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Outline of the presentation

0 1) A general-purpose solver for multi-attribute vehicle routing
problems
» Multi-attribute vehicle routing problems
» An efficient and unified local search for MAVRPs
> A Unified Hybrid Genetic Search (UHGS) for MAVRPs
» Computational experiments

0 ) Timing problems and algorithms
» Several applications presenting similar timing issues
» Classification and notation
» Reductions
> Timing Re-optimization
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Multi-attribute vehicle routing problems (MAVRPS)

0 Classical “vehicle routing problems (VRP)”
- plethora of exact and heuristic methods

0 Challenges related to the resolution of VRP
variants with additional attributes (multi-
attribute VRPs, MAVRPs)

» modeling the specificities of application
cases, customers requirements, network and
vehicle specificities, operators abilities...

» Combining several attributes together can

lead to highly complex rich VRPs.

> Dramatic increase in the literature dedicated
to specific VRP variants.
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Multi-attribute vehicle routing problems (MAVRPS)

0 General purpose solvers / unified methods: address a wide range
of problems without need for extensive adaptation or user
expertise.

> Necessary tools for 1) the timely application of current
optimization methods to industrial settings. 2) for assessing
the scope of application of elements of methodology

> Few/none of them in the academic VRP literature. Some
algorithms reporting high quality solutions on several MAVRPs:
UTS (Cordeau et al. 1997,2001), ALNS (Pisinger and Ropke
2006), ILS (Subramanian et al. 2013).
7 MAVRP with a single code

* But “curse of richness”
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Classification & Proposed Methodology

0 We classified attributes into three categories related to their impact on
VRP resolution methods :

Practical Academic Heuristic Resolution

Setting @ Problem @
Metaheuristic strategies,

Characts. of decompositions, parallelism...
- NETWORK “ TYPE OF “
- PRODUCTS GRAPH ¥

- VEHICLES Assignment of routes
- DEMANDS and customers to
- CUSTOMERS SIZE res:)\u rces
- ROUTES ¥
e PROBLEM Sequences choices
- ATTRIBUTES -
v

Sl DYNAMIC, Evaluation (:‘)f fixed

AVAILABILITY setting?
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Classification & Proposed Methodology

0 ASSIGN ATTRIBUTES: impacting the

Assignment of customers and
routes to resources

assignment of customers and routes V4 \
> Periodic, Multi-Depot, Heteroge- o ° o o
neous Fleet, Location Routing... ° 5 . O' °
0 SEQ ATTRIBUTES: impacting the nature | Sequencing I

of the network and the sequences

> P&D, Backhauls, Two Echelon,
Truck-and-Trailer...

7

&

Fixed sequence evaluation,
ﬂ scheduling or load feasibility

0 EVAL ATTRIBUTES: impacting the

resolution

evaluation of fixed routes

3:30 4:30
5:45
2:00

> Time windows, Time-dep. travel time,

0

0

Loading constraints, HOS regulations
Lunch breaks, Load-Dependent costs...
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Classification & Proposed Methodology

0 Challenge: Achieving both genericity and efficiency

> Still need to address the problem = but relegating problem-specificities
to small modular components

» Each separate MAVRP shall be still addressed with state-of-the-art
solution evaluation and search procedures

> Not dealing with “dummy” attributes
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Attribute-based modular design

a Unified framework:

» Relying on assignment, sequencing & route evaluation (RE) operators
to do attribute-dependent tasks. Implemented in a generic way.

» Attribute-dependent modules are selected and combined by the
method, relatively to the problem structure, to implement the
assignment, sequencing and RE operators.

Assignement:
periodic

Neighborhood
construction:
one-to-many

Route evaluation: Time
Windows + Load-
Dependent Cost
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An efficient and unified local search for MAVRPsS

O Route Evaluation Operators based on re-optimization

» Main Property : Any local-search move involving a bounded number of
node relocations or arc exchanges can be assimilated to a concatenation

of a bounded number of sub-sequences.
» The same subsequences appear many times during different moves

Inter-route RELOCATE

\\7:. ONOEOS O . Intra-route CROSS
Y I 3
T OOO‘ O O - O D)) 1O - Y

> Data preprocessing on sub-sequences to speed up the search
(Savelsbergh 1985,1992 ...)

» The route evaluation operator must allow for such preprocessing.
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An efficient and unified local search for MAVRPsS

O Route Evaluation Operators based on re-optimization

» Main Property : Any local-search move involving a bounded number of
node relocations or arc exchanges can be assimilated to a concatenation of
a bounded number of sub-sequences.

» We compute characteristic information on subsequences by induction on
the concatenation operator <5 . Four tasks are necessary:

Init: Initialize the characteristic information on a single node

Forw: Append an additional node at the end of an existing sequence, and
derive the resulting characteristic information

Back: Append an additional node at the beginning of an existing sequence, and
derive the resulting characteristic information

Eval: Evaluate a move as a concatenation of a bounded number of
subsequences using the characteristic information of each one.
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Route evaluation operators examples

0 Example 1) Route evaluation operators for distance and capacity
constraints

What is managed ? = Partial loads L(o) and distance D(o)
Init = For a sequence o, with a single visit v., L(o,) = g, and D(g,) = 0

Forw and Back = increment L(o) and D(o)

Eval = compute the data by induction on the concatenation operator

Qo1& 02) = Q1) + Q(02)
D(o1 & 02) = D(01) + dgy (|04 |)oa(1) + D(02)
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Route evaluation operators examples

0 Example 2) Route evaluation operators for cumulated arrival time
objectives

Delay Cost W(o) associated to one unit of delay in starting time

and W(o,) = 1 if v, is a customer, and W(c,) = 0 if v, is a depot visit.

Forw & Back & Eval = induction on the concatenation operator:

D(o1 @ 02) = D(01) + doy(|oy)oa(1) + D(02)
C(Gl@ﬁg) C( )-1-” ( )(D(Gl)—i—dglugl‘}ggu))—|—C(Ug)
Wiy & oa) = W(ay) + W(o2)

What is managed ? = Travel time D(o), Cumulated arrival time C(o),

Init = For a sequence o, with a single visit v, D(o,) = 0 and C(c,) =0,
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Route evaluation operators examples

0 Example 3) Route evaluation operators for time windows (and route
duration constraints)

What is managed ? = Travel time and service time T(o), earliest
feasible completion time E(o), latest feasible starting date L(o),
statement of feasibility F(o).

