              isotonic 
                             scheduling                   speed opt.                     regression 
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Several problems 

 Four problems originating from different domains: 

VRPTW                      E/T                               ship                              isotonic 
                             scheduling                   speed opt.                     regression 

When visit 
sequence is 

fixed, 
optimizing on 

visit dates: 
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Several problems 

 Four problems originating from different domains: 

VRPTW                      E/T                               ship                              isotonic 
                             scheduling                   speed opt.                     regression 

When visit 
sequence is fixed, 

optimizing on 
task execution 

dates: 
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Several problems 

 Four problems originating from different domains: 

VRPTW                      E/T                               ship                              isotonic 
                             scheduling                   speed opt.                     regression 

When visit 
sequence is fixed, 
fuel consumption 

optimization: 



© Vidal Thibaut 2012 43 

Several problems 

 Four problems originating from different domains: 

VRPTW                      E/T                               ship                              isotonic 
                             scheduling                   speed opt.                     regression 



© Vidal Thibaut 2012 44 

… with some characteristics in common 

Ship  speed opt. 

VRPTW  E/T  scheduling 

Isotonic regression 

TIMING 
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Timing problems 

 Timing problems seek to determine the execution dates (t1,…,tn) for 
a fixed sequence of activities. 

 Totally ordered continuous variables 

 Additional features F 
x characterized by functions fy

x for 1 ≤ y ≤ mx 

that participate either in the objective or as constraints:  

 time windows, time-dependent proc. times, flexible travel times, 
time lags, no waiting, limited waiting, and so on… 

TIMING 
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Timing problems 

 Several names in the literature: Scheduling, Timing, Projections onto 
Order Simplexes, Optimal service time problem … 

 Few dedicated studies, literature scattered among several research 
domains despite its relevance to many applications 

 Thus motivating a dedicated review and analysis of timing 
algorithms to fill the gap. 

TIMING 
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Timing features from the vehicle routing domain 

 Rich vehicle routing problems can involve various timing features 
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Timing features hierarchy 

 

 These features can be 
classified and 
hierarchized (many-
one linear reduction 
relationships between 
the associated timing 
problems) 

 

 Features in the NP-
hard area lead to NP-
hard timing problems 
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Timing features hierarchy 

 In this presentation, 
brief glimpse of the 
analysis. 

 

 We examine a 
particular feature as 
illustrative example 

 

 A similar study has 
been conducted  on 
other features from 
this figure. 
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A feature example: soft time-windows 

 We inventoried more than 30 algorithms from various domains 
(routing, scheduling, PERT, statistics…) that address these models. 
 

 The solution block representation / active set framework 
(Chakravarti 1989, Best & Chakravarti 1990, Best et al. 2000, Ahuja & 
Orlin 2001) can be used to characterize these methods. But we need 
to generalize the optimality conditions to the non-smooth case. 

 

 Timing problem  

 with soft time-windows 
(penalized early and  
late arrival)  

 and generally with any convex 
separable cost 
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A feature example: soft time-windows 

 A block B is defined as a subsequence of activities (aB(1),…,aB(|B|)) 

processed consecutively (such that ti + pi = ti +1) 

 Theorem: Let costs ci(ti) be proper convex, eventually 
non-smooth, functions. A solution (t*

1,…,t*
n) of the 

timing problem with convex separable costs is optimal 
if and only if it can be assimilated to a succession of 
activity blocks (B1,…,Bm) such that: 
& 

1) Blocks are optimally placed: for each block Bi,  
  t*

Bi(1) ϵ argmin CBi
(t)  

& 

2) Blocks are spaced: for each pair of blocks (Bi,Bi+1), 
  t*

Bi(1) + ΣpBi(j) 
 < t*

Bi+1(1)  
& 

3) Blocks are consistent: for each block Bi and prefix 
block Bi

k,  
             max argmin CBi

k(t) ≥ t*
Bi(1) 

j 

t 
a1 a2 a3 

t 

a1 a2 a3 

t 
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A feature example: soft time-windows 

 

 Three main families of algorithms can be identified: 

 Primal feasible, that respect spacing condition 2 

 Dual feasible, that respect consistency condition 3 

 Dynamic programming 

 

 To illustrate, consider a small problem with 6 activities 
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A feature example: soft time-windows 

 Primal feasible method, respecting the spacing condition. 