Init = For a sequence o, with a single visit v., T(c,) = s, E(0,) = €, + 5,
L(o,) = l.and F(o,) = true.

Forw & Back & Eval = induction on the concatenation operator:

T(o1 @ o) =T(01) + dyy(|o1])oa(1) T T(02)

E(o1 @ 02) = max{E(o1) +d, (lo1])oa(1) T T(o2), E(o9)}

L(oy @ o9) = min{L(cy), L(o2) — Aory (|oy ora (1) — T(o1)}
Flo1®02) = F(o1) A F(02) A (E(01) + oy (orpoa(t) < L(02)
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Route evaluation operators examples

0 Example 4) Route evaluation operators for lunch break positioning in
presence of time-window constraints

What is managed ? = Same set of data (T(o), E(o), L(o), and F(o)) asin
the TW case, and it is duplicated to also provide T’(o), E’(0), L'(o), and
F'(o) for the sequence where exactly one lunch break was inserted.

Init = As previously for T(o,), E(o,), L(0,), and F(o,). Furthermore,
T'(0,) = +0, E’(0,) = +0, L'(0,) =0, and F'(o,) = false.

Forw & Back & Eval = induction on the concatenation operator, see
next page for the equations.
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Route evaluation operators examples

0 Example 4) Route evaluation operators for lunch break positioning in

presence of time-window constraints

L’(Jl S¥ JQ) mﬂ’x({Lca&.c 1| case 1 t-‘rue} U —’}C)
F(Jl'—l—g?) WECIVFJQSCQVFé‘leS
EI;"LEC 1 ]HHDC{E!(G'l) + dﬂrl“ﬂl Jo2(1) T T(Jﬂ)! E(Jg}}

Elpse o = max{E(o1) + Aoy (|1 |)o2(1) T SLe + T (o2), e + s + T'(02),

El o 3 = max{E(01) +dg, (o, ))oz(1) + T’(UZ) E'(02)}
L::ase — I]li]]{Lr(Jl) L(Jﬁ) Poy(|le)ea(1 (Jl)}
Lipee o = min{L(oy),liy — T(01), L(03) — pcrl{|crl|}crn[]} — s —T'(01)}

L::abe 3 — I]ll]]{L'(U']), ' [: 2) pﬂ'1{|ﬂ'1|]ﬂ'2 T(UI)}

E(o2)}

Fé‘ibc 1 — FI(JI:] A F(G’g) N (E (51:] +p0’1{|0’1|}ﬂ'2{1} < L(Jﬁ))
Fé"‘LbC 2 — F(Jl) A F(J?) A (E(Jl) < E:LE::) N (E(UI) + SiB —I_pcr]“cr] Noa(1) = L(JZ))
Féﬂsc 3 — F(Jl) N FI(JQ) N (E(JIJ +pcr1l[|cri|]cri(1} < LJ(JE))
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Route evaluation operators examples

0 Example 5) Route evaluation operators for soft and general time
windows

What is managed ? 2 Minimum cost F(o)(t) to process the sequence o
while starting the last service before time t, minimum cost B(o)(t) to
process the sequence o after time t.

Init = For a sequence o, with a single visit v, characterized by a service
cost function c,(t), F(og)(t) = min ., ci(x) and B(gy)(t) = min ., c(x).

F(O’ D "l..'g'_)(f-) — min {(:2-_(:1.') -+ F(g) (:1_‘ — So(jo]) — da(|a|),i)}
Forw & Back =2 0<a<t _

B(vi & 0)(t) = min{c;(t) + B(o)(x + si + dio(1))}

Eval 2 > Z%(01 @ o) = min{F(01)(w) + B(02) (& + 54, (jo1]) + oy (jorora(1))}
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Route evaluation operators examples

0 Example 6) Route evaluation operators - /’ ‘/\/
/ S /
for the generalized VRP : \\,’-*0—\\————;‘" |
I'. (] : 1 o |
‘\\ ® ,’ \\ @ /ll

What is managed ? = The shortest path S(o)[i,j] inside the sequence o

starting at the location i of the starting group and finishing at location j
of the ending group.

Init = For a sequence o, with a single visit v., S(o)[i,j] = +o0 if i # j, and
S(o)Ii,i] = 0.

Forw & Back & Eval - induction on the concatenation operator:

S(o1 D o9)li, j| = I S i.x|+d, S(e . ]
(71 & o)l J] 1<2<A s, (g <Yy 1) oDt 2]+ dey + 572y, ]

Vie{l,...., A} Vi € {1, -, Aoy(oal)}
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Route evaluation operators examples

0 Other examples: many other route evaluation operators have been
designed for other vehicle routing variants.

» Some advanced route evaluation operators, based on dynamic
programming, enable to implicitly and optimally decide the first
visit in the route (optimal rotation), the customer-to-depot or
customer-to-vehicle type assignment, or the selection of
customers in a prize-collecting setting.

C2 C1

» See for further examples:

Vidal, T., Crainic, T. G., Gendreau, M.,

€ » & [ [>}]
& Prins, C. (2012). Implicit Depot : o1 °3§3
Assignments and Rotations in Vehicle

Routing Heuristics. jf jf

Submitted to EJOR. @ o gcs =R 02
Tech. Rep. 2012, CIRRELT. \ i A)
e { \ . Dl. ’E iD3

Cc3 c4 c2 C3
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An efficient and unified local search for MAVRPs

0 Generic local-search based on route evaluation operators

Algorithm 1 Unified local search based on route evaluation operators

1: Detect the good combination of evaluation operators relatively to the problem attributes
2: Build re-optimization data on subsequences using the INIT, FORW and BACK operators.
3: while some improving moves exist in the neigchborhood N do
4:  for each move u; in ' do
for each route rj produced by the move do
Determine the k sub-sequences [0y, ..., 0] that are concatenated to produce rj
if k=2, then NEwCosT(r) = EvaL2(01,09)
else if k& > 2, then NEwWCosT(r) = EVALN(01,. .. .0k)
if ACC.EPTC-RITERIA(,U.?;) then perform the move p and update the re-optimization
data on for each route -r;-” using the INIT, FORW and BACK operators.

o B AN

0 Can serve as the basis to build any neighborhood-based unified
solver based on VNS, Tabu, ILS for MAVRPs with EVAL attributes.

0 Going one step further, designing a unified hybrid GA.
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A Unified Hybrid Genetic Search (UHGS) for MAVRPs

0 UHGS = Classic GA framework + 4 main ingredients (Vidal et al. 2010)
» Management of penalized infeasible solutions in two subpopulations
» High-performance local search-based Education procedure
» Solution Representation without trip delimiters
» Diversity & Cost objective for individuals evaluations
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A Unified Hybrid Genetic Search (UHGS) for MAVRPs

O General Framework of UHGS :

WM—ACWO—=0——> TVIL

Université I'H\
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Initialize
Population

\/

POPULATION
WITH DIVEESITY MANAGEMENT E—
Penalties adaptation [1f termunated]
Survivors® selection
Diversification and decomposition phases Retum
I A Best Solution
[if not termunated) ¢
SELECTION O]
Binary Tournament
Based on COST & DIVERSITY
[ PIX CROSSOVER J
SPLIT
( ASSIGNMENT | MERGE
SR Placement of depot occurrences . -

L OPERATORS | for each resource Femovwal of trip delimiters

\“ - |
[ ROUTE _ ]

Pyt 1 REPAFI];L ("iTml? bility P,
ant AIR with probability P,
. OPERATORS | P ¥ Prep
Based on local-search
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Unified Solution Representation and Split

0 Now dealing with MAVRPs with both ASSIGN and EVAL attributes:
Assignment of customer services to some ASSIGN attributes
resources (AARs) + separate optimization of routes for each AARs

» Solution representation is designed accordingly.

> Furthermore, representation without trip delimiters for each
AAR.

123456 1278

13467 8
44R-2
Giant Tour
® Representation
C.
'C (XN
MERGE
for each AAR
SPLIT
for each AAR
0-1-2-0 -1- 0-1-0  0-3-4-0
0-3-4-5-6-0 0-6-7-8-0
Routes of a
Solution
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Unified Solution Representation and Split

QO Solution representation as a giant-tour per AAR = requires a Split
algorithm (Prins 2004) for optimal segmentation into routes.

O We propose a unified Split
algorithm

» As usual, the problem is solved

as a m-shortest path

» The route evaluation
operators are used to
build the auxiliary graph

Université O’H‘\
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®

CIRRELT
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Giant tour representation
with distances and demands :

Graph H
& shortest path solution :

110 + 40 L7135

Optimal segmentation
into routes :

Cy
Cs

CIQ@:DC:E
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Unified Solution Representation and Split

QO Solution representation as a giant-tour per AAR = requires a Split
algorithm (Prins 2004) for optimal segmentation into routes.

0 Unified Split algorithm.

Algorithm 2 Generic Split

1: for each node i € {0, ..., v} do
SeqData(o) = INIT({vo}) //Initialize with depot vertex
for each node j € {i,..., min(i + 7, )} do

¢(a;j) = EvaL2(o {vo}) //Evaluate the route
5 SeqData(c) = Forw (o ,{7;}) //Append a new customer to the route end
6: Solve the shortest path problem on G’ = (V. A) with cost ¢(a,;) for each arc a;;
7: Return the set of routes associated to the set of arcs of the shortest path
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Unified Crossover Operator

0 4 phases Assignment and Insertion Crossover (AlX), to produce a

single offspring C from two parents P1 and P2.

an Bo aos G Parent 1 Parent 2
16323245 97 8 8 9 327 132514698149 8
5@ @ ® 0@ @ Og® © ® PO ® ® o @ O 2
_0 0 o & o 0 0 ° 0 o _0 o ©
D i@ DT e O e 2 g O0 @ et 0D o aepot 1@ o dem
O perotl] B0 20D @ pereal] @ O pereh| | O gl TO0 gl @ @ gl @ © gt}
132 [34[5 | | 89 |
Step 1) Visits from P, ~
v v
192 7 [BEsl2]6 9 8 NSNS
Step 3) Filling Step 2) Visits from P,
Remaining services /
32 7345/ 2]6 9 s [ 80
. © o @ @ ® o @ @ @“0 o) ® @‘m
0 0 0 )
@ (7 @ D @ ® 0 @ @ 0o @
O petaa 1] O~ petoas| D O peral| © O peraa
Offsprmg C
Giant tour chromosome
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Unified Education Procedure

0 Unified Local Search to perform route improvement (RI) on separate
AAR.
» Using CROSS, I-CROSS, Relocate, 2-Opt* and 2-Opt neighborhoods

» Pruning procedures (granular search)

» Combined with an assignment-improvement (Al) procedure to re-
assign customer visits into different resources and routes : RI-Al-RI.

ad ad
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Population management and search guidance

0 Biased Fitness is a tradeoff between ranks in terms of solution
penalized cost cost(l), and contribution to the diversity dc(l),
measured as a distance to others individuals in the population.

nbE 1t

BF(I)= fit(I)+ (1 — : ) X de(T)
nblndiv — 1
0 Used during selection of the parents abreserved
» Balancing strength with innovation during R Worst
reproduction, and thus favoring e removal
exploration of the search space. [ 0, EF1)
diversity : y x
Q and during selection of the survivors: A
> Removing the individual / with worst -
BF(1) also guarantees some elitism Best | x
in terms of solution value. ° fitness 1
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Comparison with problem-tailored state-of-the-art methods

0 Extensive computational experiments on 26 structurally different
VRP variants and 39 sets of benchmark instances.

> A total of 1008 problem instances.

0O Comparing UHGS with the best problem-tailored method for each
benchmark and problem. 10 runs on each problem.

0 In the following, we indicate for each method
> % Gap to the BKS of an average run (out of 10 for UHGS).
> % Gap to the BKS of a best run (out of 10 for UHGS).
» Computational effort (total work time) for an average run

» Type of processor used.
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Comparison with problem-tailored state-of-the-art methods

Variant

Bench.

Obj.