 Brunk (1955) : Minimum Lower Set Algorithm : O (n²) unimodal minimizations 

 Extended by Garey et al. (1988) and Best & Chakravarti (1990) :  
O(n) unimodal function minimizations in the general convex case. 
O(n log n) elementary operations in the case of (E/T) scheduling 

 

 

 

 

 

 

 

 Other related methods from (E/T) scheduling:   Lee and Choi (1995), Davis and 
Kanet (1993), Wan and Yen (2002), Pan and Shi (2005)  in O(n log n) 

 For more general cases, Hendel and Sourd (2007) for PL functions, and 
Chrétienne and Sourd (2003) in the context of PERT with convex costs. 

 

 

 

 

 

 

 

                      Garey et al. (1988)                             Best & Chakravarti (1990)  
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A feature example: soft time-windows 

 Dual feasible method, respecting the consistency condition. 

 Ayer et al. (1955) : Pool Adjacent Violator Algorithm (PAV). 

 

 

 

 

 

 

 Best et al. (2000) and Ahuja and Orlin (2001)  : Extension to the general 
convex case -> O(n) unimodal function minimizations 

 Pardalos (1995)  : O(n log² n) for Isotone Regression with || ||1  (= E/T 
scheduling with equal penalties for earliness and tardiness) 

 Grotzinger and Witzgall (1984) and Pardalos and Xue (1999) -> O(n) 
elementary operations for the quadratic case. 

 Dumas et al. (1990) : another application of this principle for the VRP with 

convex service costs -> O(n) unimodal function minimizations 
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A feature example: soft time-windows 

 Dynamic programming-based methods (Yano and Kim 1991, Sourd 
2005, Ibaraki et al. 2005, 2008, Hendel and Sourd 2007, Hashimoto 
et al. 2006, 2008) 

 

 Forward dynamic programming 

 

 

 

 Backward dynamic programming 
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A feature example: soft time-windows 

 

 Forward dynamic programming 
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Timing problems 

 

 

 

 

 Hence, many different methods for this particular feature example. 
The literature on timing problems is rich, but scattered. All in all, 26 
different methods from different domains were classified as 
variations of 3 main algorithmic ideas. 
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Timing re-optimization 

 

 Furthermore, when used within LS, solving all timing problems from 
scratch is generally not efficient 
 

 

 The general goal when exploring neighborhoods is to solve N 
successive timing problems with different activity permutations σk.  
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Timing re-optimization 

 In classical VRP neighborhoods, the neighborhood size is often 
rather large: |N| = Ω(n²), and  permutations are very particular.  

 They have a bounded number (often <= 4) of breakpoints: 
integers x such that σ(x)+1 ≠ σ(x+1),  

 
 The resulting sequences of activities can be assimilated to 

recombinations of a bounded number of subsequences. 

 

 

 

 

 Such that invariants on subsequences can be exploited through 
the search (Savelsbergh 1985, 1992, Kindervater 1998). 

 

123 678 45 
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Timing re-optimization 

 

 Management of information of subsequences, efficient timing re-
optimization by means of a subset of 4 procedures, used within local 
searches: 

 Initialization of suitable re-optimization data for a single activity 

 Forward (F) or backward (B) computation of data on larger 
subsequences 

 Evaluation of a concatenation of two (C2) or more (C3+) 
subsequences  
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Timing re-optimization 

 

 

 Example of soft time-windows: Forward and backward extension to 
compute data on subsequences, and evaluate concatenation of 2 
sequences (Ibaraki et al. 2005, 2008): 

 

 
 

 

 In the convex case, the concatenation of 3+ sequences is also 
addressed efficiently.  

 O(log φ) for convex piecewise functions with a total of φ pieces. 

 O(log n) move evaluations for soft TW 
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Conclusions on timing problems 

 

 

 

 For other features: Surveying the literature, we classified many re-
optimization based methodologies from various domains, and for a 
large variety of attributes. (Savelsbergh 1985,1992, Kindervater and 
Savelsbergh 1997, Campbell and Savelsbergh 2004, Ergun and Orlin 2006, 
Irnich 2008, Hashimoto et al. 2006,2008, Kedad-Sidhoum and Sourd 
2010)… 

 

 We could identify a set of state-of-the-art timing methods, which 
are the key to solve many rich VRP settings: 
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Conclusions on timing problems 
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Conclusions on timing problems 

 

 
 

 Large analysis of a rich body of problems with time characteristics and totally 
ordered variables. Cross-domain synthesis, considering methods from 
various fields such as vehicle routing, scheduling, PERT, and isotonic 
regression. Identification of main resolution principles 
 

 For several “rich” combinatorial optimization settings, the timing sub-
problems represent the core of “richness” and deserve particular attention. 

 

 Furthermore, timing sub-problems frequently arise in the context of local 
search, and thus we analyzed both stand-alone resolution and efficient 
solving of series of problems. 
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Perspectives 

 

 

 Proof of concept : timing procedures have been integrated in a recent Unified 
Hybrid Genetic Search, yielding state-of-the-art results on 26 variants of 
vehicle routing problems 

 Several features and feature combinations were identified in this work, for 
which new timing algorithms (including re-optimization procedures) should be 
sought. 
 

 Generalization to other cumulative resources, multi-objective or stochastic 
settings. 
 

 Further studies on complexity lower bounds. 
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Thank you for your attention ! 

 For further reading, and follow-up works: 
  

o Vidal, T., Crainic, T. G., Gendreau, M., Lahrichi, N., & Rei, W. (2012). A Hybrid Genetic Algorithm for Multi-
Depot and Periodic Vehicle Routing Problems. Operations Research, 60(3), 611–624. 

o Vidal, T., Crainic, T. G., Gendreau, M., & Prins, C. (2013). A hybrid genetic algorithm with adaptive diversity 
management for a large class of vehicle routing problems with time-windows. Computers & Operations 
Research, 40(1), 475–489. 

o Vidal, T., Crainic, T. G., Gendreau, M., & Prins, C. (2012). A Unifying View on Timing Problems and 
Algorithms. Submitted to C&OR. Tech Rep CIRRELT-2011-43. 

o Vidal T., Crainic T.G., Gendreau M., Prins C. Heuristics for Multi-Attribute Vehicle Routing Problems: A 
Survey and Synthesis (2012). Submitted to EJOR. Revised. Tech Rep CIRRELT-2012-05. 

o Vidal, T., Crainic, T. G., Gendreau, M., & Prins, C. (2012). A Unified Solution Framework for Multi-Attribute 
Vehicle Routing Problems. Submitted to Operations Research. Tech Rep CIRRELT-2012-23. 

o Vidal, T., Crainic, T. G., Gendreau, M., & Prins, C. (2012). Implicit Depot Assignments and Rotations in 
Vehicle Routing Heuristics. Submitted to EJOR. Tech Rep CIRRELT-2012-60. 

o Goel, A., & Vidal, T. (2012). Hours of service regulations in road freight transport : an optimization-based 
international assessment. Submitted to Trans. Sci. Revised. Tech Rep CIRRELT-2012-08. 

o These papers + some others can be found at http://w1.cirrelt.ca/~vidalt/ 
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Empirical studies on diversity management methods (1/2) 

 Sensitivity analysis on diversity management methods: 

 HGA : No diversity management method 

 HGA-DR : Dispersal rule on objective space  

 HGA-PM : Dispersal rule on solution space 

 HGSADC : The proposed approach 

Benchmark HGA HGA-DR HGA-PM HGSADC 

PVRP 
T 6.86 min 7.01 min 7.66 min 8.17 min 

% +0.64% +0.49% +0.39% +0.13% 

MDVRP 
T 7.93 min 7.58 min 9.03 min 8.56 min 

% +1.04% +0.87% +0.25% -0.04% 

MDPVRP 
T 25.32 min 26.68 min 28.33 min 40.15 min 

% +4.80% +4.07% +3.60% +0.44% 
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 Behavior of HGSADC during a random run: 

 Higher entropy (average distance between two individuals) 

 Better final solution 

 Diversity can increase during run time 

Empirical studies on diversity management methods (2/2) 