State-of-the-art methods

Université "H‘\

de Montréal

Author  Ave.% Best'% T(min) CPU
GG11: +0.03% %238 8xXe 2.3G
CVRP CMT79 [50,199] C MBO7:  +0.03% 2.80 P-IV 2.8G
UHGS*: +0.02% +0.00% 11.90 Opt 24G
GGl +0.29% 8x5H 8xXe 2.3G
CVRP GWEKC98 | [200,483] C NB09: +027%  +0.16% 21.51 Opt 24G
UHGS*: +0.15% +0.02% 71.41 Opt 246G
ZK12: +0.38% +0.00% 1.09 TH500 1.67
VRPB GJ=89 [25,200] C GA09:  +0.09%  +0.00% 1.13 Xe 2.4G
UHGS: +0.01% +0.00% 0.99 Opt 24G
NPW10: +0.74%  +0.28% 5.20 Core2 2G
CCVRP CMT79 [50,199] C RL12: +0.37%  +0.07% 2.69 Core2 2G
UHGS: +0.01% -0.01% 1.42 Opt 2.2G
NPW10: +2.03% +1.38% 04.13 Core2 2
CCVRP GWEKC98 | [200,483] C RL12:  +0.34% +0.07% 21.11 Core2 2G
UHGS: -0.14% -0.23% 17.16 Opt 2.2G
SDBOF10: +0.16% +0.00%  256x0.37 256xXe 2.67G
VRPSDP SN99 [50,199] C ZTK10: +0.11% T5500 1.66G
UHGS: +0.01% +0.00% 2.79 Opt 24G
SDBOF10:  +0.30%  +0.17% 256x3.11 256xXe 2.67G
VRPSDP MGO06 [100,400] C UHGS:  +0.20% +0.07% 12.00 Opt 2.4G
S12: +0.08%  +0.00% 7.23 I7 2.93G
" utt @ et st
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Comparison with problem-tailored state-of-the-art methods

Université "H‘\

de Montréal

- . State-of-the-art methods
Vartant Bench. " Obj. Author  Avg.% Best% T(min) CPU

[SW09: +0.07% .04 P-M 1.7G

VFMP-F G&4 [20,100] C SPUO12: +0.12% +0.01% 0.15 I7 2.93G
UHGS: +0.04% +0.01% 1.13 Opt 2.4G

[SW09: +0.02% 2.8 P-M 1.7G

VFMP-V G834 [20,100] C SPUO12: +0.17% +0.00% .06 I7 2.93G
UHGS: +0.03% +0.00% (.85 Opt 246G

P09: +0.02% .39 P4AM 1.8G

VFMP-FV G8&4 [20,100] C UHGS: +0.01% +0.00% (.99 Opt 24G
SPUO12: +0.01% +0.00% 0.13 I7 2.93G

i _ . XZKX12: +0.48% +0.00% 1.3 NC 1.6G
LDVRE - CMI70 ) [50.199] 1 - € UHGS: -0.28% -0.33% 2.3 Opt 2.2G
, . T XZKX12: +0.66%  +0.00% 33 NC 1.6G
LDVRP | GWKCO8 | [200.483] | C© UHGS: -1.38% -1.52%  23.81 Opt 2.2G
HDH09: +1.69% +0.28% 3.09 P-1V 3.2G

PVRP CGLOT | [50,417] C UHGS*: +043% +0.02%  6.78 Opt 2.4G
CMi12: +0.24% +40.06% 64x3.55 64 % Xe 3G

CM12:  +0.09% +0.03% 64x3.28 64 x Xe 3G

MDVERP CGLOT [50,288] C S12:  +0.07% +0.02% 11.81 I7 2.93G
UHGS*: +0.08% +0.00% 517 Opt 246G

BER11: +0.06% 0.01 Opt 246G

GVRP Bl1l [16,262] C MCR12: +0.11% .34 Duo 1.83G
UHGS: +0.00% -0.01% 1.53 Opt 2.4G
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Comparison with problem-tailored state-of-the-art methods
Variant Bench. n Obj. E:'-tatc—uf‘—thr:—art l'l'ud:thmis B _
Author Ave. % Best% T(min) CPU
CMTT0 RTBI10: 0%,/+0.32% 9.54 P-IV 2.8G
OVRP Cros 50,199] F/C S12: /4+0.16% 0% /+0.00% 2.39 I7 2.93G
UHGS:  0%/+0.11% 0% /+0.00% 1.97 Opt 2.4G
ZK10: 0%,/+0.39% 0%/+0.21% 14.79  T5500 1.66G
OVRP GWKCO8 | [200,480] F/C S12: 0%,/+0.13% 0% /+0.00% 64.07 17 2.93G
UHGS: 0% /-0.11% 0%/-0.19% 16.82 Opt 2.4G
RTI09: 0%,/+0.11% 0%/+0.04% 17.9 Opt 2.3G
VRPTW SDSS 100 F/C UHGS*: 0% /+0.04% 0%/+0.01% 2.68 Xe 2.93G
NBD10:  0%/+0.02% 0%/+0.00% 5.0 Opt 2.4G
RTI09: 10.16%/43.36% 270 Opt 2.3G
VRPTW HG99 | [200,1000] | F/C NBD10:  +0.20%/+0.42%  +0.10%/+0.27% 21,7 Opt 2.4G
UHGS*: +0.18%/4+0.11% +0.08%/-0.10% 141 Xe 2.93G
RTI0%9a:  +0.89%/+0.42% 0%/+0.24% 10.0 P-1V 3.0G
OVRPTW SDSS 100 F/C KTDHS12: 0% /+0.79% 0%/+0.18% 10.0 Xe 2.67G
UHGS:  +0.09%/-0.10% 0%/-0.10% 5.27 Opt 2.2G
] ] , _ KTDHS12: +2.25% 0% 10.0 Xe 2.67G
TDVRPTW SDEs 100 F/C UHGS: -3.31% -3.68% 21.94 Opt 2.2G
BDHMGOS: 10.59% 10.15 Ath 2.6G
VFMPTW 1.S00 100 D RT10: 10.22% 16.67  P-IV 3.4G
UHGS: -0.15% -0.24% 4.58 Opt 2.2G
BDHMGOS: +0.25% 3.55 Ath 2.6G
VFMPTW LS00 100 C BPDRT09: 10.17% 0.06 Duo 2.4G
UHGS: -0.38% _0.49% 1.82 Opt 2.2G
Université r”‘\ _/!’ utt @ ‘s ) LSSy oo _ _
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Variant Bench. n Obj. E:-tatc—uf‘—thr:—art l'l'ud:thmis B _
Author Ave. % Best% T(min) CPU
PROS: +1.75% Opt 2.2G
PVRPTW CLD1 [48,288] C CM12: +1.10% +0.76% 64x11.3 6G4xXe 3G
UHGS*: +0.63% +0.22% 32.7 Xe 2.93G
PEDHIOS: +1.37% 147 P-IV 3.6G
MDVRPTW CLO1 [48,288] C CM12: +0.36% +0.15% 64x6.57 G4xXe 3G
UHGS*: +0.19% 4-0.03% 6.49 Xe 2.93G
B10: +2.23% 2.94 Qd 2.67G
SDVRPTW CLO1 [48,288] C CM12: +0.62% +0.36% 64x5.60 64xXe 3G
UHGS*: 10.36% 40.10% 5.48 Xe 2.93G
- : - . e 0 K/ -
, VRPSTW 9Dss 100 F/TW/C F10: 0% | Jf.f_r,} P-M 1.6G
(type 1, a=100) : UHGS: -3.05% -4.42% 18.62 Opt 2.2G
VRPSTW _ | KTDHS12: +0.62% +0.00% 10.0 Xe 2.67G
SDES8 100 C+TW
(type 1, a=1) N UHGS: -0.13% -0.18% 5.82 Opt 2.2G
VRPSTW . FELOT: 0% 5.98 P-1T 600N
SD&8 100 F/TW/C
(type 2, a=100) ! ' UHGS: -13.91% -13.91% 41.16 Opt 2.2G
VRPSTW SDES8 100 C+TW UHGS: +0.26% 0% 29.96 Opt 2.2G
(tyvpe 2, a=1)
MDPVRPTW New [48,288] C UHGS: 4+0.77% 0% 16.89 Opt 2.2G
VRTDSP Go9 100 F/C PDDR10: 0%,/ 0% 0% /0% 88 Opt 2.3G
(E.U. rules) ! UHGS*:  -0.56%/-0.54% -0.85%/-0.70% 228 Xe 2.93G
Université rH'\ /!’ utt @ ) ‘s ” a SISy oo _ _ 33
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Comparison with problem-tailored state-of-the-art methods

BKS has been found or improved on 954/1008 problems !

Strictly improved on 550/1008 problems.

All known optimal solutions have been retrieved !!

Run time of a few minutes for average-size instances (n = 200-300)
Standard deviation below 0.1%

Outperforming the current best 179/180 problem-dedicated
algorithms from the literature. New best method on 28/29 problems
and 37/38 benchmarks !!!

o 0O 0O 0 0 O
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Conclusions

0 A component-based design & unified hybrid genetic search

» Method structure designed in accordance with problem structure.
Attribute-dependent tasks are identified and addressed by adaptive
components.

» UHGS proof-of-concept : with unified solution representation, Split
procedure, genetic operators (Crossover) and population management
methods.

> Major methodological breakthrough : UHGS redefines the state-of-the-
art for 26 major VRP variants, outperforming 179/180 current best
problem-tailored methods.

> Major impact on current OR practice : finally an efficient solver for rich
VRP, state-of-the-art & ready-to-run.

0 Generality does not necessarily go against performance for the
considered MAVRPs.
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Perspectives

Q Perspectives:

> Extend the range of problems (especially SEQ attributes,
stochastic and multi-objective settings)

» UHGS can be now viewed as a “laboratory” on which we can
experiment new solution concepts not only on one problem, but
on many at the same time

> Integrate assignment, sequencing and route evaluations (often
scheduling) within polynomially-enumerable large
neighborhoods.

» Problems with multiple levels, cross-docking, synchronization,
and multiple modes.

Université r'”’\ 'i,/ Utt @ N Y Lo oo vt _ _
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Outline of the presentation

0 1) A general-purpose solver for multi-attribute vehicle routing
problems
» Multi-attribute vehicle routing problems
» An efficient and unified local search for MAVRPs
» A Unified Hybrid Genetic Search (UHGS) for MAVRPs
» Computational experiments

Q 1l) Timing problems and algorithms
» Several applications presenting similar timing issues
» Classification and notation
» Reductions
> Timing Re-optimization

. o4 2 s U rodizfice |9ug dewesug
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Several problems

0 General effort dedicated to better address rich vehicle routing
problems involving many side constraints and attributes.

0 Observation : several VRP settings deserve their richness to the
temporal features they involve : Time windows, time-dependent
cost and travel times, flexible travel times, stochastic travel times,
break scheduling...

O The same questions are encountered in different domains: vehicle
routing, scheduling, PERT, and isotone regression in statistics,
among others.

0 Leading us to a cross-domain analysis and classification of timing
problems and algorithms.

Université I'H’\ ' U tt @ _ ‘_\ _ a e oar o sty cysie
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Several problems

O Four problems originating from different domains

E/T ship isotonic
scheduling speed opt. regression

e
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Several problems

0 Four problems originating from different domains:

E/T ship isotonic
scheduling speed opt. regression
P

When visit\ n

sequence is y Htli)neﬂ%”+ Z{C‘f(é«a —ti)T+ Bt~ )"}
. 1s--estn .
fixed, =1 |
optimizing on st. ti+pi+diiz <t 1<i<n
visit dates: e; <t <l 1<i1<n
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Several problems

0 Four problems originating from different domains:

E/T ship
scheduling speed opt.
-

When visit
sequence is fixed,
optimizing on  (¢,,....t,,)eRn+
task execution

dates:

Université "H‘\ I’ Utt @ ‘s e oar o sty cysie
-/ v ‘A\
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Several problems

0 Four problems originating from different domains:

E/T ship isotonic
scheduling speed opt. regression
-

T
.. . - df..?'.—|—1
When visit min E dz‘,i—l—lc (f | ;
..... tn )ERTT . T — U
sequence is fixed, i) i=1 R
fuel consumption s.t. ti4+pi+diiv1/Umar < tita 1<i<n
optimization: e, <t: <l 1<i<n
i ité AL I Utt & ‘s uaesmu : Ib’ Lcp Cpsl
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Several problems

0 Four problems originating from different domains:

E/T ship isotonic
scheduling speed opt. regression

p

min It —N||

ti <tipq 1<i<n

Université l'”‘\ /I" Utt % 6\ | a e e et
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... with some characteristics in common

VRPTW

E/T scheduling

: S _ 4+ AT min ei(di —t;)) T+ 1i(ti —d;)T
(m,...I,Itlnl)neﬂfé”+ ;{a(ez AR Stn)ERPT Z{ i (i ")
st. Li+pi+diicr <tiy 1<1<n s.t. t'i +p-i <tiva 1<i<n
e; <t; <l I1<i<n
Isotonic regression Ship speed opt.
. - N d; i+1
_ 1. . :
min It —IN]|| (tli...ﬁl)lémﬂ ; hirte (I‘-«;H — f-z')
t=(f1,....tn =
t; <tiiq 1<i<n \/ s.t. ti+pitdiig1/Umaz <tiga 1<i<n
e <t; < 1<i<n
TIMING
min Z v Z T(t
t=(t1,...,tn)ERTT ’ fy( )
Fz g FoB 1<y<mg
st. ti+pi Stisa 1<i<n
fy(£) <0 F*e Foos 1 <y<my
Université r”‘\ /' utt % N Y b eteue
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Timing problems

TIMING

nir Yy * t
min > ) (Y

F*gJoBl 1Sysmg

st. 1 +pi <tiga 1<i<n
fy(£) <0 F*e FooNs 1 <y<in,

O Timing problems seek to determine the execution dates (t,,...,t,) for
a fixed sequence of activities.

0 Totally ordered continuous variables

0 Additional features F* characterized by functions f*for 1<y <m,
that participate either in the objective or as constraints:

» time windows, time-dependent proc. times, flexible travel times,
time lags, no waiting, limited waiting, and so on...

Université f“’l r Utt @ . 6\ a e o Gt cy cvm
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Timing problems

O Several names in the literature: Scheduling, Timing, Projections onto
Order Simplexes, Optimal service time problem ...

0O Few dedicated studies, literature scattered among several research
domains despite its relevance to many applications

TIMING
1min E My E: fy(t)
_ n+
t=(t1,...,tn)ERT Fae OB 1<y<mg

S.T.

IL-@' —|‘j)@ § IL-@'_|_1

fr(t) <0

1<i<n

F*e FooNvs 1 <y <m,

0 Thus motivating a dedicated review and analysis of timing
algorithms to fill the gap.
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Timing features from the vehicle routing domain

0 Rich vehicle routing problems can involve various timing features

Symbol  Parameters Char. functions Most frequent roles
D due dates d; fi(t) = (t; —d;)™ Service deadlines constraints, tardiness
R release dates r; fi(t) = (ri—1t;)" Release-dates, earliness.
rw time windows fi(t) = (ti—1;)" Time-window constraints,
TW; = [e;, 1] +(e; — ;)T soft time windows.
MTW multiple TW fi(t) = min[(t; — i)™ Multiple time-window constraints
MTW; = Ulew, L] Llew — )]
Yei(ty) general c¢;(t) fi(t) = ci(ty) Time-dependent service costs
YV (t;) | convex ¢§V¥(t;) fi(t) = " (t; ) Time-d. convex service costs
DUR total dur. d,ax f(t) = (th — Omaz —t1)™ Duration or overall idle time
NWT no wait fi(t) = (tiz1 — pE —t;)" No wait constraints
IDL idle time ¢, fi(t) = (tiy1 —pi — s —t;)™ | Limited idle time per stop, min idle time
excess
P(t) time-dependent fi(t) = (ti +pi(ti) —tig1)™T Time-dependent driving-times
proc. times p;(t;)
TL time-lags 9;; fi(t) = (t; —0i —t:i)™ Time-lag constraints
Yci(At;) | general ¢;(t) fi(t) = ¢t 3+1 —ti) Flexible travel times
Ycij(ti,t;) | general c;;(t,t') fij(t)= ci(ti.t;) Separable objectives or constraints by any

pairs of variables ...
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Timing features hierarchy

* Generality NP-hard : e

O These features can be

Y (tay t5)
classified and A !
hierarchized (many- Sex(firtis) I
one linear reduction T : t
relationships between Yei(t:) I DUR
the associated timing f P '
problems) ‘”?”/E‘fm(“) :

TW NWT
0 Features in the NP- 1
hard area lead to NP- r|[D] [Sws
hard timing problems 1
-

A\ 4

W rodizgice |ousdewsug
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Timing features hierarchy

* Generality NP-hard : : e(t)
Q In this presentation, § /g
brief glimpse of the i f” =
analysis.
L

DUR

O We examine a
particular feature as
illustrative example ==»

O A similar study has £1
been conducted on r|[D] [Su,
other features from NG
this figure. C

A\ 4

. “y - s W rodizgice |ousdewsug
Un ve rSlte l l I l / & ‘ WM2EBC [UQN2[L9| K6269LCH CHSIL 49
CHA "’ \GN ADE NN

de Montréal sl == “*~"  CIRRELT e R e © Vidal Thibaut 2012

PELCYE IUGn2LLIG]|



A feature example: soft time-windows

. . min ale '—t1'++ tb—l__i—i_
O Timing problem (t10 ) ERTT ;{ (¢ Al )"}

» with soft time-windows sit. titpi <tip 1<i<n

(penalized early and

late arrival)

. min Zc‘“

» and generally with any convex tn) ER™

separable cost s.t. t?.+pz.§t1+1

0 We inventoried more than 30 algorithms from various domains
(routing, scheduling, PERT, statistics...) that address these models.

0 The solution block representation / active set framework
(Chakravarti 1989, Best & Chakravarti 1990, Best et al. 2000, Ahuja &
Orlin 2001) can be used to characterize these methods. But we need
to generalize the optimality conditions to the non-smooth case.

Université f“’l ' Utt @ _ 6\ _ a e oar o sty cysie
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A feature example: soft time-windows

0 A block B is defined as a subsequence of activities (aB(l),...,aB(lB”)
processed consecutively (such that t,+p. =t ;)

O Theorem: Let costs c,(t,) be proper convex, eventually
non-smooth, functions. A solution (t*,,...,t" ) of the
timing problem with convex separable costs is optimal
if and only if it can be assimilated to a succession of
activity blocks (B,...,B,.,) such that: <:|\

yd
1) Blocks are optimally placed: for each block B, CH X 8 t
>
%k . /
t"g,1) € argmin Cy(t) N
2) Blocks are spaced: for each pair of blocks (B,B., ), N /
* *
Uain) + 2Py < tappaq) .
. : = N >
3) Blocks are consistent: for each block B, and prefix ¢
block BX
' . k * <%I /{'_>
max argmin Cg*(t) 2 t'5, 3, 7
| al a2><\ 3.3
VAN e
Université r'”'\ 'i"/ utt @ N LI s com _ _
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A feature example: soft time-windows

O Three main families of algorithms can be identified:
> Primal feasible, that respect spacing condition 2
» Dual feasible, that respect consistency condition 3

> Dynamic programming

0 Toillustrate, consider a small problem with 6 activities

ci (t)
5 I v 1 = =t | Act.i P
: o\ / R
4 U \ c, (t)
: A\ A / > 1
34 S P A e R TPPPTY e (t)
A/ / I
2 % 3 \ T/": // Cq (1) 4 1
1 “\u Al T Vw’ —--al) 5 | 2
0 T T T - 1-. T T S 't Ce (t} 6 1
0 2 4 6 8 10 12 14 16
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A feature example: soft time-windows

0 Primal feasible method, respecting the spacing condition.
> Brunk (1955) : Minimum Lower Set Algorithm : O (n?) unimodal minimizations

> Extended by Garey et al. (1988) and Best & Chakravarti (1990) :
O(n) unimodal function minimizations in the general convex case.
O(n log n) elementary operations in the case of (E/T) scheduling

| Garey et al. (1988) Best & Chakravarti (1990)

Step 0) ; .

” |_|1 g [ 1 2] 3 1a| 5 [6] .

z’l : [z] > 1] [ 2] 3 [a] 5 [686]| .

= e — - - [ 5 Tal s Tsl,

N S — - 1 [ s T3 [ 7e

5’12: | 1 [2] 3 4] 5 | . o 2 4 6 8 10 12 14 tme

op _[1] [ 3 T3] [57%],

0 2 4 6 8 10 12 14 fme

> Other related methods from (E/T) scheduling: Lee and Choi (1995), Davis and
Kanet (1993), Wan and Yen (2002), Pan and Shi (2005) in O(n log n)

» For more general cases, Hendel and Sourd (2007) for PL functions, and
Chrétienne and Sourd (2003) in the context of PERT with convex costs.
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A feature example: soft time-windows

0 Dual feasible method, respecting the consistency condition.
> Ayer et al. (1955) : Pool Adjacent Violator Algorithm (PAV).

T[] el *
u 1| 3 IER [ X
i [1] (2T 3 [a] 1

6]

[5 [6]

Bt 1] 2] 3  a]

v

L

> Best et al. (2000) and Ahuja and Orlin (2001) : Extension to the general
convex case -> O(n) unimodal function minimizations

» Pardalos (1995) : O(n log? n) for Isotone Regression with [| [ [, (= E/T
scheduling with equal penalties for earliness and tardiness)

> Grotzinger and Witzgall (1984) and Pardalos and Xue (1999) -> O(n)
elementary operations for the quadratic case.

» Dumas et al. (1990) : another application of this principle for the VRP with
convex service costs -> O(n) unimodal function minimizations
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A feature example: soft time-windows

0 Dynamic programming-based methods (Yano and Kim 1991, Sourd
2005, Ibaraki et al. 2005, 2008, Hendel and Sourd 2007, Hashimoto
et al. 2006, 2008)

O Forward dynamic programming

Fi(t)= min {c;(x)+ Fi_1(x —p;i_1)}

0<xe<t

0 Backward dynamic programming

B;(t) =min{c;(x) + B 1(x+p;)}

>t
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A feature example: soft time-windows

O Forward dynamic programming

Fi(t) = min{c;(x)+ F;_1(r —p;i_1)}

0<z<t

Fl'-l{x'pijl + Ci()(} F|{t) = minxgt ( Fi—l(x-pij) + C[(X:l :‘

A\ Fulx-py) A A
N .
il Ll
X t
Université f'H'\ -/I" Utt % ‘s WAEKC Toantri Geseicn cusn _ _
de Montréal wrmstede todhisions  (MBRREIT  CHAMPAGNE ARDENN an crzme cu wasdeweu jodiendne © Vidal Thibaut 2012 56



Timing problems

0 Hence, many different methods for this particular feature example.
The literature on timing problems is rich, but scattered. All in all, 26

different methods from different domains were classified as

variations of 3 main algorithmic ideas.
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Timing re-optimization

Q Furthermore, when used within LS, solving all timing problems from
scratch is generally not efficient

O The general goal when exploring neighborhoods is to solve N
successive timing problems with different activity permutations o¥.

min Z . Z f;(tj

E= (b tnJERTT FTe JFoB 1<y<mg

St k() T Dok (iyok(it1) S Tok(itn)
fr(6)<0

. “y - W rodizgice |ousdewsug
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Timing re-optimization

0O In classical VRP neighborhoods, the neighborhood size is often
rather large: [N| = Q(n?), and permutations are very particular.

»> They have a bounded number (often <= 4) of breakpoints:
integers x such that o(x)+1 # o(x+1),

123 678 45

» The resulting sequences of activities can be assimilated to
recombinations of a bounded number of subsequences.

‘oo 6 -0./lo-o e
-e-- 'O"\' Time”

Seq.C Seq.D

» Such that invariants on subsequences can be exploited through
the search (Savelsbergh 1985, 1992, Kindervater 1998).
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Timing re-optimization

0 Management of information of subsequences, efficient timing re-
optimization by means of a subset of 4 procedures, used within local
searches:

> Initialization of suitable re-optimization data for a single activity

» Forward (F) or backward (B) computation of data on larger
subsequences

» Evaluation of a concatenation of two (C2) or more (C3+)
subsequences

Algorithm 1 Re-optimization

1: Build re-optimization data on subsequences of the incumbent timing problem T, using initialize,
and forward extension or backward extension.

. For each timing subproblem 7%, ke {1...., N}

Determine the breakpoints involved in the permutation function o

Evaluate the optimal cost of 7%, as the concatenation of b(c) + 1 activity subsequences

from 7 (see Equation 39).

]

k.
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Timing re-optimization

0 Example of soft time-windows: Forward and backward extension to
compute data on subsequences, and evaluate concatenation of 2
sequences (lbaraki et al. 2005, 2008):

Z7 (A1 @ Ag) =min{ F(Ay) (1) + B(A2)(t +payaian) y

» In the convex case, the concatenation of 3+ sequences is also
addressed efficiently.

> O(log ¢) for convex piecewise functions with a total of ¢ pieces.

» O(log n) move evaluations for soft TW
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Conclusions on timing problems

0 For other features: Surveying the literature, we classified many re-
optimization based methodologies from various domains, and for a

large variety of attributes. (Savelsbergh 1985,1992, Kindervater and
Savelsbergh 1997, Campbell and Savelsbergh 2004, Ergun and Orlin 2006,
Irnich 2008, Hashimoto et al. 2006,2008, Kedad-Sidhoum and Sourd
2010)...

0 We could identify a set of state-of-the-art timing methods, which
are the key to solve many rich VRP settings:
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Conclusions on timing problems

Problem From Scratch Re-opt. by concat. F/B Cc2 C3+ Sd A ssumptions
{Wle} Min idle time O(n) — o(1) o(1) v
{a|TW } Min idle time O(n) Savelsbergh (1985) & 0(1) 0(1) v
Kind. and Sav. (1997)
{D|s} Min idle time O(n) Ergam and Orlin (2006) O(logn) O(1)* — penalty coefficient
depending upon act.
{D,R(d; =r;)INWT} Min idle time O(n) Kedad-Sidhoum and  O(logn) O(1)* — penalty coefficient
Sourd (2010) depending upon act.
{D, R(d; =r;)|a} Garey et al. (1988) & O(nlogn) Ibaraki et al. (2008) O(logn) O(logn) | v
Ahuja and Orlin (2001)
{D|R} Min idle time O(n) Ibaraki et al. (2008) O(logn) O(logn) | v
{Zei™(t:) |0} Ibaraki et al. (2008) O(nlogeyp,) Ibaraki et al. (2008) O(loge.) O(loge.) | v |cost f. >0, p.l. & Ls.c
{Xei(t:)|o} Ibaraki et al. (2005) O(ne.) Ibaraki et al. (2005) O(¢.) O(p.) v |cost f. >0, pl & Ls.c
{s|MTW} Min idle time O(n + Qurw) Ibaraki et al. (2005) O(log ¥y ) — v
{DUR|TW}, Malcolm et al. (1959) O(n) Savelsbergh (1992) & o(1) o(1) v
{e|DUR,TW } Kind. and Sav. (1997)
{DUR|MTW }, Tricoire et al. (2010) O(neyrw) Hashimoto et al. (2006) O(© ) — v
{6|DUR, MTW }
{o|IDL,TW} Hunsaker and S. (2002) O(n) — — — —
{5 (AL, Xey(t;) o) Sourd (2005) & O(n(p. + @. x ©.)) Sourd (2005) & Olg.+o.x¢') — v |cost f =0, pl & ls.c
Hashimoto et al. (2006) Hashimoto et al. (2006)
t lin idle time n — — — — assumption
{DIR, P(t)} Min idl O(n) FIFO p
{s8|TW,P(t)} Donati et al. (2008) O(n) Donati et al. (2008) o(1) — v' | FIFO assumption
c; (t; t)] ashimoto et al. (2008 n(e. + ¢, ashimoto et al. (2008 w. + i, — cost f. =0, p.L. .8.C
) P Hash al @) ; Hash al O ; v f L &1
& HYT assumption
{o|TL,TW} Hurink and Keuchel (2001) O(n?) — — — —
{6|TL,TW } Haugland and Ho (2010) O(nlogn) — — — — O(n) TL constraints
{DUR > D >TL|R} |Cordeau and Laporte (2003) O(n?) — — — — O(n) TL constraints
& LIFO assumption
{ B (t; — Aluja et al. (2003) O(n®lognlog(nl)) — — — — U is an upper bound of
1), BtV (L) | } execution dates
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Conclusions on timing problems

0 Large analysis of a rich body of problems with time characteristics and totally
ordered variables. Cross-domain synthesis, considering methods from
various fields such as vehicle routing, scheduling, PERT, and isotonic
regression. ldentification of main resolution principles

O For several “rich” combinatorial optimization settings, the timing sub-
problems represent the core of “richness” and deserve particular attention.

O Furthermore, timing sub-problems frequently arise in the context of local
search, and thus we analyzed both stand-alone resolution and efficient
solving of series of problems.
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Perspectives

0 Proof of concept : timing procedures have been integrated in a recent Unified
Hybrid Genetic Search, yielding state-of-the-art results on 26 variants of
vehicle routing problems

O Several features and feature combinations were identified in this work, for
which new timing algorithms (including re-optimization procedures) should be
sought.

0 Generalization to other cumulative resources, multi-objective or stochastic
settings.

0 Further studies on complexity lower bounds.
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Thank you for your attention !

Q For further reading, and follow-up works:

o Vidal, T., Crainic, T. G., Gendreau, M., Lahrichi, N., & Rei, W. (2012). A Hybrid Genetic Algorithm for Multi-
Depot and Periodic Vehicle Routing Problems. Operations Research, 60(3), 611-624.

o Vidal, T., Crainic, T. G., Gendreau, M., & Prins, C. (2013). A hybrid genetic algorithm with adaptive diversity
management for a large class of vehicle routing problems with time-windows. Computers & Operations
Research, 40(1), 475—-489.

o Vidal, T., Crainic, T. G., Gendreau, M., & Prins, C. (2012). A Unifying View on Timing Problems and
Algorithms. Submitted to C&OR. Tech Rep CIRRELT-2011-43.

o Vidal T., Crainic T.G., Gendreau M., Prins C. Heuristics for Multi-Attribute Vehicle Routing Problems: A
Survey and Synthesis (2012). Submitted to EJOR. Revised. Tech Rep CIRRELT-2012-05.

o Vidal, T., Crainic, T. G., Gendreau, M., & Prins, C. (2012). A Unified Solution Framework for Multi-Attribute
Vehicle Routing Problems. Submitted to Operations Research. Tech Rep CIRRELT-2012-23.

o Vidal, T., Crainic, T. G., Gendreau, M., & Prins, C. (2012). Implicit Depot Assignments and Rotations in
Vehicle Routing Heuristics. Submitted to EJOR. Tech Rep CIRRELT-2012-60.

o Goel, A., & Vidal, T. (2012). Hours of service regulations in road freight transport : an optimization-based
international assessment. Submitted to Trans. Sci. Revised. Tech Rep CIRRELT-2012-08.

o These papers + some others can be found at http://wl.cirrelt.ca/~vidalt/
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Empirical studies on diversity management methods (1/2)

» Sensitivity analysis on diversity management methods:

= HGA : No diversity management method

= HGA-DR : Dispersal rule on objective space
= HGA-PM : Dispersal rule on solution space

= HGSADC : The proposed approach

Benchmark HGA HGA-DR HGA-PM HGSADC
SVRP T 6.86 min 7.01 min 7.66 min 8.17 min
% +0.64% +0.49% +0.39% +0.13%
T 7.93 min 7.58 min 9.03 min 8.56 min
MDVRP
% +1.04% +0.87% +0.25% -0.04%
T 25.32 min 26.68 min 28.33 min 40.15 min
MDPVRP
% +4.80% +4.07% +3.60% +0.44%
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Empirical studies on diversity management methods (2/2)

» Behavior of HGSADC during a random run:

= Higher entropy (average distance between two individuals)
= Better final solution
= Diversity can increase during run time
0 50 Time (s) 100 150 0 50 Time (s) 100 150
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